
NP-COMPLETENESS STUDY QUESTIONS Solutions
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Do not submit.
SOLUTION PREPARED BY Instructor and T.A.s Ariel Cohen and Vikram Sharma

INSTRUCTIONS:

• These Study Questions are in lieu of Homework 6, and focuses on NP-Completeness (Lecture XXX).
This should be your priority in studying Lecture XXX. We want you to be familiar with the concept of
reducibility, and to be able to do simple reductions. In particular, reducing problems to the satisfiability
problem SAT.

1. Prove Lemma 1 (p.7), which shows that the set of well-formed Boolean formulas is in P .

HINT: You must describe a deterministic Turing machine that accepts iff the input has the form #F
for some Boolean formula F . Moreover, M must run in polynomial time. This is an exercise in
programming Turing machines!

SOLUTION:

Let w be the input string. From the definition of a formula, we see that each application of Boolean
operator (¬,∨,∧) is accompanied by a pair of parenthesis. In the following algorithm, w will be
continually being modified and in fact, |w| is reduced in each iteration. If w is well-formed, we will
finally convert it to the string w = x, otherwise, convert it to the string w = y. In the following, if a
string has the form

x{0, 1}∗ (1)

we call it a “variable string”

While |w| > 1 do:
1. Suppose there are no parenthesis symbols in w.

If w is a “variable string” we erase all the 0’s and 1’s in w, leaving just the symbol x.
Otherwise, we replace w by the string y and exit.

2. Suppose there is some parenthesis symbol.
Then we locate any innermost matching pair, say w = w0(w1)w2 where w1 has no parenthesis.
If this is not possible, we replace the entire string by y.

3. We verify that w1 has exactly one operator symbol (¬,∨ or ∧) and has one of the 3 forms:
w1 = ¬w3, w1 = w3 ∨ w4, or w1 = w3 ∧ w4,

where w3, w4 are “variable strings”. If so, we replace the substring w by w0xw2.
Otherwise, we replace w by the string y and exit.

Upon termination, we accept iff w = x. Each iteration of the while loop, we strictly reduce the length
of w. Each iteration takes time O(n2) where n is the length of the original input string. Hence the
overall complexity if O(n3).

To implement the above using a STM, we use various tricks: (1) We can “mark” the substring
. . . (w1) . . . in w, by introducing a marked version of each symbol in Σ. I.e., for each symbol a,
we introduce another symbol a (2) We can “delete” a substring (w1) in w = w0(w1)w2 in O(n2) time.
If you do not understand this O(n2) behavior, you need to work out the details yourself.

2. Exercise 4.2 (p. 10), showing that L ∈ NP iff L is verified in polynomial time by a verification machine.

HINT 1: As usual, an “iff” results require two demonstrations, the “if” part and the “only if” part.
In the Turing machine transition

(u
(a,a′,D)−→ v) (2)

c© Chee-Keng Yap December 14, 2004

we call (u, a) the precondition of the transition. Note that the Turing machine must satisfy this
precondition (i.e., be in state u and scanning symbol a) in order to be able to execute this transition.
A nondeterministic Turing machine M is said to be in nondeterministic normal form if it has this
property: for each precodition (u, a) there are exactly two transitions with this precondition. It is not
hard to convert any nonterministic Turing machine to this normal form; furthermore, the running time
of the normalized Turing machine on any input is O(T (n)) if the original running time is T (n).

By some convention, we can specify these two transitions as the “first” and the “second” transition
for (u, a). Hence, a computation of M on any input is completely deterministic once we also know the
sequence of choices (i.e., either the first or second transition is taken) made in every step!

HINT 2: A simple Turing machine M can simulate a vertification machine V as follows. Note that
V has two tapes (and two independent tape heads). We let M ’s tape be organized into 3 “tracks”.
Two of the tracks correspond to the 2 tapes of V , and the third track is for book keeping. Since V
has 2 tape heads and M has only one head, in general, M must take Θ(T (n)) steps for each step of
V . Hence the simulation will take O(T (n)2) time.

SOLUTION:

Suppose L ∈ NP . Let L be accepted by a nondeterministic STM M . We may assume M is in
nondeterministic normal form. We can convert M into a verification machine V for L as follows: V is
obtained from M by giving it another input tape to store a “choice string” c ∈ {1, 2}∗, representing
the nondeterministic choices in every step of the computation. Then x ∈ L iff there is a choice string
c such that (x, c) will cause V to accept.

