
§1. Bigraphs and Digraphs Lecture IV Page 1

Lecture IV

Pure Graph Problems

A graph is fundamentally a set of mathematical relations (called incidence relations) connecting two sets,
a vertex set V and an edge set E. The simplest notion of an edge e ∈ E is a pair e = (u, v) of vertices.
Graphs are useful for modeling abstract mathematical relations in in computer science as well as in many
other disciplines. Here are some examples of graphs:

(b)(a)

4

1
2

3

5
7

6

2

7

1

5

6

3

4

Figure 1: (a) Political map of 7 countries (b) Adjacency relationship of countries

Adjacency between Countries In figure 1(a), we have a map of the political boundaries separating 7
countries. Figure 1(b) shows a graph with vertex set V = {1, 2, . . . , 7} representing these countries.
An edge (i, j) represent relationship between countries i and j that share a continuous common border.
Note that countries 2 and 3 share two contintinuous common borders, and so we have two copies of
the edge (2, 3).

Flight Connections A graph can represent the flight connections of a particular airline, with the set V
representing the airports and the set E representing the flight segments that connect pairs of airports.
Each edge will typically have auxilliary data associated with it. For example, the data may be numbers
representing flying time of that flight segment.

Hypertext Links In hypertext documents on the world wide web, a document will generally have links
(“hyper-references”) to other documents. We can represent these linkages structure by a graph whose
vertices V represent individual documents, and each edge (u, v) ∈ V × V indicates that there is a link
from document u to document v.

In many applications, our graphs have associated data such as numerical values (“weights”) attached to
the edges and vertices. These are called weighted graphs. The flight connection graph above is an example
of this. Graphs without such numerical are called pure graphs. In this chapter, we restrict attention to
pure graph problems; weighted graphs will be treated in later chapters. The algorithmic issues of pure
graphs mostly relate to the concepts of connectivity and paths. These algorithms can be embedded in one
of two graph searching strategies called depth-first search (DFS) and breadth-first search (BFS). We also
investigate an important problem of pure graphs: testing if a graph is planar. Tarjan [2] was one of the first
to systematically study the DFS algorithm and its applications.

§1. Bigraphs and Digraphs

c© Chee-Keng Yap Basic Version February 3, 2003

§1. Bigraphs and Digraphs Lecture IV Page 2

Basic graph definitions are given. In this book, “graphs” refer to either bigraphs or
digraphs. All graphs are assumed to be simple.

We give a general view of graphs. Given two arbitrary sets V, E, an incidence function on V, E is
I : E → 2V . Fix an index set J . A J-graph G is a set G = {Iα : α ∈ J} of incidence functions, each
indexed by an element of J . If v ∈ Iα(e), we say1 e is α-incident (or simply “incident”) on v. Conversely,
we say v α-bounds e. In case |J | = 1, we identify G with the sole incidence function. Elements of V and
E are called vertices and edges of G. Sometimes vertices are called nodes, and edges called arcs.

Two edges e, e′ ∈ E are parallel if for each α ∈ J , Iα(e) = Iα(e′). We call G a simple graph if
it has no parallel edges. Non-simple graphs are also called multigraphs. For instance, the adjacency
relationship between countries (see figure 1) may require a multigraph representation, since two countries
can be adjacent along more than continuous border. In particular, figure 1(b) shows a multigraph with a
parallel edge connecting vertices 2 and 3. In the context of pure graphs, a multigraph can be represented by
a simple graph together with a positive integer weight associated with each simple edge.

Here are the main types of J-graphs:

• Hypergraphs. Here |J | = 1. There is no constraints on the sole incidence relation I : E → 2V . A
simple hypergraph is also called a “set system”; an edge e ∈ E is then identified with a subset of V
and called a “hyperedge”.

• Digraphs. Here J = {0, 1} and |I0(e)| = |I1(e)| = 1 for all e ∈ E. We call I0(e) the start vertex and
I1(e) the stop vertex of e. If I0(e) = I1(e), we call e a self-loop. Simple digraphs are also known as
directed graphs because an edge e can be written as an ordered pair (I0(e), I1(e)) = (u, v). The edge
(u, v) is said to be “directed” from start u to stop v. The edges (u, v) and (v, u) are distinct unless it
is a self-loop.

• Bigraphs. We can define bigraphs in two equivalent ways: (a) We can regard a bigraph as a hypergraph
in which |I(e)| = 2 for all e ∈ E. (b) We can regard a bigraph as a digraph with no self-loops and
where the edges in E can be partitioned into pairs such that if e, e′ ∈ E are paired then I0(e) = I1(e′)
and I1(e) = I0(e′). If the digraph is simple, we conclude that (u, v) is an edge iff (v, u) is an edge,
and these two are paired. Simple bigraphs are more commonly2 called undirected graphs because
its edges are bi-directional: (u, v) and (v, u) are considered the same edge.

Non-standard example. Suppose V is the set of people living at a particular instant, and E represents
the set of universities. Let J = {p, t, s}. Let G be a J-graph where |If (e)| = 1. If If (e) = {u}, it means u is
the president of the university e. The sets It(e) and Is(e) are, respectively, the faculty members and students
of the university. Clearly, we can extend the index set J to represent other people who are associated with
a university in some definite capacity.

