
HOMEWORK 4 with SOLUTION
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Thursday Nov 14, in class

INSTRUCTIONS:

• This homework is related to Professor Siegel’s lecture as
well as our lecture on dynamic programming.

• TIP OF THE DAY: It is highly recommended that you
rewrite your solution neatly for submission, this time pay-
ing attention to missing assumptions, unclear notations,
etc. You might be surprised at why you discover.

1. Merging of Two Sorted Lists, (10+10 Points)

Solve parts (a) and (b) of problem 8.6 in page 181 of the CLR textbook.

REMARKS: You may find Stirling’s approximation (p.55) for the factorial
function useful. Note that to merge a sorted list of m keys with a sorted
list of n items, the standard algorithm takes m+n−1 comparisons. Parts
(c) and (d) are not graded, but we ask you to attempt it (we will sketch
the solution).

SOLUTION:

(a) Let the input lists be A = (a1, a2, . . . , an) and B = (b1, . . . , bn). There
are (2n)! ways to permute all the elements in A and B. Let S be the set
of these permutations. E.g., for n = 2, and the two lists are A = (a, a′)
and B = (b, b′) then we have S = {aa′bb′, aa′b′b, ab′a′b, b′aa′b, . . . , b′ba′a},
and |S| = 4! = 24. Now partition S into m =

(
2n
n

)
subsets, S = S1 ∪

S2 ∪ · · · ∪ Sm, using the following rule: two permutations are put in the
same set if they can be obtained from each other by permuting the a’s
among themselves, and permuting the b’s among themselves. For instance,
S1 can be {aa′bb′, aa′b′b, a′abb′, a′ab′b}. Clearly, |Si| = (n!)2 for each
i = 1, . . . , m. Note the following: each set Si has exactly one permutation
which is consistent with the original input lists. Hence there are exactly
(2n)!/(n!)2 =

(
2n
n

)
permutations consistent with the input ordering on A

and B.

(b) Let h be the height of the decision tree. By the information theoretic
lower bound, h ≥ lg

(
2n
n

)
. Using Stirling’s approximation (equation (3.19)

of Text), we have
(n

e

)n√
2πn < n! < 1.09

(n

e

)n√
2πn

for all n ≥ 1, using the fact that e1/12 = 1.0869 Thus
(

2n

n

)
>

√
2π2n(2n/e)2n

2πn(n/e)2n(1.09)2
>

22n

√
2πn

1

. Taking logs, we get h ≥ 2n− lg(2πn)/2 = 2n−o(n). Thus h is the worst
case number of comparisons needed to merge two lists of size n.

2. LCS and Edit Distances (10 Points each part)

Let X = agacgttcgtta and Y = cgactgctgta.

• (i) Compute L(X, Y), which is the length of any longest common
subsequence of X, Y . Be sure to show a matrix containing your
computation.

• (ii) Using the matrix you made in part (i), draw arrows from each
square to indicate where each entry was derived from. Next, use
these arrows to come up with a longest common subsequence of X
and Y .

• (iii) Compute the edit distance D(X, Y), which was defined in recita-
tion to be the minimum number of Insert/Delete/Replace steps to
transform X to Y . Again, please show a matrix with your computa-
tion.

• (iv) Using the matrix you made in part (iii), draw arrows on your
grid to indicate where each entry was derived from. Next, using these
arrows to come up with a sequence of D(X, Y) Insert/Delete/Replace
instructions to transform X into Y .

• (v) Let X and Y be strings and A the associated matrix contain-
ing the computation record for L(X, Y) (as in part(i)). Describe an
algorithm in psuedocode which, given (X, Y, A), computes a longest
common subsequence of X and Y .

• (vi) Solve the analogous problem to part (v), but this time for the
edit distance problem D(X, Y).

