
Introduction to Randomized Algorithms

Chee Yap

April 21, 2003

1 Introduction

Randomness is a powerful tool in algorithms. The most well-known example is
Quicksort invented by Tony Hoare. In number-theoretic algorithms such tech-
niques are also very important. In the 1990’s it was realized that randomness
can be exploited very naturally in many geometric algorithms. Clarkson and
Mulmuley were among the first developers of such techniques. These random al-
gorithms are typically simple to implement and relatively straightforward: such
ought to be the algorithms of choice for implementors. It turns out that there
are two general paradigms that capture many randomization approaches:
(1) randomized divide and conquer and
(2) randomized incremental construction. Both will viewpoints will be dis-
cussed.

2 Examples of Geometric Computation

We shall introduce randomized algorithms via several examples of in computa-
tional geometry.

The first is the sorting of numbers, something that every beginning student
of computer science knows. While this may not strike you as geometry, it is
really one-dimensional geometry. Given a set S of n numbers, we want to sort
them. There are standard algorithms to compute this is O(n log n). We are
interested in a particular method, Quicksort. Idea is to randomly pick a point
x ∈ S, and split the problem into two halves; recurse on each half.

Trapezoidal Decomposition: given a set S of n line segments in the plane,
compute its trapezoidal decomposition. Say there are k pairwise intersections
among the segments, 0 ≤ k ≤ (

n
2

)
. This defines O(n + k) trapezoids.

FIGURE 1.
This means we want to compute the set of trapezoids and their adjacency

relationship in O(n log n + k) time. Chazelle has shown that this bound can
be achieved deterministically but it is not a practical algorithm. Our idea is to
randomly insert successive one segment at a time.

Convex Hull: given a set of points, compute its convex hull. This problem
might be said to be the simplest non-trivial geometric problem. In 1-dimensions,

c© Chee-Keng Yap April 21, 2003

it corresponds to finding the maximum and minumum of a set of numbers. As we
said before, in computer graphics, you need it in some Bezier curve algorithms.

Linear Programming: given a set of half spaces h1, . . . , hn, we want to com-
pute a point x in their intersection ∩n

i=1hi so as to minimize a linear function
f(x). This problem is very important in many practical applications such as
arise in economics.

3 Quick Probability

Since we want to do randomization, we should review our basic facts of prob-
ability. We do not need much at all, in fact, I intend to give you all that you
need here.

In any probabilistic analysis, you must look for the underlying probability
space. This is often implicit. But in its simplest form (that is all we need
here), it is extremely simple: you need to look for a set Ω and a function
Pr : Ω → [0, 1] = {x : 0 ≤ x ≤ 1}. A probability space is just this pair, (Ω, Pr).

The set Ω is called the sample space, and we take it to be any finite set.
Subsets A ⊆ Ω are called events. An element ω ∈ Ω is called a sample point,
and we do not distinguished it from the corresponding event {ω}.

The function Pr : Ω → [0, 1] is the probability distribution function. It
extends to events A ⊆ Ω as follows: Pr(A) =

∑
ω∈A Pr(ω) This gives us two

properties:
(A1) Pr(Ω) = 1
(A2) A, B ⊆ Ω implies Pr(A ∪B) = Pr(A) + Pr(B) − Pr(B ∩A).
Alternatively, in the general setting where A may not be finite, we can use (A1,
A2) as axioms.

Random Variables. Let R be the real numbers. A random variable (r.v.)
is any function

X : Ω → R.

If Xi are r.v.’s, then so are

X1 ±X2, X1X2, XX2
1 , . . .

The expection of a r.v. X is given by

E[X] :=
∑
ω∈Ω

X(ω) Pr(ω)

A remarkable elementary property is this: let X =
∑n

i=1 Xi. Then

E

[∑
i

Xi

]
=

∑
i

E[Xi]

c© Chee-Keng Yap April 21, 2003

Examples. Let S be a set with |S| = n. Also 1 ≤ r ≤ n.