Graphical representation of graphs. Bigraphs and digraphs are “linear graphs” in which each edge
is incident on one or two vertices. Such graphs have natural graphical representation: elements of V are
represented by points (or circles) in the plane and elements of E are represented by finite curve segments
connecting these points. Of course, we can distinguish the type of each edge-vertex incidence with a label
from the set J .

1The incidence terminology is somewhat variable in the literature. In our terminology, “incidence” and “bounding” are
inverses: e is incident on v iff v bounds e. The bounding concept comes from a geometric interpretation: the endpoints of a line
segments is said to bound the line segment, the edges of a polygon is said to bound the polygon, and so on in higher dimensions.

2This terminology is special to this book. Since “undirected graph” is somewhat unwieldy for such a fundamental concept,
and since the coinage “digraph” is standard, it seems that the term “bigraph” is justified and helpful.

c© Chee-Keng Yap Basic Version February 3, 2003

§1. Bigraphs and Digraphs Lecture IV Page 3

(a) bigraph (b) digraph

a

b c

d

e

4

5

2 3

6
1

Figure 2: Bigraph and digraph.

In figure 2, we display a bigraph (V, E) where V = {a, b, c, d, e} and E = {ab, bc, ac, bd, cd, de}. Note
that for brevity, we simply write “ab” instead of “(a, b)”, etc. We also display a digraph (V, E) where
V = {1, 2, . . . , 6} and E = {15, 54, 43, 32, 21, 16, 26, 36, 46, 56, 52, 53}. We display a digraph edge (u, v) by
drawing an arrow head incident to, and pointing at, the stop endpoint (v) of its curve segment. E.g., in
figure 2(b), all the edges involving vertex 6 has 6 as the stop vertex and so the arrow heads are all pointed at
6. Thus edges are “directed” from the start to the stop vertex. In contrast, the curve segments in bigraphs
are undirected (bi-directional).

Set-Theoretic Notations for Simple Graphs. For a simple graph G, each edge e ∈ E can be completely
identified by the set I(e) = {Iα(e) : α ∈ J} of sets. For a hypergraph, I(e) is essentially a subset of V . For
a bigraph, I(e) is essentially a 2-element subset of V . For a digraph, I(e) is essentially an ordered pair. To
support this alternative characterization of edges, we introduce the following notations. For any set V and
integer k ≥ 0, let

V k, 2V ,

(
V

k

)

denote, respectively, the k-fold Cartesian product of V , power set of V and the set of k-subsets of
V . The first two notations (V k, 2k) are standard notations; the last one is less so. These notations have a
certain “umbral quality” because they satisfy the following equations:

∣∣V k
∣∣ = |V |k,

∣∣2V
∣∣ = 2|V |,

∣∣∣∣
(

V

k

)∣∣∣∣ =
(|V |

k

)
.

We can now characterize our 3 varieties of graphs as follows:

• A hypergraph is a pair G = (V, E) where E ⊆ 2V .

• A digraph is a pair G = (V, E) where E ⊆ V 2.

• A bigraph is a pair G = (V, E) where E ⊆ (
V
2

)
.

Although an edge e in a bigraph is a set e = {u, v}, as noted above, we also write it as “e = (u, v)” as for
digraph edges. This convention is useful when we give definitions that cover both digraphs and bigraphs. In
the rest of this book, the term “graph” refers to either digraphs or bigraphs. For convenience, some basic
graph terminology is collected in §I (Appendix A).

c© Chee-Keng Yap Basic Version February 3, 2003

§1. Bigraphs and Digraphs Lecture IV Page 4

Paths. If (u, v) is an edge, we say that v is adjacent to u. A typical usage is this: “for each v adjacent
to u, do . . . v . . .”. Note that adjacency is an asymmetric relation in this usage.

Let p = (v0, v1, . . . , vk), (k ≥ 0) be a sequence of edges. We call p a path if vi is adjacent to vi−1 for all
i = 1, 2, . . . , k.

The length of p is k; the path is trivial if it has length 0. Call v0 is the source and vk the target
of p. Both v0 and vk are endpoints of p. We also say p is a path from v0 to vk The path p is closed if
v0 = vk and simple if all its vertices, with the possible exception of v0 = vk, are distinct. The reverse of
p = (v0, . . . , vk) is the path

pR :=(vk, vk−1, . . . , v0).

In a bigraph, p is a path iff pR is a path.

Define δG(u, v), or simply δ(u, v), to be the minimum length of a path from u to v. If there is no path
from u to v, then δ(u, v) = ∞ We also call δ(u, v) the link distance from u to v (this terminology will be
useful when δ(u, v) is later generalized to weighted graphs). It is easy to see that

• δ(u, v) ≥ 0, with equality iff u = v.

• (Triangular Inequality) δ(u, v) ≤ δ(u, w) + δ(w, v).

• When G is a bigraph, then δ(u, v) = δ(v, u).

These three properties amounts to saying that δ(u, v) is a metric on V in the case of a bigraph.

Subpaths. Suppose the path p terminates at the vertex where path q begins:

p = (v0, v1, . . . , vk), q = (u0, u1, . . . , v`),

where vk = u0. Then we can concatenate them into a new path, written

p; q :=(v0, v1, . . . , vk−1, vk, u1, u2, . . . , u`).