SOLUTION:

(i)

Given that:

L(X, Y) =




0 if m = 0 or n = 0
1 + L(X ′, Y ′) if xm = yn

maxL(X ′, Y), L(X, Y ′) if xm 6= yn




We get the following matrix:

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 1 ↑ 0 ← 0 0 0 1 1 1 1 1 1 1 1 1
g 2 0 0 ↖ 1 1 1 2 2 2 2 2 2 2 2
a 3 0 1 1 ↖ 2 2 2 2 2 2 2 2 2 3
c 4 0 1 1 2 ↖ 3 3 3 3 3 3 3 3 3
t 5 0 1 1 2 ↑ 3 3 4 4 4 4 4 4 4
g 6 0 1 2 2 3 ↖ 4 4 4 4 5 5 5 5
c 7 0 1 2 2 3 ↑ 4 ← 4 4 5 5 5 5 5
t 8 0 1 2 2 3 4 5 ↖ 5 ← 5 5 6 6 6
g 9 0 1 2 2 3 4 5 5 5 ↖ 6 ← 6 6 6
t 10 0 1 2 2 3 4 5 6 6 6 7 ↖ 7 7
a 11 0 1 2 3 3 4 5 6 6 6 7 7 ↖ 8

0 1 2 3 4 5 6 7 8 9 10 11 12
a g a c g t t c g t t a

(ii)
Arrows are as shown in previous matrix. Using these arrows, we get an
acceptable longest common subsequence of gacgtgta

(iii)
Given that:

D(X, Y) =




max |X |, |Y | if m = 0 or n = 0
D(X ′, Y ′) if xm = yn

1 + minD(X ′, Y), D(X, Y ′), D(X ′, Y ′) if xm 6= yn




We get the following matrix:
0 0 1 2 3 4 5 6 7 8 9 10 11 12

c 1 1 ↖ 1 2 3 3 4 5 6 7 8 9 10 11
g 2 2 2 ↖ ∗1 2 3 3 4 5 6 7 8 9 10
a 3 3 2 2 ↖ ∗1 2 3 4 5 6 7 8 9 9
c 4 4 3 3 2 ↖ ∗1 2 3 4 5 6 7 8 9
t 5 5 4 4 3 ↑ 2 2 2 3 4 5 6 7 8
g 6 6 5 4 4 3 ↖ ∗2 3 3 4 4 5 6 7
c 7 7 6 5 5 4 3 ↖ 3 4 3 4 5 6 7
t 8 8 7 6 6 5 4 3 ↖ ∗3 ← 4 4 4 5 6
g 9 9 8 7 7 6 5 4 4 4 ↖ ∗4 ← 5 5 6
t 10 10 9 8 8 7 6 5 4 5 5 4 ↖ ∗5 6
a 11 11 10 9 8 8 7 6 5 5 6 5 5 ↖ ∗5

0 1 2 3 4 5 6 7 8 9 10 11 12
a g a c g t t c g t t a

(iv)
Arrows are as shown in previous matrix. (Note: The diagonal moves with
asterisks next to them indicate when xm = yn, which is important in
generating the instructions.)
Using these arrows, we get the following instructions, which if executed
from first to last, with transform X into Y :

3

X .delete(10)

X .delete(8)

X .replace(6, c)

X .insert(t, 4, 5)

X .replace(1, c)

(Note: I assume that X .insert(t, 4, 5) inserts a t into X between locations
4 and 5.)

(v)

Here is the psuedocode. Note that the “+” symbol used on strings denotes
string concatenation (just like in Java).

LCS(X , Y , A) {
i = |X |; j = |Y |; s = “′′;

while ((i > 0)‖(j > 0)) {
if (i == 0) {

j −−;

} else if (j == 0) {
i−−;

} else if (xi == yj) {
s = xi + s;

i−−; j −−;

} else if (max A[i− 1, j], A[i, j − 1] == A[i− 1, j]) {
i−−;

} else {
j −−;

}
}
return s;

}
(vi)

Here is the psuedocode. Note that the “+” symbol used on strings denotes
string concatenation, and we assume integers and characters as implicitly
converted to string form when concatenated with other string (just like
in Java). And in my psuedocode, we assume sk corresponds to the kth

instruction of s, where each instrcution is to be done in order of first to
last.

ED(X, Y, A) {

4

i =| X |; j =| Y |; k = 1;

while ((i > 0) || (j > 0)) {
if (i == 0) {

sk = “X.insert(′′+yj+′′, 0, 1)′′;

k + +;

j −−;

} else if (j == 0) {
sk = “X.delete(′′+i+′′)′′;

k + +;

i−−;

} else if (xi == yj) {
i−−; j −−;

} else {
temp = min A[i, j − 1], A[i− 1, j], A[i− 1, j − 1];

if (temp == A[i− 1, j]) {
sk = “X.delete(′′+i+′′)′′;

k + +;

i−−;

} else if (temp == A[i, j − 1]) {
sk = “X.insert(′′+yj+′′,′′ +i+′′,′′ +(i + 1)+′′)′′;

k + +;

j −−;

} else {
sk = “X.replace(′′+i+′′,′′ +yj+′′)′′;

k + +;

i−−; j −−;

}
}

}
return s;

}
3. Generalized LCS (15+30+10 Points)

Recall the recurrence relation we showed for L(X, Y).

