
HASHING STUDY QUESTIONS
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Do not submit.

INSTRUCTIONS:

• This Study Question is in lieu of Homework 6, and focuses on hashing (Lecture XI). This should be
your priority in studying Lecture XI.

1. Coalesced Hashing
As usual, we have a hash table T [0..m− 1] with m slots. We assume a hash function h : U → Zm =
{0, . . . , m − 1}. We want to implement coalesced hashing, but a little differently than described in
the Lecture Notes. The approach described here is more1 straight forward because we will explicitly
introduce a variable to remember the “state” of each slot. As usual, we assume that the keys stored
in the hash table are unique. The i-th slot T [i] has four fields:

(a) T [i].Key which stores a key (element of U).

(b) T [i].next which stores an element of Zm.

(c) T [i].State stores a value in {−2,−1, 0, 1, 2} where State = 0 indicates the ORIGINAL state,
|State| = 1 indicates OCCUPIED, |State| = 2 indicates DELETED. Initially, State = 0 but once
a slot has been used, it never revert to this state again. Moreover, if State > 0, indicates this slot
as EOC (=END OF CHAIN); State < 0 means it is not EOC.

(d) T [i].Data which stores associated data. This is important in practice, but as usual, we ignore this
field in our algorithms.

(i) Describe scenarios where we need to use all the 5 possible state values in our data structure.
(ii) Consider the operation FINDKEY(k) which returns i ∈ Zm where T [i] is a slot in the chain that
begins at slot T [h(k)]. Moreover, one of three properties hold: (a) |T [i].State| = 1 and T [i].Key = k.
(b) k is not in the current hash table, and |T [i].State| 6= 1. (c) k is not in the current hash table, and
T [i].State = 1 (thus T [i] is OCCUPIED and is EOC). Implement this algorithm.
(iii) Consider the operation INSERT(k) which inserts k into the table if the table is not already full and
does not contain k. Implement INSERT(k) with the help of FINDKEY(k). Assume a global integer
variable N which remembers the number of keys currently in the hash table. If N = m, INSERT(k)
returns an ERROR condition. Otherwise, it returns the i ∈ Zm where k is stored. It is important to
ensure that you do not create cycles during INSERTION.
(iv) Implement DELETION(k), with the obvious meaning: if k is in the table, it will be deleted.
(v) We want to prove a fundamental property of your solution in parts (iii) and (iv). SHOW that a
sequence of INSERTION and DELETION operations does not introduce a cycle in our linked lists.
Assume that we start from an empty hash table where T.State[i] = 0 for all i.

2. Universal Hashing
The key result about how to use Universal Hash Functions is represented by Theorem 5 (p. 12, Lecture
XI). Through this exercise, we want you to be familiar with a particular class of universal hash sets,
namely the ones described in Lecture XI in §5 (p. 15-16). By a “finite field” F , you may assume that
we mean2 a set of the form F = Zq = {0, . . . , q − 1} where q is a prime number. The four arithmetic
operations in F are just the usual ones, but always modulo q. The most important thing you need to
know about F is that the operation of inverse is defined. That is, for each x ∈ F , if x 6= 0 then there
is a unique element y ∈ F such that xy = 1. We call y the inverse of x and denote it by x−1. The
Example and Solution on page 16 should be mastered.
(i) What is the simplest example of f finite field?

1In the lecture notes, we used special values of next to encode this state information. Actually, we will also need a special
value of Key (say Key = 0) to help us in this encoding – hence the write up in the Lecture Notes is buggy.

2There are other finite fields besides these, namely those with |F | a power of prime. But the arithmetic here is more
complicated, and you need not know about them.

c© Chee-Keng Yap December 13, 2004

(ii) In the finite field Z13, find the inverses of x = 1, 2, 3, 4, 5, 6. REMARK: there is an algorithm based
on Euclid’s algorithm for computing inverses. But you just need to find inverses by brute force search.
(iii) As a compiler designer, you want to construct a hash table to store all the user-defined variables
that might be encountered in a compiled program. Assume each variable name (i.e., key for hashing)
comes from the set U = Σ30 where Σ = {t, a, b, . . . , z, 0, 1, . . . , 9}. So |Σ| = 37 and each key has length
exactly 30. (NOTE: if a key has length less than 30, we assume you pad it with t until it is 30.) You
want to create a hash table T [0..m− 1] where 1000 < m < 2000, and resolve collision using separate
chaining. Show how to choose a hash function so that the expected number of keys that collide with
any given key is at most 1.

HINT: First, choose a universal hash set H ⊆ [U → Zm] for an appropriate m. Remember that there
are lots of primes3 but for our purposes perhaps it is enough to know that smallest prime larger than
372 = 1369 is q = 1373.
(iv) For a program with at most 1000 variable names, what is an upper bound on the expected length
of any chain in your hash table in part (ii)?

3You can easily look up some standard mathematical table for primes up to 2000.

c© Chee-Keng Yap December 13, 2004

