
Homework 5
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Thursday Nov 28, in class

1. Linear Bin Packing Problem (5+15 Points)
In the Linear Bin Packing Problem discussed in class, you are given

M, w = (w1, w2, . . . , wn)

such that 0 ≤ wi ≤M , and the goal is to find a solution [n1, n2, . . . , nk]
that minimizes k. This is a solution if 1 ≤ n1 < n2 < · · · < nk = n and∑ni

j=ni−1+1 wj ≤M holds for all i = 1, . . . , k. Assume n0 = 0.
(a) Suppose we remove the constraint that wi be non-negative. Show
the greedy method fails. NOTE: We had discussed this in class. Here
we want you to give a counter example where n is as small as possible.
Partial credits when n is larger than necessary.
(b) Give a dynamic programming solution in case wi can be negative.
SOLUTION:
(a) Let M = 1, w = (1, 1,−1). Greedy method gives the solution [1, 3],
but the optimal solution is [3]. Thus, n = 3 is sufficient.
REMARK: note that this example satisfies wi ≤M for all i. If you remove
this constraint as well, then we can have a n = 2 example, namely M = 1,
w = (2,−1). The greedy algorithm would fail rightaway, but the correct
answer is [2].
(b) Consider the subproblems Pi = (M, (wi, wi+1, · · · , wn)) and let ki be
the minimum number of bins required for Pi. Suppose inductively that
k2, k3, · · · , kn are known. Then, we can compute k1 in O(n) time as follows:
Let tillN [1..n] be a global array where tillN [i] idicates that in problem Pi,
the first bin holds the elements wi, wi+1, · · · , wtillN [i]. Also, let b[1..n + 1]
be a global array where b[i] is the number of bins in an optimal solution
for Pi. Note that b[n + 1] = 0 is used as sentry. The following procedure
Bins(i) solves the problem Pi (assuming that M, (w1, . . . , wn) is globally
known).

Procedure Bins(i)
if i = n then

b[n + 1] = 0, b[n] = 1, tillN [n] = n. Return.
Bins(i + 1) // recursive call
b[i]←∞
W ← 0
for j ← i to n do

W ←W + wj

if (W ≤M) and b[i] > 1 + b[j + 1]
b[i]← 1 + b[j + 1]
tillN [i]← j

1

Thus to solve problem P = P1, we simply call Bins(1). The number of
bins in the optimal solution can be found in b[1]. We can also reconstruct
the optimal groupings in the bins by looking at the array tillN .

2. Shift Key in Huffman Code (15 Points)
We want to encode small as well as capital letters in our alphabet. Thus
‘a’ and ‘A’ are to be distinguished. There are two ways to achieve this:
(I) View the small and capital letters as distinct symbols. (II) Introduce
a special “shift” symbol, and each letter is assumed to be small unless
it is preceded by a shift symbol, in which case it is considered a capital.
Use the text of this question as your input string. Punction marks and
spaces are part of this string. But new lines (CRLF) do not contribute
any symbols to the string.
(a) Compute the Huffman code tree for coding the above string using
method (I). Note that the string begins with the words “We want to en...”
and ends with “...bute any symbols to the string.” Be sure to compute
the number of bits in the Huffman code for this string.
(b) Same as part (a) but using method (II).
(c) Discuss the pros and cons.

SOLUTION:

(a)

alphabet count alphabet count alphabet count alphabet count
a 38 b 9 c 16 d 15
e 43 f 4 g 4 h 16
i 33 k 1 l 22 m 9
n 24 o 22 p 9 q 1
r 18 s 44 t 45 u 13
v 1 w 7 x 1 y 8
“ 1 ” 1 ‘ 2 ’ 2
(3) 3 , 2 . 7
: 1 A 1 B 1 C 1
F 1 I 4 L 1 P 1
R 1 T 2 U 1 V 1
W 1 space 98

Please refer to figure 1 for the corresponding Huffman Code Tree.

2

A B C F L P R U V W k q v x

2 2 2 2 2 2 2,

4444

88

f g

8

I
′‘

4

8

16 16 c h

32 32

()

6

” ′′
2

:

3

T

5
w .

1114 ud

29
24

53 s

97

n

o

46

89

e

186

y
pb m

18 17

35 i

l r

40 a

78
68

146

332

64 t

109

207

539

””

Huffman Code Tree Using Capital Letters

Figure 1: Huffman Code Tree (a)

3

When we use this Huffman encoding, the length of the string is 2385.

(b)

alphabet count alphabet count alphabet count alphabet count
a 39 b 10 c 17 d 15
e 43 f 5 g 4 h 16
i 37 k 1 l 23 m 9
n 24 o 22 p 10 q 1
r 19 s 44 t 47 u 14
v 2 w 8 x 1 y 8
“ 1 ” 1 ‘ 2 ’ 2
(3) 3 , 2 . 7
: 1 shift 12 space 98

Please refer to figure 2 for the corresponding Huffman Code Tree.

