
Homework 6
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Wed Dec 11 (last recitation) or Thu Dec 12 (to one of us).

1. Biconnected Component (20 Points)
Do parts (a) to (d) in Exercise 22-2, page 558 of CLR Text.

SOLUTION:

(a) Let u0 be the root of Gπ . We prove this in two directions. First,
suppose u0 has more than two children. Let two of the children be v
and v′. There are no edges of the form (w, w′) where w is any node in
the subtree rooted at v and w′ is any node in the subtree rooted at v′.
This is because the DFS tree for a bigraph has no cross edges. Hence any
path from w to w′ must go through u0. Therefore, if we delete u0 (and
all the edges incident on u0) we would have disconnected w from w′. By
definition, this means u0 is an articulation point. Conversely, suppose u0

has one child. Then clearly, deleting u0 will not disconnect the graph G.
So u0 is not an articulation point.

(b) Let v be a nonroot vertex. Again we show the two directions separately.
First suppose v has a child s as described in the problem. Then removing v
would disconnect s from the parent of v, and so v is an articulation point.
Conversely, if there is no such s, we claim that v is not an articulation
point. To see this, suppose v0 is the parent of v and v1, . . . , vm are all
the children of v. Then by our assumption, there exists path from vi to
v0 for each i = 1, . . . , m. This means that the set S = {v0, v1, . . . , vm}
are all in the same connected component. Hence the removal of v did not
disconnect these vertices. Clearly, any path that goes through v must go
through two nodes in the set S. It follows that if there is a path from any
node u and u′ in the original graph G, then there is still a path from u to
u′ in the graph after we remove v.

(c) We can modify the DFS-VISIT algorithm in the text (p.541) to main-
tain the values low[u] for each u. First, we initialize low[u] = d[u] (in
line 3.5). Subsequent, we update low[u] = min{low[u], low[v]} in line 7.5
(inside the “then” clause).

(d) We simply run the DFS-VISIT algorithm from any starting node v0.
We add line 8.5 to DFS-VISIT to output u as an articulation point if
low[u] = d[u]. Finally, we also output v0 as an articulation point if it has
more than one child.

2. Graph Diameter (20 Points)
Let G = (V, E) be a bigraph, assumed to be connected. The diameter
of G is maxu,v∈V δ(u, v), where δ(u, v) is the length of the shortest path
between u and v (what we also called “link distance” in class). Give an
efficient algorithm to estimate the diameter within a factor of 2, i.e., your

1



algorithm must return a number D such that the diameter of G lies in the
interval [D, 2D]? Bound the running time.

SOLUTION:

Do BFS at any node v, and return D where the depth of the BFS tree is
D.

Why is this correct? Clearly, the diameter is at least D since there is a
shortest path of length D in the graph. Furthermore, the diameter must
be at most 2D since any two nodes u, v in the graph can be connected by
a path from u to the root of the BFS tree, and from the root to v. The
running time is O(m) to do BFS.

3. Dijkstra’s Algorithm (5+20 Points)
Consider running Djikstra’s algorithm on the graph in Figure 24.6 (page
596, CLR Text). However, instead of the weights there, you must add a
positive integer ∆ > 0 to each weight. We want you to choose the smallest
∆ such that the order in which nodes that becomes “known” is different
than the original order, which is (s, y, z, t, x). You should try ∆ = 1, 2, 3,
etc until you see a different order emerging.

What to hand in: tell us what ∆ is, and submit a table showing your
simulation of Dijkstra. The table is rather similar to Prim’s algorithm in
the previous homework.

CONVENTIONS: the data for each row of your table should correspond
to this order: (s, t, x, y, z). The first row is (0, 10 + ∆,∞, 5 + ∆,∞). To
fill in the ith row, you first copy the SMALLEST weight in the (i − 1)st
row that is still ”unknown” and underline it. Then you proceed to fill in
the rest of the rows (use double quotes (”) to indicate a repeated value,
and leave blank those entries corresponding to ”known” nodes).

SOLUTION:

(a) What is the minimum ∆ to cause a different order? We check that if
∆ = 1, 2, then the order does not change. However, if ∆ = 3, then we will
have a tie for a minimum. By breaking the tie one way or another, we get
different orders. Of course, one of them will be different from the original
order. Hence ∆ = 3 is the minimum we seek. If we want to ensure the
order is different regardless of how the ties are broken, then we will need
∆ = 4. So we will accept either answer.

(b) Here is the simulation of Dijkstra for ∆ = 3.

Vertices: s t x y z
Stage 1: 0 13 ∞ 8 ∞
re Stage 2: ” 20 8 13
Stage 3: 13 17 13
Stage 4: ” 13
Stage 5: 17

2



4. Bellman-Form Algorithm (5+20 Points)
The Bellman-Ford algorithm detects negative cycles (p.588, CLR). Sup-
pose you also want to know all those vertices that are in a negative cycle.
How do you modify the algorithm? HINT: keep track of the shortest paths
using the π[u] array (cf.p.584).

SOLUTION:

First, let us solve a slightly simpler problem than is posed in this question.

Assume we just want to detect all vertices u such that the length of shortest
path from s to u is −∞. This can be done as follows: in line 7, instead of
returning FALSE, we simply set d[v] = −∞.

We also replace line 8 by another call to DFS from each node v where
d[v] = −∞. Every node that is reaches by these DFS’s will have their
d-value set to −∞.

Unfortunately, there seems to be no simple way to detect only those v
such that v is contained in a negative cycle. One way to do what we want
is to first partition the vertices into strong components. Then for each
strong component C either every vertex in C is contained in a negative
cycle, or none of them are. To decide which is the case, we note that C
contains a negative cycle iff some vertex in C has its d-value equal to −∞
in the modified line 7 above.

5. Shortest Path (20 Points)
Consider the min-cost path problem in which you are given a digraph
G = (V, E; C1, ∆) where C1 is a positive cost function on the edges and ∆
is a positive cost function on the vertices. Intuitively, C1(i, j) represents
the time to fly from city i to city j and ∆(i) represents the time delay to
stop over at city i. A jet-set business executive wants to construct matrix
M where the (i, j)th entry Mi,j represents the “fastest” way to fly from i
to j. This is defined as follows. If π = (v0, v1, . . . , vk) is a path, define

C(π) = C1(π) +
k−1∑

j=1

∆(vj)

and let Mi,j be the minimum of C(π) as π ranges over all paths from i
to j. Please modify the Floyd-Warshall Algorithm, to compute M for our
executive.

SOLUTION:

Define C [k](i, j) to be the minimum cost path from i to j in which the
intermediate vertices must come from the vertices 1, . . . , k. Then we have

C [k](i, j) = min{C[k−1](i, j), C[k−1](i, k) + ∆(k) + C[k−1](k, j)}

Of course, Mi,j = C[n](i, j).

3



Now, place this update instruction for C[k](i, j) inside the usual Floyd-
Warshall algorithm.

The algorithm will take O(n3) time.

4