• Random r-sets: Ω =
(
S
r

)
and Pr(R) = 1

(n
r)

if R ∈ Ω.

• Random permutations: Ω = S! and Pr(π) = 1
n! if π ∈ Ω.

• Random subsets: Ω = 2S . Let 0 < α < 1 and Pr(R) = αr(1 − α)n−r for
all R ∈ Ω with |R| = r. This corresponds to a random subset of S by
picking any element with probility α. When α = 1/2, then Pr(R) = 2−n

for all R.

Useful Facts.

• Harmonic numbers

Hn := 1 +
1
2

+
1
3

+ · · ·+ 1
n

= ln n + Θ(1)

• Let 0 ≤ x < 1. Then

e−x = 1− x +
x2

2
− x3

3!
+ · · ·

≥ 1− x

• Consider the probability space above where Ω = 2S . If R is a random
element of Ω, what is the expected size |R|? We can compute as follows:

E[|R|] =
n∑

r=0

∑
R∈2S ,|R|=r

rαr(1− α)n−r

=
n∑

r=1

(
n

r

)
rαr(1− α)n−r

= nα

n∑
r=1

(
n− 1
r − 1

)
αr−1(1− α)n−r

= nα

n−1∑
r=0

(
n− 1

r

)
αr(1− α)n−1−r

= nα.

4 Another View of Quicksort

The standard QuickSort algorithm can be described as follows: let S be a set
of n points, and we want to return the sorted sequence QSort(S).
0. If |S| ≤ 1 return S.
1. Pick a random x0 ∈ S.

c© Chee-Keng Yap April 21, 2003

2. Partition S into SL]{x0}]SR where SL = {y ∈ S : y < x0} and SR = {y ∈
S : y > x0}.
3. Return (QSort(SL), x0, QSort(SR)).

In each of the above problems:

• We are given a set S of n objects (= points, segments, planes). We solve
the problem on Sr where Sr is a random r-subset of S. Let

Sr = {x1, . . . , xr}, Tr := S − Sr.

• View this as the problem of maintaining a data structure D0 such that
after the rth stage, D0 is a representation a suitable mathematical ob-
ject D(Sr). The algorithm amounts to inserting updating D0 so that it
represents D(Sr+1). Thus, D0 is a semi-dynamic datastructure.

• Besides D0, we typically must to maintain an auxilliary data structure D1

(conflict graphs, history graph, etc) which depends on the problem.

• There are two versions of semi-dynamic: whether what we maintain de-
pends on the set Tr = S − Sr or not. If so, then the problem is not
online.

We illustrate these ideas in one dimension. The standard QuickSort algo-
rithm can be described as follows: let S be a set of n points, and we want to
return the sorted sequence QSort(S).
0. If |S| ≤ 1 return S.
1. Pick a random x0 ∈ S.
2. Partition S into SL] {x0}] SR where SL = {y ∈ S : y < x0} and
SR = {y ∈ S : y > x0}.
3. Return (QSort(SL), x0, QSort(SR)).

In our new take on the Quicksort algorithm, we assume an iterative algorithm
where in the rth step (r = 1, . . . , n), we want to insert an element xr ∈ S into
a data structure. Let Sr = {x1, . . . , xr} and D(Sr) be the data structure after
we have inserted the first r − 1 elements. Assume D(Sr) is a linear list of all
the intervals between successive numbers in Sr. If

Sr : y1 < y2 < · · · < yr

then the intervals are I1 = (y1, y2), I2 = (y2, y3), etc. Let R0(Sr) be the set of
intervals, including (−∞, y1] and [yr, +∞). For simplicity, we assume all inputs
numbers are distinct.

Data Structures. The main data structure is just a list D0 representing the
intervals of R0(Sr). With suitable representation, we can easily obtain the
sorting order of Sr from D0.