Suppose L is verfied by a verification machine V . We construct a nondeterministic machine M as
follows: on input x, M will first “guess” a choice string c on another track of its input tape. Then it
simulates the behavior of V on the pair (x, c)

3. The proof of Lemma 5 lists three propositions (1)-(3) that must be constructed. We only described
(1). Please do the same for (2) and (3).

HINT: the formula for (3) must depend on the graph G.

SOLUTION:

(2) For each i, there is a unique j such that xij is true:

(n∨∨
j=1

xij

)
∧

(∧∧
1≤j<j′≤n

(xij ∨ xij′)
)

(3) For i 6= i′, if xij and xi′,j+1 are true then (i, i′) is an edge of G. We construct the following formula
based on the graph G:

∧∧
(i,i′) 6∈E

n∧∧
j=1

¬(xij ∧ xi′,j+1)

where we assume that j + 1 = 1 when j = n.

4. Let the addition predicate A(a, b, c) where a, b, c represent numbers in binary notation, and A(a, b, c)
is true iff a + b = c. Show how to construct in polynomial-time a Boolean formula F (a, b, c) that is
true iff A(a, b, c) is true.

HINT: Assume a and b are m-bit binary numbers. So let a = (a1, . . . , am)2, b = (b1, . . . , bm)2 and
c = (c0, c1, . . . , cm)2. where am, bm, cm are the least significant bit of the respective binary notations.
The formula F (a, b, c) involves these ai’s, bj ’s and ck’s. We can introduce the sequence of carries
d = (d0, d1, . . . , dm) where dm = 0 and d0 = c0 and di’s is the carry bit into column i. Thus we have
a + b = c iff for all i = 1, . . . , m,

ai + bi = ci + 2di−1 + di.

c© Chee-Keng Yap December 14, 2004

This equation can be expressed as a boolean formula. E.g., a = (1, 0, 0, 1, 1), b = (1, 1, 0, 0, 1), c =
(1, 0, 1, 1, 0, 0) and d = (1, 0, 0, 1, 1, 0). This gives the formula

G(a, b, c, d) =
m∧∧

i=1
“(ai + bi = ci + 2di−1 + di)′′

Since the di’s are not given, you need to replace them by 0’s and 1’s, and take a disjunction over
different copies of G(a, b, c, d):

F (a, b, c) =
∨∨
d

G(a, b, c, d).

Unfortunately, this leads to an exponential size formula as there are 2m possible choices for d. To get
around this, use a recursive formulation where we may assume m is a power of 2.

SOLUTION:

We split up each m-bit string into two m/2-bit strings. Let a = (aL, aR) where aL, aR are (m/2)-bit
numbers. Similarly for b. In the case of c, we assume cL has (m/2) + 1 bits while cR has (m/2) bits.
Then we can reformulate

F (a, b, c) =
1∨

d=0

Fd(aL, bL, cL) ∧ F (aR, bR, (d, cR))

where F0(a, b, c) is just the same as F (a, b, c) but F1(a, b, c) means that a + b + 1 = c. It is clear that
the formula is correct. But how do we write F1(a, b, c)? We will use m + 1 copies of F (a[i], b, c) where
a[i] is a suitably modified version of a. The basic idea is that a[i] corresponds to a + 1 provided ai = 0
and ai+1 = ai+1 = · · · = am = 1, and there is also the special case where all the ai’s are 1:

F1(a, b, c) =
(m∨∨

i=1

(
F (a[i], b, c) ∧ ai ∧ (

m∧∧
j=i+1

aj)
))

∨
(

c0 ∧ (
m∧∧

j=1
bj = cj) ∧ (

m∧∧
j=1

aj)
)

and a[i] = (a1, a2, . . . , ai−1, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

).

Thus F1(a, b, c) uses m copies of F (a, b, c).

We must estimate the size T (m) for the size of our recursive formula F (a, b, c) where a, b, c are m-bits.
Initially, assume each variable has unit size. Hence

T (m) = mT (m/2) + m.

This has solution T (m) = O(mlg m, which is a great improvement from before, but still not polynomial
size. To further reduce this, we need to reuse our formula in F1. We leave this as an exercise.

c© Chee-Keng Yap December 14, 2004