Clearly concatenation of paths is associative: (p; q); r = p; (q; r), which we may simply write as p; q; r. We
say that a path p contains q as a subpath if p = p′; q; p′′ for some p′, p′′. If in addition, q is a closed path,
we can excise q from p to obtain the path p′; p′′. Whenever we write a concatenation expression “p; q”,
etc, we will assume that the operation is well-defined.

Cycles. Two paths p, q are cyclic equivalent if there exists paths r, r′ such that

p = r; r′, q = r′; r.

We write p ≡ q in this case. Clearly p and q must both be closed path. It is easily checked that cyclic
equivalence is a mathematical equivalence relation. For instance, the following four closed paths are cyclic
equivalent:

(1, 2, 3, 4, 1) ≡ (2, 3, 4, 1, 2) ≡ (3, 4, 1, 2, 3) ≡ (4, 1, 2, 3, 4).

The first and the third closed paths are cyclic equivalent because of the following decomposition:

(1, 2, 3, 4, 1) = (1, 2, 3); (3, 4, 1), (3, 4, 1, 2, 3) = (3, 4, 1); (1, 2, 3).

c© Chee-Keng Yap Basic Version February 3, 2003

§1. Bigraphs and Digraphs Lecture IV Page 5

We define a cycle in an equivalence class of closed paths. If the equivalence class of p is the cycle Z, we call
p a representative of Z; if p = (v0, . . . , vk) then we write Z as

Z = [p] = [v1, v2, . . . , vk] = [v2, v3, . . . , vk, v1].

Path concepts that are invariant under cyclic equivalence are transferred to cycles automatically: for instance,
we may speak of the length or reverse of a cycle, etc. A cycle [v1, . . . , vk] is simple if the vertices v1, . . . , vk

are distinct. If we excise a finite number of closed subpaths from a closed path p, we obtain a closed subpath
q; call [q] a subcycle of [p]. For instance, [1, 2, 3] is a subcycle of

[1, 2, a, b, c, 2, 3, d, e, 3].

From the general transfer principle, we conclude that a cycle Z = [p] is trivial iff p is a trivial path. We
now come to a definition where there is a split between digraphs and bigraphs. A digraph G is cyclic if
it contains any nontrivial cycle. But for digraphs, this definition will not do. For instance, we can obtain
non-trivial cycles of the form [u, v, u] for any edge (u, v). Hence we define a closed path p = (v0, v1, . . . , vk)
to be irreducible if (1) vi−1 6= vi+1 for all i = 1, . . . , k − 1, and (2) v1 6= vk−1. Otherwise it is reducible.
So a cycle Z = [p] is reducible iff p is reducible. Finally, a bigraph is cyclic if it contains any irreducible
non-trivial cycles. In general, a graph is acyclic if it is not cyclic.

Connectivity. Let G = (V, E) be a graph (either di- or bigraph). Two vertices u, v in G are connected if
there is a path from u to v and a path from v to u. Equivalently, λ(u, v) and λ(v, u) are both finite. Clearly,
connectedness is an equivalence relation on V . A subset C of V is a connected component of G if it is an
equivalence class of this relation. For short, we may simply call C a component of G. Alternatively, C is a
non-empty maximal subset of vertices in which any two are connected. Thus V is partitioned into disjoint
components. If G has only one connected component, it is said to be connected. When |C| = 1, we call it
a trivial component. The subgraph of G induced by C is called a component graph of G. NOTE: It is
customary, and for emphasis, we may add the qualifier “strong” when discussing components of digraphs.

(a) (b) (c)

6

4

2

6
41

2

5

3

5

3

1

2, 3, 5

Figure 3: (a) Digraph G6, (b) Component graph of C = {2, 3, 5}, (c) Reduced graph Gc
6

For example, the graph G6 in figure 3(a) has C2 = {2, 3, 5} as a component. The component graph
corresponding to C is shown in figure 3(b). The other components of G are {1}, {4}, {6}, all trivial.

Given G, we define the reduced graph Gc = (V c, Ec) whose vertices comprise the components of G,
and whose edges are (C, C′) ∈ Ec such that there exists an edge from some vertex in C to some vertex in
C′. This is illustrated in figure 3(c).

c© Chee-Keng Yap Basic Version February 3, 2003

§1. Bigraphs and Digraphs Lecture IV Page 6

CLAIM: Gc is acycic. In proof, suppose there is a non-trivial cycle Zc in Gc. This translates into a cycle
Z in G that involves at least two components C, C′. The existence of Z contradicts the assumption that
C, C′ are distinct components.

Note that the reduced graph is essentially trivial for bigraphs, so this concept is only applied to digraphs.
But for bigraphs, we will later introduce a stronger notion of connectivity, called bi-connectivity.

DAGs and Trees. A graph without non-trivial cycles is said to be acyclic. DAG is a common acronym
for “directed acyclic graph”. A tree is a DAG in which there is a unique node u0 called the root such
that there exists a unique path from u0 to any other node. Trees are ubiquitous in computer science. Thus,
we have free trees, rooted trees, ordered trees, search trees, etc. A free tree (on a set V of vertices) is a
connected bigraph on V with no cycles. This means that it has |V | − 1 edges and for every pair of vertices,
there is a unique path connecting them. These two properties can also be used as the definition of a free
tree. A rooted tree is a free tree together with a distinguished node called the root. We can convert a
rooted tree into a directed graph in two ways: by directing each of its edges away from the root (so the edges
are child pointers), or by directing each edge towards the root (so the edges are parent pointers).

