
Homework 6
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Wed Dec 11 (last recitation) or Thu Dec 12 (to one of us).

1. Biconnected Component (20 Points)
Do parts (a) to (d) in Exercise 22-2, page 558 of CLR Text.

2. Graph Diameter (20 Points)
Let G = (V,E) be a bigraph, assumed to be connected. The diameter
of G is maxu,v∈V δ(u, v), where δ(u, v) is the length of the shortest path
between u and v (what we also called “link distance” in class). Give an
efficient algorithm to estimate the diameter within a factor of 2, i.e., your
algorithm must return a number D such that the diameter of G lies in the
interval [D, 2D]? Bound the running time.

3. Dijkstra’s Algorithm (5+20 Points)
Consider running Djikstra’s algorithm on the graph in Figure 24.6 (page
596, CLR Text). However, instead of the weights there, you must add a
positive integer ∆ > 0 to each weight. We want you to choose the smallest
∆ such that the order in which nodes that becomes “known” is different
than the original order, which is (s, y, z, t, x). You should try ∆ = 1, 2, 3,
etc until you see a different order emerging.

What to hand in: tell us what ∆ is, and submit a table showing your
simulation of Dijkstra. The table is rather similar to Prim’s algorithm in
the previous homework.

CONVENTIONS: the data for each row of your table should correspond
to this order: (s, t, x, y, z). The first row is (0, 10 + ∆,∞, 5 + ∆,∞). To
fill in the ith row, you first copy the SMALLEST weight in the (i − 1)st
row that is still ”unknown” and underline it. Then you proceed to fill in
the rest of the rows (use double quotes (”) to indicate a repeated value,
and leave blank those entries corresponding to ”known” nodes).

4. Bellman-Form Algorithm (5+20 Points)
The Bellman-Ford algorithm detects negative cycles (p.588, CLR). Sup-
pose you also want to know all those vertices that are in a negative cycle.
How do you modify the algorithm? HINT: keep track of the shortest paths
using the π[u] array (cf.p.584).

5. Shortest Path (20 Points)
Consider the min-cost path problem in which you are given a digraph
G = (V,E;C1,∆) where C1 is a positive cost function on the edges and ∆
is a positive cost function on the vertices. Intuitively, C1(i, j) represents
the time to fly from city i to city j and ∆(i) represents the time delay to
stop over at city i. A jet-set business executive wants to construct matrix
M where the (i, j)th entry Mi,j represents the “fastest” way to fly from i

1



to j. This is defined as follows. If π = (v0, v1, . . . , vk) is a path, define

C(π) = C1(π) +
k−1∑
j=1

∆(vj)

and let Mi,j be the minimum of C(π) as π ranges over all paths from i
to j. Please modify the Floyd-Warshall Algorithm, to compute M for our
executive.

2