The auxiliary data structure is a list D1 comprising all the numbers in Tr.
Each y ∈ Tr points to the interval I ∈ R0(Sr) that contains it. Furthermore,
we augment D0 so that with each I ∈ R0(Sr), we store list C(I) of all those
numbers y ∈ Tr such that y ∈ I. Call C(I) the conflict list for I.

c© Chee-Keng Yap April 21, 2003

Update. When we insert a new xr+1, we will split some interval I ∈ R0(Sr)
into two subintervals. Updating the list D0 is easy: just replace I by two
intervals. To update D1, we must split the adjacency list for I in the obvious
way.

Analysis. We analyze the expected cost of the rth update. We use this oppor-
tunity to introduce the backwards analysis technique of P. Chew and popular-
ized by R. Seidel. Namely, imagine running the algorithm backwards. Instead
of inserting xr, we actually delete xr from the currently sorted sublists, and
merge the two intervals which shares xr as a common endpoint to obtain the
data structure corresponding to Sr−1. Let tr be the cost of this deletion. Now,
there are r points that can be deleted, and they are all equally likely. There
are also n − r numbers in Tr whose pointers may have to be adjusted. For
j = 1, . . . , n − r, let Ij = Ij,r be the indicator variable such that Ij = 1 if the
pointer of the jth number is adjusted by the rth deletion, and otherwise Ij = 0.
Up to a constant factor we may write,

tr = 1 +
n−r∑
j=1

Ij

Hence

E[tr] = 1 +
n−r∑
j=1

E[Ij]

= 1 +
n−r∑
j=1

Pr[Ij = 1]

≤ 1 +
n−r∑
j=1

2/r

since the pointer of any number in Tr is changed only if we delete the one or
two numbers that bound its interval. Thus

E[tr] ≤ 1 + 2(n− r)/r ≤ 1 + 2n/r.

The expected overall cost of the algorithm is therefore
n∑

r=1

E[tr] = n +
n∑

r=1

2n/r = n + 2nHn = O(n log n).

where Hn is the harmonic number
∑a

i=1 1/i = ln n + Θ(1).
REMARK: why do we call this “quicksort”? The central idea of quicksort

is that the partition element is chosen randomly from the input. The usual pre-
sentation of Quicksort uses a partition function to split the remaining elements
into two sets, and this corresponds to our update of the conflict lists. While
the usual view proceeds recursively, we have avoided this completely by a “flat”
view of the data. This should have the practical benefit of avoiding the overhead
of recursion.

c© Chee-Keng Yap April 21, 2003

An Online Version. The previous algorithm is not online because our data
structure requires knowledge of the set Tr. Let us introduce another key idea in
randomized incremental algorithms: the history data structure. This idea
first appeared in a paper of Boissonnat and Teillaud for computing the Delaunay
Triangulation of a point set.

Notice that the intervals of ∪r
i=1R0(Si) are organized into a binary search

tree D2 in a natural way: the root is the interval [−∞, +∞]. In general, if
interval I is split into IL and IR by an insertion, then we let IL and IR be the
left and right child of I in the binary tree. Thus, the intervals of R0(Sr) are
represented by the intervals of the leaves of Tr. Suppose we are given xr to be
inserted into R0(Sr−1). We first use D2 to find the interval Ir ∈ R0(Sr−1) that
must be split. We then proceed as before.

What is the complexity of this algorithm? We must now bound the cost of
searching in D2. Let t = tr be the length of the search path. Here we must
introduce an assumption that (x1, . . . , xr) is a random permutation of Sr and
so t is a random variable. Let Vr be the expected value of tr. Then,

Vr = 1 +
1

r + 1

r∑
i=0

Vi.

Multiplying by r + 1 and differencing,

Vr =
1
r

+ Vr−1

and hence Vr = Hr (the rth Harmonic number.

5 Configuration Spaces

We are now going to abstract the properties of this algorithm using the concept
of configuration spaces. The elements of configuration spaces are as follows:

• There is a set of objects O. For sorting, O = R. Let p ∈ O be a typical
object.

• The input instance for our problem is a finite set S ⊆ O of objects.