Size and Representation Two size parameters are used in measuring the computational complexity of
graph problems: |V | and |E|. These are typically denoted by n and m. For digraphs or bigraphs, it is clear
that 0 ≤ m ≤ n2. If m = o(n2) for graphs in a family G, we say G is a sparse family of graphs; otherwise the
family is dense. For example, the family G of planar graphs is sparse because m = O(n) in planar graphs.
Some computational techniques can exploit sparsity of input graphs.

The representation of graphs in computers is relatively straightforward if we assume array capabilities or
pointer structures. The three main representations are:

• Edge list: a list of the vertices of G and a list edges of G.

• Adjacency list: a list of the vertices of G and for each vertex v, we store the list of vertices that are
adjacent to v.

• Adjacency matrix: this is a n×n Boolean matrix where the (i, j)-th entry is 1 iff there is an edge from
the i-th edge to the j-th edge.

The first two methods uses O(m+n) space while the last method uses O(n2) space. Thus the last method
cannot exploit sparsity of the graph.

The above representations can be extended to edge-weighted graphs in a natural way. In case of adjacency
matrix, we need to choose some special value that cannot be an edge weight (for instance ∞ or 0). Then
each entry is either the edge weight (if an edge is present) or equal to the special value.

In description of many graph algorithms, it is convenient to assume that the vertex set of a graph is
V = {1, 2, . . . , n}. For instance, this allows us to iterate over all the vertices using an integer variable.
To associate an attribute A with each vertex, we can use an array A[1..n] where A[i] is the value of the
A-attribute of vertex i.

Coloring Scheme. In many graph algorithms we need to keep track of some “processing status” of the
vertices. The status changes in a linear order, from unprocessed to processed. Sometimes, it is important

c© Chee-Keng Yap Basic Version February 3, 2003

§2. Breadth First Search Lecture IV Page 7

to denote intermediate status of being partially processed. Viewing the status as colors, we then have a
three-color scheme: “white” or “gray” or “black”. They correspond to unprocessed, partially processed and
completely processed statuses. Alternatively, the white, grey and black colors can be called “unseen”, “seen”
and “done” (respectively). Initially, all nodes are unseen or white. The color transitions of each node are
always in this order:

white ⇒ gray ⇒ black,
unseen ⇒ seen ⇒ done. (1)

For instance, we may let the status array be an integer color[1..n], with the convention white is 0, gray is
1 and black is 2. Then color transition for vertex i is simply color[i] + +. Sometimes, a two-color scheme
is sufficient: in this case we omit the gray color or the “done” status.

Exercises

Exercise 1.1: Prove or disprove: there exists a bigraph G = (V, E) where |V | is odd and the degree of each
node is odd. ♦

Exercise 1.2: A trigraph is G = (V, E) where E ⊆ (
V
3

)
. An element f ∈ E is called a face (not ”edge”).

A pair {u, v} ∈ (
V
2

)
is called an edge provided {u, v} ⊆ f for some face f ; in this case, we say f is

incident on e, and e bound f). The trigraph is an (abstract) surface if each edge bounds exactly
two faces. How many nonisomorphic surfaces are there on n = |V | vertices? First consider the case
n = 4, 5, 6. ♦

End Exercises

§2. Breadth First Search

In many graph problems, we need a graph traversal algorithm, that is, an algorithm that systematically
“visits” each node and edge of a graph. There is a systematic ways to do this: start from any node s0 and
“visit every edge and node that can be reached from s0”. If there are any other unvisited node s1, we repeat
this process with s0 replaced by s1, and so on.

But how do we “visit every edge and node that can be reached from s0”? This again has a very simple
scheme: starting from s, we “process” each edge that we discover from paths starting at s. In general, we
will have discovered several edges at once and these edges need to be put into a “container” until it can be
processed. There are two standard containers: either a queue or a stack. These two datastructures give rise
to the two algorithms for graph traversal: Breadth First Search (BFS) and Depth First Search (DFS),
respectively.

Both traversal methods apply to digraphs and bigraphs. However, BFS is often described for bigraphs
only and DFS for digraphs only. In both algorithms, we assume that the input graph G = (V, E; s0) is
represented by adjacency lists, and s0 ∈ V is called the source for the search.

