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MIDTERM with SOLUTION

1. PLEASE READ INSTRUCTIONS CAREFULLY.
2. Answer all questions.
3. Use ONLY THE FRONT SIDE OF EACH PAGE for your answers.
4. Use the REVERSE SIDE of each page for scratch work.

GENERAL COMMENTS ABOUT YOUR ANSWERS:

• Remember that grades for this course is curved (normalized) and not based on absolute
points.

• Question 1 asked for ”brief justifications” but many simply wrote down an answer and left
it at that! Question 2 asked for intermediate trees after EACH insertion/deletion/rotation,
but some simply skip many crucial intermediate steps. Please realize that you are not
entitled to any points when you ignore such explicit instructions (but we have graded more
generously than this).

• Each question asks for something specific: Question 1(iii) asked for a set, but most answers
never even mention a set. Question 1(iv) asked for a solution a recurrence. You must
give us what we asked for. Otherwise, you are not answering the question.

1. (10 points each part) Short Questions
You must give a brief justification (two or three sentences).
(i) What upper and lower bound does the Master Theorem give for the following recur-
rence? T (n) = 16T (n/2) + n4

log log n .

(ii) Give the Θ-order of the following sum: S(n) =
∑n

i=1 i2
i

.
(iii) You are given an algorithm A which, given two sequences t = (u1, u2, . . . , um) and
p = (v1, v2, . . . , vn), it will tell you whether p occurs as a subsequence in t. For instance
p = (a, a, b) occurs in t = (a, a, a, b, a), but p does not occur in t′ = (a, b, a, b, a). Algorithm
A takes time O(m + n). Describe in no more than 2 sentences how you can test if two
closed paths p = (u0, u1, . . . , uk) and q = (v0, v1, . . . , v`) are equivalent (i.e., represent the
same cycle).

SOLUTION:

(i) T (n) = O(n4 log n) since T (n) ≤ T1(n) where T1(n) = 16T1(n/2) + n4 = Θ(n4 log n).

Also, T (n) = Ω(n4) since T (n) ≥ T2(n) where T2(n) = 16T2(n/2) + 1 = Θ(n4).

(ii) This is an exponential type sum, and hence by our summation rule, S(n) = Θ(n2n

).
To see that it is exponential type, we must show that i2

i ≥ C(i − 1)2
i−1

. This is clearly
true as i2

i

= i2
i−12 = (i2

i−1)2 = C · i2i−1 where C = i2
i−1 ≥ 4 and i ≥ 2.

PITFALLS: Please do not confuse i2
i

(double exponential) with i2i (single exponential).

(iii) Here is the algorithm: Just check ` = k and use Algorithm A to detect that p is a
subsequence of t = (v0, v1, . . . , v`, v1, v2, . . . , v`).

PITFALLS: do not attempt to re-do the O(n2) algorithm in the homework! If you do not
use algorithm A in your solution, you get NO credit.

2. (10+10+20 points) AVL and (a, b)-trees

We want to insert the following sequence of keys into an initially empty search tree:

1,−1,
1
2
,
−1
2

,
1
3
,
−1
3

, . . . ,
1
n

,
−1
n

.
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(i) Let n = 5 (so you are inserting 10 keys). Draw the AVL tree at the end of each
insertion. So we want to show us 10 trees for this question. You get one point per tree,
and if any tree is wrong, then all subsequent trees are considered wrong. Do NOT show
us your intermediate results, although you probably want to do this on the scratch pages.
Please be careful, as it is easy to make mistakes.
(ii) Inserting the 10 keys of part (i) into a (2, 3)-tree. To get things started, we assume
that your initial tree already has the keys 1 and −1, as illustrated in figure 1.
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Figure 1: (a) Initial (2, 3)-tree. (b) Graph for Prim’s Algorithm

Our leaves store only one key (viewed as an “item”), but the keys in internal nodes can
duplicate the keys at the leaves. For this part, we only want to see 8 trees, one for each
subsequent insertion.

NOTE: Your algorithm for this part must be the same as the one in (iii) next. Be careful!
Our insertion algorithm does now always behave the same way as the algorithm in CLRS,
for instance.
(iii) For homework, we developed three subroutines which we said can be put together
into an insertion algorithm for (a, b)-trees. Let us give names to these routines:

• SplitRoot(oldRoot) → newRoot: Assuming oldRoot has b + 1 children, this subrou-
tine splits oldRoot into two halves, and make the two halves children of a new node,
which is returned as newRoot.

• MoveKey(u, v) → void: Assuming node u has b + 1 children but v is a sibling with
< b children, this subroutine moves a key from u into v, fixes up their common
parent, and returns a void.

• Split(u, v) → parent: Assuming u has b + 1 children and v has b children, we first
form the union of u and v and then split the result into 3 nodes which are inserted
into their parent node. After fixing up the parent, we return the parent node.

