
Homework 5
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Thursday Nov 28, in class

1. Linear Bin Packing Problem (5+15 Points)
In the Linear Bin Packing Problem discussed in class, you are given

M, w = (w1, w2, . . . , wn)

such that 0 ≤ wi ≤ M , and the goal is to find a solution [n1, n2, . . . , nk]
that minimizes k. This is a solution if 1 ≤ n1 < n2 < · · · < nk = n and∑ni

j=ni−1+1 wj ≤ M holds for all i = 1, . . . , k. Assume n0 = 0.
(a) Suppose we remove the constraint that wi be non-negative. Show
the greedy method fails. NOTE: We had discussed this in class. Here
we want you to give a counter example where n is as small as possible.
Partial credits when n is larger than necessary.
(b) Give a dynamic programming solution in case wi can be negative.

2. Shift Key in Huffman Code (15 Points)
We want to encode small as well as capital letters in our alphabet. Thus
‘a’ and ‘A’ are to be distinguished. There are two ways to achieve this:
(I) View the small and capital letters as distinct symbols. (II) Introduce
a special “shift” symbol, and each letter is assumed to be small unless
it is preceded by a shift symbol, in which case it is considered a capital.
Use the text of this question as your input string. Punction marks and
spaces are part of this string. But new lines (CRLF) do not contribute
any symbols to the string.
(a) Compute the Huffman code tree for coding the above string using
method (I). Note that the string begins with the words “We want to en...”
and ends with “...bute any symbols to the string.”. Be sure to compute
the number of bits in the Huffman code for this string.
(b) Same as part (a) but using method (II).
(c) Discuss the pros and cons.

3. Amortization (20 Points)
Do Exercise 1.1 in the handout on amortization.

4. Splay Trees (15 Points)
Do Exercise 2.1 in the handout on amortization.

5. Prim’s Algorithm (20 Points)
Hand simulate Prim’s algorithm on the following graph (figure 1) begin-
ning with v1.

It amounts to filling in the following table, row by row. The vertex set V
is partitioned into the two sets, S ⊆ V and U = V \ S. The set U is in a
priority queue. Each row of the table represents the array lc[u] (u ∈ U)
where lc[u] is the least cost of an edge that connects u to any node in S.

1



v1 v2

v5

v8 v9 v10 v11 v12

v6 v7

v3 v4

8

72

3 7

647

3

1
6

4
1 3 2

1

86

3 6 2 9

5
2

Figure 1: Graph of a House

We also maintain a set T of edges. The set T forms a minimum spanning
tree for S. The table also has an entry mst[T ] for the sum of the weights
of edges in T . We have filled in the first two rows already.
i v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 mst[T ] New Edge in T
1 1 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 (v1, v2)
2 * ” 2 8 ” ” ” ” ” ” ” 3 (v1, v4)

Note that the minimum cost in each row is underscored, indicating the
item to be removed from the priority queue (or the set U). A 33 entry
just means it is unchanged form before. An * entry means that the node
is no longer in U .

6. Kruskal’s Algorithm and Union Find (10+20 Points)
We want to simulate Kruskal’s algorithm on the same graph as the previ-
ous question.

(a) First show the list of edges, sorted by non-decreasing weight. View
vertex v1, v2, v3, etc as the integers 1, 2, 3, etc. We want you to break ties
as follows: assume each edge has the form (i, j) where i < j. When the
weights of (i, j) and (i′, j′) are equal, then we want (i, j) to appear before
(i′, j′) iff (i, j) is less than (i′, j′) in the lexicographic order, i.e., either
i < i′ or (i = i′ and j < j′).

(b) We want you to maintain the union-find data structure needed to
answer the basic question in Kruskal’s algorithm (namely, does adding
this edge creates a cycle?). The algorithms for the Union Find problems
MUST use the 2 heuristics we discussed: rank heuristic and path com-
pression. At each stage of Kruskal’s algorithm, when we consider an edge
(i, j), we want you to preform the corresponding Find(i), F ind(j) and, if
necessary, Union(Find(i), F ind(j)). You must show the result of each of
these operations on the union-fine data structure.

2