(a) Derive and prove the analogous recurrence for L(X, Y, Z) is the length
of any longest common subsequence of three strings X, Y, Z.

5

(b) Describe how you would organize the computation of L(X, Y, Z) in a
systematic way.

(c) Illustrate your solution to (b) by computing L(X, Y, Z) where X =
longest, Y = lengthen and Z = elongated.

SOLUTION:

(a)

L(X, Y, Z) =




0 if m = 0 or n = 0 or p = 0
1 + L(X ′, Y ′, Z ′) if xm = yn = zp

max L(X, Y, Z ′), L(X ′, Y ′, Z) if xm = yn 6= zp

max L(X, Y ′, Z), L(X ′, Y, Z ′) if xm = zp 6= yn

max L(X ′, Y, Z), L(X, Y ′, Z ′) if yn = zp 6= xm

max L(X, Y ′, Z ′), L(X ′, Y, Z ′), L(X ′, Y ′, Z) if xm 6= ynandyn 6= zpandxm 6= zp

The justification for these formulas are:

If X or Y or Z is the empty string, we know L(X, Y, Z) = 0, hence we
have a basis.

When xm = yn = zp, we know for xm that L(X ′, Y, Z) ≤ 1+L(X ′, Y ′, Z ′),
and similarly for yn and zp. So discarding any of xm, yn, or zp won’t give
us a better answer.

When xm = yn 6= zp, let k = xm = yn, and let l = zp. We note
that L(X ′, Y, Z ′) ≤ 1 + L(X ′, Y ′, Z ′), so there’s no point in keeping xm

if we discard yn. (And similarly, there’s no point in keeping yn if we
discard xm.) So our only concern is if to keep both xm and yn and
discard zp, or if to keep zp and to discard xm and yn. Hence, we get
max L(X, Y, Z ′), L(X ′, Y ′, Z) in this case.

The cases for xm = zp 6= yn and yn = zp 6= xm are similar to that of
xm = yn 6= zp.

When xm 6= yn and yn 6= zp and xm 6= zp, we’re deciding which of xm, yn,
or zp should be kept, hence the max L(X, Y ′, Z ′), L(X ′, Y, Z ′), L(X ′, Y ′, Z)
for this case. (Note to reader: If none of xm, yn, or zp gets kept, note
that L(X ′, Y ′, X ′) ≤ L(X, Y ′, Z ′), so we’re fine with formula mentioned
above...)

(b)

LCS(X, Y, Z) {
m =| X |; n =| Y |; p =| Z |;
for (j = 0; j <= n ; j + +) {

for (k = 0; k <= p ; k + +) {
A[0, j, k] = 0;

}
}
for (i = 0; i <= m ; i + +) {

6

for (k = 0; k <= p ; k + +) {
A[i, 0, k] = 0;

}
}
for (i = 0; i <= m ; i + +) {

for (j = 0; j <= n ; j + +) {
A[i, j, 0] = 0;

}
}
for (k = 1; k <= p ; k + +) {

for (j = 1; j <= n ; j + +) {
for (i = 1; i <= m ; i + +) {

if ((xi == yj)&&(yj == zk)) {
A[i, j, k] = 1 + A[i− 1, j − 1, k − 1];

} else if ((xi == yj)&&(xi! = zk)) {
A[i, j, k] = maxA[i, j, k − 1], A[i− 1, j − 1, k];

} else if ((xi == zk)&&(xi! = yj)) {
A[i, j, k] = maxA[i, j − 1, k], A[i− 1, j, k − 1];

} else if ((yj == zk)&&(xi! = yj)) {
A[i, j, k] = maxA[i− 1, j, k], A[i, j − 1, k − 1];

} else {
A[i, j, k] =

max A[i, j − 1, k − 1], A[i− 1, j, k − 1], A[i− 1, j − 1, k];

}
}

}
}
return A;

}
(c)

We get the following tables:

7

z0 =

0 0 0 0 0 0 0 0 0
l 1 0 0 0 0 0 0 0 0
e 2 0 0 0 0 0 0 0 0
n 3 0 0 0 0 0 0 0 0
g 4 0 0 0 0 0 0 0 0
t 5 0 0 0 0 0 0 0 0
h 6 0 0 0 0 0 0 0 0
e 7 0 0 0 0 0 0 0 0
n 8 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7
l o n g e s t

z1 = e

0 0 0 0 0 0 0 0 0
l 1 0 0 0 0 0 0 0 0
e 2 0 0 0 0 0 1 1 1
n 3 0 0 0 0 0 1 1 1
g 4 0 0 0 0 0 1 1 1
t 5 0 0 0 0 0 1 1 1
h 6 0 0 0 0 0 1 1 1
e 7 0 0 0 0 0 1 1 1
n 8 0 0 0 0 0 1 1 1

0 1 2 3 4 5 6 7
l o n g e s t

z2 = l

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 1 1 1 1 1
g 4 0 1 1 1 1 1 1 1
t 5 0 1 1 1 1 1 1 1
h 6 0 1 1 1 1 1 1 1
e 7 0 1 1 1 1 1 1 1
n 8 0 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
l o n g e s t

8

z3 = o

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 1 1 1 1 1
g 4 0 1 1 1 1 1 1 1
t 5 0 1 1 1 1 1 1 1
h 6 0 1 1 1 1 1 1 1
e 7 0 1 1 1 1 1 1 1
n 8 0 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
l o n g e s t

z4 = n

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 2 2 2 2
t 5 0 1 1 2 2 2 2 2
h 6 0 1 1 2 2 2 2 2
e 7 0 1 1 2 2 2 2 2
n 8 0 1 1 2 2 2 2 2

0 1 2 3 4 5 6 7
l o n g e s t

z5 = g

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 3 3 3 3
t 5 0 1 1 2 3 3 3 3
h 6 0 1 1 2 3 3 3 3
e 7 0 1 1 2 3 3 3 3
n 8 0 1 1 2 3 3 3 3

0 1 2 3 4 5 6 7
l o n g e s t

9

z6 = a

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 3 3 3 3
t 5 0 1 1 2 3 3 3 3
h 6 0 1 1 2 3 3 3 3
e 7 0 1 1 2 3 3 3 3
n 8 0 1 1 2 3 3 3 3

0 1 2 3 4 5 6 7
l o n g e s t

z7 = t

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 1 1 1
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 3 3 3 3
t 5 0 1 1 2 3 3 3 4
h 6 0 1 1 2 3 3 3 4
e 7 0 1 1 2 3 3 3 4
n 8 0 1 1 2 3 3 3 4

0 1 2 3 4 5 6 7
l o n g e s t

z8 = e

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 2 2 2
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 3 3 3 3
t 5 0 1 1 2 3 3 3 4
h 6 0 1 1 2 3 3 3 4
e 7 0 1 1 2 3 4 4 4
n 8 0 1 1 2 3 4 4 4

0 1 2 3 4 5 6 7
l o n g e s t

10

z9 = d

0 0 0 0 0 0 0 0 0
l 1 0 1 1 1 1 1 1 1
e 2 0 1 1 1 1 2 2 2
n 3 0 1 1 2 2 2 2 2
g 4 0 1 1 2 3 3 3 3
t 5 0 1 1 2 3 3 3 4
h 6 0 1 1 2 3 3 3 4
e 7 0 1 1 2 3 4 4 4
n 8 0 1 1 2 3 4 4 4

0 1 2 3 4 5 6 7
l o n g e s t

4. Matrix Chain Product (15 Points)

Solve the Matrix Chain Product problem for a matrix chain with 8 ma-
trices, with dimension:

(2, 4, 3, 3, 7, 1, 9, 8, 5)

Please organize your work in a half-matrix as illustrated in Figure 15.3
(p.337, CLR).

When you are done, please draw the actual parenthesis structure for eval-
uating this chain.

SOLUTION:

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
0 24

0

0

0

0

0

0

0

36

63

21

63

72

360

42

120

30

48

138

112

84

42

57

117

147

50 68 138 172

78 146 174

126 157

148

1 2 3 1 5 5 5

2 3 2 5 5 5

3 3 5 5 5

4 5 5 5

5 5 5

6 7

7

0

0

0

0

0

0

0

0

Figure 1: Matrix Chain Product Solution

Note that the matrix entry mij is computed as

min
i≤k<j

(mik + m(k+1)j + r(i) · c(k) · c(j))

11

where r(i) denotes the number of rows in matrix i and c(j) denotes the
number of columns in matrix j. Thus, the actual parenthesis structure is

(M1 × ((M2)× (M3 × (M4 ×M5)))) × ((M6 ×M7)×M8).