DO NOT RE-DERIVE THESE ROUTINES. Notice that we assumed that an internal
node can temporarily have b + 1 children. State any reasonable assumptions you need for
these subroutines. Based on these subroutines, give the pseudo-code for Insert(k, d, u)
which inserts an item (k, d) into a (a, b)-tree rooted at u. HINT: it is useful to detect
and do something different at nodes whose children are all leaves; call these “leaf-parent”
nodes.

SOLUTION:
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FINALLY:
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Figure 2: Inserting 1,−1, 1/2,−1/2, , . . . , 1/5,−1/5 into an AVL tree.

(i) See Figure 2 for a partial solution.

(ii) See Figure 3 for a partial solution.

PITFALLS: You must be consistent in how keys are duplicated in the internal nodes: if
you duplicate keys so that the keys in a left subtree are all ≤ the comparison key, then
you must make sure that all the right subtree are STRICTLY greater than the comparison
key.

(iii) Following the HINT, we assume that we can detect if a node is a leaf-parent.
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Figure 3: Inserting 1,−1, 1/2,−1/2, , . . . , 1/5,−1/5 into an 2-3 tree.

Insert(k, d, u)
1 CURR = u.
1.1 Assume CURR has this sequence of references and keys:
1.2 (r1, k1, r2, k2, . . . , km−1, rm).
2 While CURR is not a leaf-parent
2.1 Find the i such that ki < k ≤ ki+1. (assume k0 = −∞, km = ∞).
2.2 Set CURR = ri+1.
3 NOTE: Now CURR is a leaf-parent.
3.1 If k = ki+1, return “Insert failed”.
3.2 Else, form a new leaf v storing (k, d),
3.3 If i < m− 1, insert (v, k) as a child of CURR.
3.4 If i = m− 1, append (k′, v) as the last pair in

CURR, where k′ is the key in the leaf rm.
NOTE: the number m of children of CURR in (1.2) has now been incremented.

4 While CURR has b + 1 children:
4.1 If CURR is the root, call SplitRoot(CURR) and break.
4.2 If CURR has a sibling v with < b children, call MoveKey(CURR, v). Break.
4.3 Now, CURR must have a sibling v with b children. Let CURR = Split(CURR, v).
5 Return “Insert successful”.

3. (20 points) MST
Do a hand-simulation of Prim’s algorithm on the graph in Figure 1(b), starting your
search from vertex 1. We assign numerical costs to vertices in this Figure. The cost of
edge (i, j) ∈ E is just C(i) + C(j) where C(i) is the cost of vertex i. Recall from class
that this means setting up an array LC[1..12] where the vertex set is V = {1, . . . , 12}.
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Initially, the array is LC[1] = 0 and LC[i] is the weight of the edge (1, i) (weight is infinite
if (1, i) is not in the graph). We just display the updated array at each stage.

What is the weight of your MST? What is the MST (you can show this by a figure of the
graph)?

Stage v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

1 0 10 1 8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 1 7 3
3 3 8
4 7 11 11
5 8 6
6 5 2 6 10
7 5 2
8∗ 5
9 5 6
10 6
11∗ 10
12 10

The asterisks at steps 8 and 11 indicate that we have a choice about which vertex to pick
next.

The weight of the MST is 63 (sum up all the underlined numbers).

The set of MST edges corresponding to the above table is shown in thick lines in Figure 4.
By examining this table, you could determine these edges (try it).
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Figure 4: An MST.

4. (20 points) Recurrences
Consider the recurrence T (n) = 10T (n/3)+n. In homework, we showed by real induction
that T (n) = Cnα eventually, where α = 3. That proof will work for any α that is greater
than log3(10). Now we let α = log3(10). Prove by real induction that there exists C and
D such that

T (n) ≤ Cnα −Dn (1)

for n large enough. HINT: for the basis, find an interval [n0, n1] such that has (at least)
these three properties: (i) 1 < n0 < n1 (ii) for any n ≥ n1, n/3 will fall inside this interval,
and (iii) the bound (1) is true for all n inside this interval.

SOLUTION:

First, let us prove the Real Induction Step: we have

T (n) = 10T (n/3) + n (assumption)
≤ 10 [C(n/3)α −D(n/3)] + n (induction hypothesis)
= Cnα −Dn [(10/3)− (1/D)]
≤ Cnα −Dn provided (10/3)− (1/D) ≥ 1.
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The last proviso is equivalent to D ≥ 3/7.

HERE is a better basis: let T (n) = 0 for n < n0 = 1. Choose n1 = 3. Then for all
n ∈ [n0, n1), we have T (n) = 10T (n/3) + n = n. If we choose D = 3/7 and C = 10/7
then, we have T (n) = n = n(C−D) < n(Cnα−1−D) ≤ Cnα−Dn. That is, the induction
hypothesis is true for n ∈ [n0, n1). This satisfies all the conditions in our HINT. The rest
follows by Real Induction.