551

336 215

181 155 117 space

87 94 81 74 64 53

e s

47
t

42
a

37

i

33
31

29

n

u
15

w
7

4 3

)
22

k q ” ′′

d h

c

16

y
8

4 4

‘

’

2
v

: x

18

r

m
9

5 4

(, g

o
20

b p

l
24

shift12

7 5

.(dot) f

Huffman Code Tree Using Shift

Figure 2: Huffman Code Tree (b)

When we use this encoding, the length of the string is 2365.
(c) In this case, the “shift encoding” turns out better than the normal
encoding. If there are quite a few capital letters used then the shift en-
coding turns better till a certain point as it improves the representation
for the corresponding small letters and for the “shift” key itself. But as
the fraction of capital letters in the text increases (say the text consists
only of capital letters), then the shift encoding obviously yields a much
larger encoded text and is not useful.

4

3. Amortization (20 Points)
Do Exercise 1.1 in the handout on amortization. We generalize the ex-
ample of incrementing binary counters. Suppose we have a collection of
binary counters, all initialized to 0. We want to perform a sequence of
operations, each of the type

Inc(C), Double(C), Add(C, C′)

where C, C′ are names of counters. The operation Inc(C) increments the
counter C by 1; Double(C) doubles the counter C; finally, Add(C, C′) adds
the contents of C′ to C while simultaneously set the counter C′ to zero.
Show that this problem has amortized constant cost per operation.

To be precise, we need to define the cost model. The cost to double a
counter C is just 1 (you only need to prepend a single bit to C). The
cost of Add(C, C′) is the number of bits that the standard algorithm needs
to look at (and possibly change) when when adding C and C′. E.g., if
C = 1001, 1101 and C′ = 110, then C + C′ = 1010, 0011 and the cost is 9.
This is because the algorithm only has to look at 6 bits of C and 3 bits of
C′.

Let m be the number of counters and let us represent each binary counter
Ci, 1 ≤ i ≤ m, with a linked list that initially is empty. We also denote
the value stored in Ci by ‘Ci’. Let Li be the length of Ci, Oi be the
number of 1’s in Ci, and Ei be the length of the maximum suffix of 1’s in
Ci in the current state.
Now define the potential function of the set of counters as follows:

Φ =
m∑

k=1

(Li + Oi).

For each operation on the set of counters, we will show that it has a con-
stant amortized cost. Consider the most interesting case of Add(C1, C2).
In this case, ∆Φ ≤ −min(L1, L2) − K where K is the number of carry
bits beyond min(L1, L2) in the addition process. This release enough po-
tential, except for some small constant A, to pay for the cost of addition.
This small constant A can be our amortized cost.

(a) Inc(Ci): The actual cost is Ei + 1 since it resets Ei bits and sets one
bit to a 1. The number of 1’s in Ci after this operation is Oi−Ei +1
and the length of Ci is at most Li + 1. Thus the potential difference
is

∆Φ ≤ [(Oi − Ei + 1) + (Li + 1)]− [Oi + Li]
= 2− Ei.

The amortized cost is therefore

(Ei + 1) + ∆Φ ≤ (Ei + 1) + (2− Ei) = 3.

5

(b) Double(Ci): The actual cost is 1 since it is the cost of appending a
0-bit to the end of the linked list for Ci. After this operation, the
number of 1’s is not changed but the length is increased by 1. Thus
the potential difference is 1. Therefore the amortized cost is 2.

(c) Add(Ci, Cj): Let us assume that Ci ≥ Cj . Let t01 be the number
of times a bit is flipped from 0 to 1 in Ci and t10 be the number of
times a bit is flipped from 1 to 0 when Cj is added to Ci. After the
addition, the number of 1’s in Ci is Oi + t01 − t10 and the length
of Ci is at most Li + 1. The actual cost of the addition is at most
Lj + t10 + 1 because all bits of Cj is scanned to be added to Ci and
after that a carry will flip bits of Ci from 1 to 0. Thus the potential
difference is

∆Φ ≤ [(Li + 1) + (Oi + t01 − t10)]− [(Li + Lj) + (Oi + Oj)]
= 1 + t01 − t01 − Lj −Oj .

Therefore the amortized cost is

(Lj + t10 + 1) + (1 + t01 − t10 − Lj −Oj) = 2 + (t01 −Oj)
≤ 2,

since Oj ≥ t01.

4. Splay Trees (15 Points)
Do Exercise 2.1 in the handout on amortization. Perform the following
splay tree operations, starting from an initially empty tree.

Ins(3, 2, 1, 6, 5, 4, 9, 8, 7), LookUp(3), Del(7), Ins(12, 15, 14, 13), Split(8).

Show the splay tree after each step.