5. Treaps (10 + 50 Points)

A treap is a binary search tree combined with a heap structure. Read the
description of treaps on pages 296-297 in the CLR textbook.

• (i) Construct a Treap out of the following (key, priority) pairs:
(12, 2)(15, 6)(5, 1)(7, 3)(2, 4)(17, 5)

• (ii) Do parts (a), (b), (c), and (d) of problem 13-4 on pages 296-298
in the CLR textbook.

Hints:

– For part (b), it might help to look at section 12.4, pages 265 -
268 in the CLR book. Alternatively, you can try the following:
Let H(n) denote the height of a binary tree with n nodes. This
is a random variable (so you can take expectation, etc). If i
is the number of children in the left subtree of the root, then:
H(n) = 1 + maxH(i), H(n− 1− i). Hence,

E[H(n)] = 1 +
1
n

n−1∑
i=0

maxE[H(i)], E[H(n− 1− i)].

Then use real induction to prove that for some constants 0 <
c1 ≤ c2 that c1lg(n) ≤ E[H(n)] ≤ c2lg(n).

– For part (c), first give the English description, followed by pseu-
docode. If necessary, add comments to your pseudocode.

SOLUTION:

(i)

The node (5, 1) should be the root, with (2, 4) and (12, 2) as the left/right
children of (5, 1). The nodes (7, 3) and (17, 5) should be the left/right
chldren of (12, 2). And (15, 6) should be the left child of (17, 5).

(ii)

(a)

Let’s suppose that k1 is the heap key for node x1, and k2 is heap key for
node x2, and so on... I’ll prove that for any n, a treap of n nodes must be
unique. I will do this by Integer Induction.

Basis:

12

If we just have a treap of one node, that treap is unique.

Induction Hypothsis:

Assume for all k ≤ n− 1 that a treap for k nodes must be unique.

Induction Step:

For the treap with n nodes, consider the node xi with smallest heap key
ki. This node xi must always be at the root of the treap (due to minheap
properties). We can then use xi to partition the remaining nodes into two
sets L, and R, where:

L = {xj : xj < xi}, and R = {xj : xj > xi}
We know by treap property that L consists of all the nodes in the left
subtree of xi, and R consists of all the nodes in the right subtree of xi.
And, by our induction hypothesis, since | L |≤ n− 1 and | R |≤ n− 1, the
left and right subtrees of xi must be unique, and thus the entire treap of
n nodes must be unique.

(b)

By varying the heap keys for each node, we are able to obtain binary trees
of any design. So, the expected height of a treap is the expected height
of a randomly generated binary tree. Let E[H(n)] denote the expected
height of a binary tree with n nodes.

First, we’ll show that c1 lg n ≤ E[H(n)] for some c1. We note that when
we create a complete binary tree (much like that in the answer for home-
work 3), the height is blg nc, And, for n ≥ 4, we have that:

blg nc ≥ lg n− 1 ≥ 1
2 lg n

Since in the best case, the height of a binary tree is at least 1
2 lgn, then we

know c1 lg n ≤ E[H(n)] where c1 ≥ 1
2 .

Next, we’ll prove that E[H(n)] ≤ c2 lg n for some c2.

Using our hint, this means:

E[H(n)] = 1 +
1
n

n−1∑
i=0

maxE[H(i)], E[H(n− 1− i)].

Substituting F (n) = E[H(n)], we have:

F (n) = 1 +
1
n

n−1∑
i=0

max F (i), F (n− 1− i).

Next, I will use this to show for all n ≥ 1 that F (n) ≤ c2 lg n for some
constant c2. I’ll prove this by Induction. (I’m assuming F (1) = 0 to make
things simpler...)

13

Basis: F (1) = 0 ≤ c2 ∗ lg 1 = 0

Induction Hypothesis:

For all k ≤ n− 1, we assume that F (k) ≤ c2 ∗ lg k.

Induction Step:

(Please note that students weren’t responsible for accounting for floors
and ceilings in their answers.)