The idea of BFS is to systematically visit nodes that are nearer to s0 before visiting those nodes that are
further away. More precisely, if

δ(s0, u) < δ(s0, v) <∞ (2)

c© Chee-Keng Yap Basic Version February 3, 2003

§2. Breadth First Search Lecture IV Page 8

then we visit u before v. If δ(s0, u) =∞, then u will not be visited. A BFS listing at s0 is a listing of all
the nodes reachable from s0 in which a node u appears before another node v in the list whenever (2) holds.
To illustrate this, suppose G is the bigraph in figure 2 and s0 is node a. Then two possible BFS listing at a
are

(a, b, d, c, e) and (a, d, b, c, e). (3)

The key to the BFS algorithm is the queue ADT which supports the insertion and deletion of an item
following the First-In First-Out (FIFO) discipline. If Q is a queue and x an item, we denote the insert and
delete operations by

enqueue(Q, x), x← dequeue(Q),

respectively. To keep track of the status of nodes we will use the color scheme in the previous section (see
(1)). We could use two or three colors, but for simplicity, we use only two: white/gray or unseen/seen.
There is an underlying tree structure in any particular BFS computation: if v is “seen” from u (in the sense
of line 2.3 below), then the edge (u, v) is considered a tree edge. This tree is called the BFS tree. The BFS
tree corresponding to the first listing in (3) is shown in figure 4(a).

a

b d

e

c

a

b d

e

c

(a) (b)

Figure 4: BFS Tree.

We formulate our BFS algorithm as a shell for accomplishing application specific functions:

BFS Algorithm
Input: G = (V, E; s0) a graph (bi- or di-).
Output: This is application specific.
// Initialization:

1.1 Initialize the queue Q to contain just s0.
1.2 INIT(G) // APPLICATION SPECIFIC

// Main Loop:
while Q 6= ∅ do

2.1 u← dequeue(Q).
2.2 for each v adjacent to u do
2.3 if v is ‘unseen’ then
2.4 color v ‘seen’
2.5 VISIT(v, u) // APPLICATION SPECIFIC
2.6 enqueue(Q, v).
2.7 POSTVISIT(u) // APPLICATION SPECIFIC.

The application-specific subroutines INIT, VISIT and POSTVISIT can be null operations. Note that
VISIT(v, u) represents visiting v from u. If BFS is a standalone code, then INIT(G) will be expected to

c© Chee-Keng Yap Basic Version February 3, 2003

§2. Breadth First Search Lecture IV Page 9

initialize the color of all nodes to unseen, and s0 has color seen. In general, they will accomplish application
specific tasks. For instance:

• Suppose you wish to print a BFS listing of the nodes reachable from s0. Then POSTVISIT(u) simply
prints the name of u. Other subroutines remain null operations.

• Suppose you wish to compute to compute the BFS tree T . If we view T as a set of edges, then INIT(G)
could initial a set T to be empty. In VISIT(v, u), we add the edge (u, v) to T .

• Suppose you wish to determine the depth d[u] of each node u in the BFS Tree. Then INIT(G) could
set d[s0] = 0, and in VISIT(v, u), we will set d[v] = 1 + d[u].

Time Analysis. We will not count the time for the application-specific subroutines. The initialization is
Θ(n) and the main loop is Θ(m′) = O(m) where m′ is the number of reachable edges. (An edge (u, v) is
‘reachable’ if u is reachable). This giving a total complexity of O(n + m).

The BFS Algorithm defines a BFS Tree and this assigns a depth to each node reachable from s0. The BFS
Algorithm is characterized by what we might call the BFS Property: a node at depth i is POSTVISITED
before any node in depth greater than i.

We claim that the edges of the graph G can be classified into the following types by the BFS Algorithm
(see figure 4(b)):

• Tree edges: these are the edges of the BFS tree.

• Level edges: these are edges between nodes in the same level of the BFS tree. E.g., edge bd in
figure 4(b).

• Cross Level edges: these are non-tree edges that connect nodes in two different levels. But note that
the two levels differ by exactly one. E.g., edge cd in figure 4(b).

• Unseen edges: these are edges that are not used during the computation. The involve nodes not
reachable from s0.

It is easy to see that all the above types of edges exists. The only question is why can’t there be other
kinds of non-tree edges. In particular, why can’t there be an edge (u, v) where the depth of u is 2 or more
larger than v’s depth? Suppose such an edge exists, and let w be the parent of v in the BFS tree. By the
BFS Property, u is POSTVISITED before w. If v was first seen by w, this means that v would be unseen
when u was being processed. This contradicts the assumption that (u, v) is not a tree edge.

We will leave it as an exercise to modify our BFS algorithm above so that all edges are correctly classified.

Driver Program. In our BFS algorithm we assume that a source node s0 ∈ V is given. This is guaranteed
to visit all nodes reachable from s0. What if we need to process all nodes, not just those reachable from a
given node? In this case, we write a “driver program” that repeatedly calls our BFS algorithm. Moreover,
we remove the initialization step (Step 1) from BFS and move it into the driver program. Here is the driver
program:

c© Chee-Keng Yap Basic Version February 3, 2003

§3. Simple Depth First Search Lecture IV Page 10

BFS Driver Algorithm
Input: G = (V, E) a graph.
Output: E.g., a set of BFS trees that span G.
// Initialization:

1.1 Color all nodes as ‘unseen’.
1.2 INIT(G) // APPLICATION SPECIFIC

Main Loop:
2.1 For each node v in V do
2.2 if v is ‘unseen’ then

call BFS((V, E; v)).

An simple application of this is to compute connected components of a bigraph G. Let us view this task
as one of assigning a component number c[u] to each node in V . The component number is arbitrary with
the only requirement that c[u] = c[v] iff u, v belongs to the same component. The reader can easily modify
the above driver program and BFS to solve this problem.