SOLUTION:

Please refer to figure 3

5. Prim’s Algorithm (20 Points)
Hand simulate Prim’s algorithm on the following graph (figure 4) begin-
ning with v1.

It amounts to filling in the following table, row by row. The vertex set V
is partitioned into the two sets, S ⊆ V and U = V \ S. The set U is in a
priority queue. Each row of the table represents the array lc[u] (u ∈ U)
where lc[u] is the least cost of an edge that connects u to any node in S.
We also maintain a set T of edges. The set T forms a minimum spanning
tree for S. The table also has an entry mst[T] for the sum of the weights
of edges in T . We have filled in the first two rows already.
i v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 mst[T] New Edge
1 1 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 (v1, v2)
2 * ” 2 7 ” ” ” ” ” ” ” 3 (v1, v4)

6

Note that the minimum cost in each row is underscored, indicating the
item to be removed from the priority queue (or the set U). A 33 entry
just means it is unchanged form before. An * entry means that the node
is no longer in U .

SOLUTION: The full table is as follows:
i v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 mst[T] New Edge
1 1 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 (v1, v2)
2 * ” 2 7 ” ” ” ” ” ” ” 3 (v1, v4)
3 * 3 * ” 7 ” 1 6 ” ” ” 4 (v4, v8)
4 * 3 * ” ” ” * 3 ” ” ” 7 (v1, v3)
5 * * * ” ” ” * 3 ” ” ” 10 (v8, v9)
6 * * * ” 4 ” * * 6 ” ” 14 (v9, v6)
7 * * * ” * 2 * * 1 4 ” 15 (v6, v10)
8 * * * ” * 2 * * * 2 ” 17 (v6, v7)
9 * * * 5 * * * * * 2 6 19 (v7, v11)
10 * * * 5 * * * * * * ” 24 (v7, v11)
11 * * * * * * * * * * 6 30 (v7, v12)

6. Kruskal’s Algorithm and Union Find (10+20 Points)
We want to simulate Kruskal’s algorithm on the same graph as the previ-
ous question.

(a) First show the list of edges, sorted by non-decreasing weight. View
vertices v1, v2, v3, etc as the integers 1, 2, 3, etc. We want you to break
ties as follows: assume each edge has the form (i, j) where i < j. When
the weights of (i, j) and (i′, j′) are equal, then we want (i, j) to appear
before (i′, j′) iff (i, j) is less than (i′, j′) in the lexicographic order, i.e.,
either i < i′ or (i = i′ and j < j′).

(b) We want you to maintain the union-find data structure needed to an-
swer the basic question in Kruskal’s algorithm (namely, does adding this
edge creates a cycle?). The algorithms for the Union and Find MUST
use the 2 heuristics we discussed: rank heuristic and path compression.
At each stage of Kruskal’s algorithm, when we consider an edge (i, j), we
want you to perform the corresponding Find(i), F ind(j) and, if neces-
sary, Union(Find(i), F ind(j)). You must show the result of each of these
operations on the union-fine data structure. SOLUTION:

(a) The edges listed in non-decreasing order of weight and in lexicographic
order is as follows:

7

weight Edges in lexicographic order
1 (1, 2), (4, 8), (6, 10)
2 (1, 4), (6, 7), (7, 11), (10, 11)
3 (1, 3), (3, 9), (7, 10), (8, 9)
4 (6, 9), (6, 11)
5 (5, 7)
6 (3, 4), (4, 9), (7, 12), (9, 10)
7 (2, 5), (3, 8), (4, 6)
8 (4, 5), (5, 12)
9 (11, 12)

(b) Please refer to figure 5.

8

8

136

2

1

4

13

12 14

15
9

8

6

3

Ins(12, 15, 14, 13)

6

3 8

9

5

2

1

4

Del(7)

3

2

1

6

7

8

9

4

5

LookUp(3)

1

3

2

3

4

3 5

2

1

6

7

86

9
5

4

3

2
Some Intermediate Steps Being Shown

After Ins(3, 2, 1, 6, 5, 4, 9, 8, 7)

9

v1 v2

v5

v8 v9 v10 v11 v12

v6 v7

v3 v4

8

72

3 7

647

3

1
6

4
1 3 2

1

86

3 6 2 9

5
2

Figure 4: Graph of a House

10

4

8

1

24

8

6

10
7 11

6

10

1

2

1

2 3 4 8 9

6

10
7 11

6

10
7

11

1

2 3 4 8 9

11

1

2 3 4 8 9 6

10

7 5

10 12 11

1

2 3 4 8 9 6 7 5

After adding edges of weight

1

2

3

4

5

6

At this stage, all the vertices are in the MST.

The edges taken are (1, 2), (4, 8), (6, 10), (1, 4), (6, 7), (7, 11), (1, 3), (3, 9), (6, 9)
(5, 7), (7, 12)

Figure 5: Kruskal’s Algorithm with Union-Find

11