• There is a set of regions R. For sorting, R is the set of intervals. Let
A ∈ R be a typical region.

• There is a finite set ∆ :={∆i : i = 1, . . . , b} of defining functions. Each
∆i has the form

∆i : Odi →R
where di is the degree of ∆i.

If ∆i(p1, . . . , pdi) = A, then we say A is defined by p1, . . . , pdi . Fur-
thermore, every region in R is defined by some sequence of objects. The
maximum degree of any ∆i is called the degree of ∆.

c© Chee-Keng Yap April 21, 2003

For sorting, b = 3. We have ∆1(p, q) = (p, q) is the open interval with
endpoints p, q ∈ R. Also ∆2(p) = (p,∞) and ∆3(p) = (−∞, p). The
degree of ∆ is 2.

• There is a conflict relation K ⊆ O ×R. If K(p, A) holds, we say that p
conflicts with A.

For sorting, K(p, A) holds if p ∈ A.

• Let Π(S) be the set of regions defined by the finite set S ⊆ O. For sorting,

Π(S) = ∆1(S2) ∪∆2(S) ∪∆3(S).

We also define the subset Π0(S) comprising those regions in Π(S) that
has no conflicts in S.

• We frame our computational problem on input S to be the computation
of the set Π0(S).

For sorting, we want to compute all those intervals formed by consecutive
numbers in S.

Convex Hull. Let us apply this to the convex hull problem (P2) where the
input is a set of points in R

d.

• The set of object is O = R
d. Let p ∈ O be a typical object.

• THe set of regions R is the set of open half-spaces in R
d.

• There is only one defining function, ∆ :={∆1} (b = 1). Moreover, ∆1 has
degree d,

∆1 : Od →R
which defines a open half-space in R

d. In case the points p1, . . . , pd are
degenerate, ∆1(p1, . . . , pd) = ∅ (the empty set).

• The conflict relation K ⊆ O ×R says that K(p, A) holds iff p ∈ A.

• The input instance for our problem is a finite set S ⊆ O of points. It
defines a set Π(S) of open half-spaces.

• The convex hull problem amounts to computing the half-spaces in Π0(S).
(In case of degeneracy, we can resolve the ambiguities in any suitable way).

Trapezoidal Decomposition. We consider next the trapezoidal decompos-
tion (P3):

• The set of object is O = (R2)2, corresponding to line segments.

• The set of regions R is the set of closed quadrilaterals with two verical
sides. We allow degeneration into triangles.

c© Chee-Keng Yap April 21, 2003

• We have MANY defining function, ∆ :={∆1, . . . ,∆b}: b = b1 + b2 + b3 +
b4 = 4 + 2 + 2 + 1.

FIGURE

where we show three cases only.

• The conflict relation K(p, A) holds iff the segment p intersects the quadri-
lateral A.

• The input instance for our problem is a finite set S ⊆ O of segments (note
that we do not assume that they are disjoint).

• The trapezoidal decomposition problem amounts to computing the empty
regions of Π0(S).

6 FINAL REMARKS

Other Applications of These ideas:
(a) Randomized Linear Programming: Od(n) time
(b) Output Sensitive Convex Hull: O(n2 + k log n).

References:
(1) Mulmuley: Computational Geometry: An Introduction Through Random-
ized Algorithms, Prentice-Hall, 1994
(2) Boissonnat and Yvinec: Algorithmic Geometry, Cambridge University Press
(1998), (English Translation: H.Bronnimann).

Exercises

Exercise 0.1: Solve the following recurrence exactly: for a, b ∈ N let

Wa,b = 1 +
1

a + b

a−1∑

i=0

Wi,b +
b−1∑
j=0

Wa,j

 ,

(a + b)Wa,b = (a + b) +
a−1∑
i=0

Wi,b +
b−1∑
j=0

Wa,j .

Assume the boundary condition W0,0 = 1. ♦

End Exercises

c© Chee-Keng Yap April 21, 2003