Exercises

Exercise 2.1: Prove that every node that is reachable from the source will be seen by BFS. ♦

Exercise 2.2:
(a) Prove that the BFS tree is indeed a tree.
(b) Show for any (u, v) ∈ E, if δ(s0, v) <∞ then |δ(s0, v)− δ(s0, u)| ≤ 1.
(c) For any node v in the BFS tree, the level number of v is equal to δ(s0, v). ♦

Exercise 2.3: Modify the BFS algorithm so that it computes the level number δ(s0, v) of every node v
reachable from s0. ♦

Exercise 2.4: Let G = (V, E; λ) be a connected bigraph in which each vertex v ∈ V has an associated value
λ(v) ∈ R.
(a) Give an algorithm to compute the sum

∑
v∈V λ(v).

(b) Give an algorithm to label every edge e ∈ E with the value |λ(u)− λ(v)| where e = (u, v). ♦

End Exercises

§3. Simple Depth First Search

The DFS algorithm turns out to be more subtle than BFS. In some applications, however, it is sufficient
to use a simplified version that is as easy as the BFS algorithm. In fact, it might even be easier because we
can exploit recursion.

Here is an account of this simplified DFS algorithm. Starting the search from the source s0, the idea is
to go as deep along some path (any path) as much as possible without visiting any node twice. When this is

c© Chee-Keng Yap Basic Version February 3, 2003

§3. Simple Depth First Search Lecture IV Page 11

no longer possible, we back up towards the source s0, but only enough for us to go forward in depth again.
In illustration, suppose G is the digraph in figure 2, and s0 is node 1. Then one possible deepest path from
1 is (1, 5, 2, 6). From node 6, we backup to node 2, from where we can advance to node 3. Again we need to
backup, and so on. This can be represented by a DFS tree, as represented in figure 5(a).

1

5

2

6

4

3

1

5

2

6

4

3

(a) (b)

Figure 5: DFS Tree.

To support this backing up along a path, we need the stack ADT, which is similar to the queue ADT
except that the insertion and deletion of items are based on the Last-In-First-Out (LIFO) discipline. The
insert and delete operations are denoted

push(S, x), x← pop(S),

where S is a stack and x an item.

Again, we color every node as ‘unseen’ or ‘seen’, exactly as in BFS. We similarly define a DFS tree
underlying any particular DFS computation: the edges of this tree are precisely those (u, v) such that v is
‘seen’ from u.

It is instructive to see that the DFS and BFS algorithms are structurally identical, except for their choices
of ADTs. Again, INIT(G), VISIT(v, u) and POSTVISIT(u) and application specific code that can the null
operation. We now give an equivalent, recursive form of the same algorithm:

DFS Algorithm (Recursive form)
Input: G = (V, E; s0) a graph.
Output: E.g., DFS tree T rooted at s0.
Initialization:

1 INIT(G) // Application Specific.
2 for each v adjacent to s0 do
3 if v is ‘unseen’ then
4 color v ‘seen’,
5 VISIT(v, u). // Application Specific
6 DFS(v).
7 POSTVISIT(u).

The behavior of DFS is somewhat more intricate to analyze. We can classify the edges of the graph G
as follows (see figure 5(b)):

c© Chee-Keng Yap Basic Version February 3, 2003

§4. Full Depth First Search Lecture IV Page 12

• Tree edges: these are the edges belonging to the DFS tree.

• Back edges: these are non-tree edges (u, v) ∈ E where v is an ancestor of u. Note: (u, u) is considerd
a back edge. E.g., edges 21 and 32 in figure 5(b).

• Forward edges: these are non-tree edges (u, v) ∈ E where v is a descendent of u. E.g., edges 16 and
56 in figure 5(b).

• Cross edges: these are edges (u, v) that are not classified by the above, but where u, v are visited.
E.g., edges 46, 36 and 43 in figure 5(b).

• Unseen edges: all other edges are put in this category. These are edges (u, v) in which u is unseen
at the end of the algorithm.

Unfortunately, to modify our simple DFS algorithm to classify these edges is a little harder. In particular,
the bicolor scheme (seen/unseen) is no longer sufficient (we cannot distinguish between a cross edge from a
forward or back edge). In fact, we also cannot distinguish between forward and back edges.

§4. Full Depth First Search

To perform certain computations using the DFS framework, it is useful to compute additional information
about the DFS tree. In particular, we may wish to classify the edges as described in the previous algorithm.
Instead of the bicolor scheme, we tricolor each node as unseen/seen/done (or white/gray/black). The
VISIT(u) subroutine can be used to color the node u as “done”. The “seen” nodes are precisely those
are currently in the recursion stack.

A more profound embellishment is to timestamp the nodes. There are two kinds of time stamp for
each node: time when first encountered, and time when last encountered. To implement timestamps, we
assume a global counter C that is initially 0. Each time we encounter a node u in a significant way (the
first time or the last time), we increment C and associate this value to the array entry firstTime[u] or
lastTime[u]. In some applications, we may only need one of these two values. Let active(u) denote
the time interval [firstTime[u], lastTime[u]], and we say u is active within this interval. We also write
active(v) < active(u) if lastTime[v] < firstTime[u]. It is clear from the nature of the recursion that two
active are either disjoint or has a containment relationship. We have the following characterization of edges
using timestamps:

Lemma 1 Let u, v ∈ V . Then v is a descendent of u in the DFS tree if and only if at the time that v was
first seen, there is a “white path” from v to u, i.e., a path comprising only of white nodes. This is also
equivalent to

active(v) ⊆ active(u).

Proof. If there is a white path, then by induction on the length of this path, every node on this path will be
a descendent of u. Conversely, if v is descendent of u then by induction on the distance of v from u, there
will be a white path to u.

Now, if there is a white path from u to v when u was first discovered, we must have firstTime[u] <
firstTime[v]. Moreover, since the node u will remain active until v is discovered, we also have lastTime[v] <
lastTime[u]. Hence active(v) ⊆ active(u). Q.E.D.

The following is now easy to see:

c© Chee-Keng Yap Basic Version February 3, 2003

§5. Applications of DFS Lecture IV Page 13

Lemma 2 If (u, v) is an edge then

1. (u, v) is a back edge iff active(u) ⊆ active(v).

2. (u, v) is a cross edge iff active(v) < active(u).

3. (u, v) is a forward edge iff there exists some w ∈ V \ {u, v} such that active(v) ⊆ active(w) ⊆
active(u).

4. (u, v) is a tree edge iff active(v) ⊆ active(u) but it is not a forward edge.

Application to detecting cycles. Suppose that there are no non-tree edges. Then the graph is acyclic
iff there are no back edges. One direction is clear – if there a back edge, we have a cycle. Conversely, if there
is a cycle Z, then there must be a node in u in Z that is first reached by the DFS algorithm. We will then
get a back edge to u. Hence, we can use the DFS algorithm to check if a graph is acyclic.

Exercises

Exercise 4.1: Give a recursive version of the DFS algorithm. Prove that your version achieves the same
behavior as the one given in the text. ♦

Exercise 4.2: Construct a small digraph and run the DFS algorithm on it so that all the 6 classifications
of edges appear in your example. ♦

Exercise 4.3: Suppose G is a bigraph. Show that a DFS computation on G will not induce any forward or
cross edges. ♦

Exercise 4.4: Suppose G = (V, E; λ) is a strongly connected digraph in which λ : E → R.
(a) A potential function of G is φ : V → R such that for all (u, v) ∈ E,

λ(u, v) = φ(u)− φ(v).

Assuming G has a potential function, give an an algorithm to find one.
(b) Let C be a subgraph of G. Describe an easy-to-check property P of C such that G does not have
a potential function iff C has property P . We may call any C with property P a “witness” for the
non-existence of a potential function.
(c) Modify your solution to (a) so that for any G, it either finds a potential function or produces a
“witness” C. ♦

Exercise 4.5: Suppose you are given a connected bigraph G on the vertices V = [1..n]. Give an efficient
algorithm to compute for each i ∈ V a value c[i] that is equal to the number of components in G when
the vertex i is deleted. ♦

End Exercises

c© Chee-Keng Yap Basic Version February 3, 2003

§5. Applications of DFS Lecture IV Page 14

§5. Applications of DFS

In the following, assume G = (V, E) is a digraph with V = {1, 2, . . . , n}. Let per[1..n] be an integer array
that represents a permutation of V in the sense that V = {per[1], per[2], . . . , per[n]}. This array can also be
interpreted in other ways (e.g., a ranking of the vertices).

Topological Sort. One motivation is the so called PERT graphs: these are DAG’s where nodes represents
activities. An edge (u, v) ∈ E means that activity u must be performed before activity v. By transitivity, if
there is a path from u to v, then u must be performed before v. A topological sort of such a graph amounts
to a feasible order of execution of all these activities.

wake up

breakfast

newspaper

go to work

Figure 6: PERT graph

Suppose G is a DAG. Let us call per[1..n] a topological ranking of G if the following is true:

If (per[i], per[j]) ∈ E then i < j. (4)

Property (4) says that if we perform activities in the order per[1], per[2], . . . , per[n], then we are assured
that there is no “direct” inversion of priority. We say “direct” because the precondition of (4) is information
represented by directly by the edges of G. Could there be indirect inversions of priority? The answer is no.
In proof, suppose that i < j and per[i] depends on per[j]. This means there is a path in the graph G from
per[j] to per[i]. Let this path be

(per[j0], per[j1], . . . , per[jk])

where j0 = j and jk = i. By (4), we know that j = j0 < j1 < · · · < jk = i. This is a contradiction.

Here then is an algorithm to compute such a permutation:

...

Strong Components. There are three distinct algorithms for computing strong components in digraphs.
Here, we will develop a simple yet subtle algorithm based on what we might call “reverse graph search”.

Let G = (V, E) be a digraph where V = {1, . . . , n}. Let per[1..n] be an array that represents some
permutation of the vertices, so V = {per[1], per[2], . . . , per[n]}. Let DFS(i) denote the DFS algorithm
starting from vertex i. Consider the following method to visit every vertex in G:

c© Chee-Keng Yap Basic Version February 3, 2003

§5. Applications of DFS Lecture IV Page 15

Strong Component Subroutine(G, per)
Input: Digraph G and permutation per[1..n].
Output: A set of DFS Trees.

Initialization
1. For i = 1, . . . , n, color[i] = unseen.

Main Loop
2. For i = 1, . . . , n,
3. If (color[per[i]] = unseen),
4. DFS1(per[i]) // Outputs a DFS Tree

This loop is a standard driver program, except that we use per[i] to determine the choice of the next
vertex to visit. We assume that DFS1(i) will (1) change the color of every vertex that it visits from unseen
to seen, and (2) output the DFS tree rooted at i.

First, let us see how the above subroutine will perform on the digraph G6 in figure 3(a). Let us also
assume that the permutation is

per[1, 2, 3, 4, 5, 6] = (6, 3, 5, 2, 1, 4) (5)

The output of SC Subroutine will be the DFS trees for on the following sets of nodes (in this order):

{6}, {3, 2, 5}, {1}, {4}.
Since these are the four strong components of G6, the algorithm is correct. We now prove that, with a
suitable permutation, this is always the case:

Lemma 3 There exists a permutation per[1..n] such that the Strong Component Subroutine is correct,
that is, each each DFS Tree that is output in Step 4 corresponds to a strong component of G.

Proof. Consider the reduced graph Gc of G. Consider a permutation per[1..n] that is a reverse topological
sort of the vertices of G. More precisely, if per[i] = u, we think of i as the ranking of vertex u in our reverse
topological sort, and write rank[u] = i. So rank[1..n] is just the inverse of per[1..n]. Suppose C1, C2 are two
components of G and (C1, C2) is an edge in Gc, then for each vertex u1 ∈ C1 and u2 ∈ C2, we require the
property

rank[u1] > rank[u2]. (6)

With this property, we see that in our Main Loop (line 2) of the above subroutine, we will consider vertex
u2 before vertex u1.

We must show this actually works, that is, if the algorithm calls DFS1(u2) in line 4 within the Main
Loop, it will output precisely C2. We will use induction based on the partial order induced by the rank
function. In other words, for all u0 whose rank is less than rank[u2], a call to DFS1(u0) produces the
component of u0.

This is certainly true in the base case (i.e., when C2 is a sink in the DAG Gc). Inductively, assume that
all previous calls to DFS1 has correctly output only strong components. This implies that no vertices of C2

has been output when we first call DFS1(u2). Then, it is clear that DFS1(u2) will reach and output every
vertex in C2.

We must next show that it is impossible to output vertices that are NOT in C2. Suppose DFS1(u2)
reaches some unseen vertex u0 that belongs to another component C0. We may assume that u0 is the first
such vertex, and hence (C2, C0) is an edge of Gc. By assumption (6), rank[u0] < rank[u2]. This is a

c© Chee-Keng Yap Basic Version February 3, 2003

§5. Applications of DFS Lecture IV Page 16

contradiction because in our main loop, we would have considered the vertex u0 before u2. This means that
color[u0] = seen by the time we consider u2. Q.E.D.

How do we computer per[1..n] satisfying (6) in the preceding proof? We can compute a topological sort of
the reverse of graph G. Then per[i] can be the inverse of the topological ranking of the vertices produced by
this sort. But rather than compute reverse of G first, we can directly perform a DFS Search of G. For each
DFS Tree we find, we rank the vertices according to a pre-order traversal of the DFS Tree. Let us denote
this DFS variant by DFS0(i). Vertices in subsequent DFS trees will receive higher ranks. Moreover, it is
simple to modify the code to actually maintain the inverse of the ranking (i.e., directly maintain per[1..n]).
Here then is the code:

Strong Component Algorithm(G)
Input: Digraph G = (V, E), V = {1, 2, . . . , n}.
Output: A permutation per[1..n] of V

Initialization
1. For i = 1, . . . , n, color[i] = unseen.
2. Declare array per[1..n].
3. Rank = 0 (global counter)

Main Loop
4. For i = 1, . . . , n,
5. If (color[i] = unseen),
6. DFS0(i) // updates per with postorder ranking

Calls Main Subroutine
6. Strong Component Subroutine(G, per)

The code for DFS0 is as follows:

DFS0(i)
Input: vertex i in G = (V, E)
Output: Update of array per[1..n]

Main Loop
3. For each vertex v adjacent to i,
4. If (color[v] = unseen),
5. DFS0(v) // recursion
6. per[+ + Rank] = i // give vertex i its rank

We may verify that the permutation per[1..6] computed by our algorithm on G6 is precisely that shown
in (5).

Remarks. Tarjan [2] was the first to give a linear time algorithm for strong components. R. Kosaraju
and M. Sharir independently discovered the reverse graph search method described here. The reverse graph
search is conceptually elegant. But since it requires two passes over the graph input, it is slower in practice
than the direct method of Tarjan. Yet a third method was discovered by Gabow in 1999. For further
discussion of this problem, including history, we refer to Sedgewick [1].

c© Chee-Keng Yap Basic Version February 3, 2003

§5. Applications of DFS Lecture IV Page 17

References

[1] R. Sedgewick. Algorithms in C: Part 5, Graph Algorithms. Addison-Wesley, Boston, MA, 3rd edition
edition, 2002.

[2] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2), 1972.

c© Chee-Keng Yap Basic Version February 3, 2003