Since F (i) is non-decreasing, we have that:

F (n) = 1 +
1
n

n−1∑
i=0

maxF (i), F (n− 1− i)

= 1 +
2
n

n−1∑
i=bn

2 c
F (i)

≤ 1 +
2
n

n−1∑
i=bn

2 c
c2 ∗ lg i

= 1 +
2c2

n

n−1∑
i=bn

2 c
lg i

From here, by splitting the summation into two parts, we get:

1 +
2c2

n

n−1∑
i=bn

2 c
lg i ≤ 1 +

2c2

n
[
b 3n

4 c−1∑
i=bn

2 c
lg i +

n−1∑
i=b 3n

4 c
lg i]

≤ 1 +
2c2

n
[(b3n

4
c − 1− bn

2
c) lg(

3n

4
) + (n− 1− b3n

4
c) lg n]

≤ 1 +
2c2

n
[(

n

4
+ 1) lg(

3n

4
) + (

n

4
+ 1) lg n]

= 1 +
2c2

n
[(

n

4
+ 1)(lg

3
4

+ lg n) + (
n

4
+ 1) lg n]

= 1 +
2c2

n
[(

n

4
+ 1)(2 lg n + lg

3
4
)]

= 1 +
2c2

n
[
n

2
lg n + 2 lg n +

n

4
lg

3
4

+ lg
3
4
]

≤ 1 +
2c2

n
[
n

2
lg n + 2 lg n +

n

4
lg

3
4
]

= 1 + c2 lg n +
4c2

n
lg n +

c2

2
lg

3
4

And for n ≥ 256, lg n
n ≤ 8

256 = 1
32 , therefore:

14

1 + c2 lg n +
4c2

n
lg n +

c2

2
lg

3
4
≤ 1 + c2 lg n + 4c2

1
32

+
c2

2
lg

3
4

≤ 1 + c2 lg n +
1
8
c2 +

c2

2
lg

3
4

And 1 + c2 lg n + 1
8c2 + c2

2 lg 3
4 ≤ c2 lg n when:

1 + c2 lg n +
1
8
c2 +

c2

2
lg

3
4
≤ c2 lg n

1 +
1
8
c2 +

c2

2
lg

3
4
≤ 0

1 + c2(
1
8

+
1
2

lg
3
4
) ≤ 0

1 ≤ −c2(
1
8

+
1
2

lg
3
4
)

1
−(1

8 + 1
2 lg 3

4)
≤ c2

And, 1
−(1

8 + 1
2 lg 3

4)
≤ 12.2, so we select c2 ≥ 12.2 and we’re done!

(Note that −(1
8 + 1

2 lg 3
4) > 0)

An alternative solution is as follows. If we do Real Induction, which
allows us to ignore floors and ceilings, the Basis and Inductive Hypthesis
are identical (where δ = 1), and we get as before,

F (n) = 1 +
2c2

n

n−1∑
i= n

2

lg i

And using Integral Approximation from page 1067 of the CLR book,

1 +
2c2

n

n−1∑
i=n/2

lg i ≤ 1 +
2c2

n

∫ n

n/2

lnx

ln2
dx

= 1 +
2c2

nln2

∫ n

n/2

lnxdx

= 1 +
2c2

nln2
[xlnx− x]nx=n/2

= 1 +
2c2

n
[x lg x− x

ln2
]nx=n/2

= 1 +
2c2

n
[
n

2
lg n +

n

2
(1 − 1

ln2
)]

= 1 + c2 lg n + c2(1 − 1
ln2

)

15

And, 1 + c2 lg n + c2(1− 1
ln2) ≤ c2 lg n when:

1 + c2(1− 1
ln2

) ≤ 0

1 ≤ c2(
1

ln2
− 1)

1
1

ln2 − 1
≤ c2

(Note that 1
ln2 − 1 > 0. This might not be obvious from what I did...)

And 1
1

ln2−1
≤ 2.3, so we select c2 so that c2 ≥ 2.3.

(c)

To insert a node x, we assign it some random value k which to be its heap
key. We then place (x, k) into the treap based on the value of x by regular
BST insertion. Then, we rotate (x, k) with its parent until (x, k) is at a
position where k is larger than the heap key of the l, the heap key of the
parent of (x, k).

The rotations assure that (x, k) remains in left/right order by the tree-key
with respect to the other nodes.

Psuedocode is:

TREAP INSERT(x) {
k = random number;

BST INSERT(x, k);

while (((x, k).parent 6= NULL) && (k < (x, k).parent heap key)) {
rotate((x, k));

}
}
(d)

Let’s suppose that h is the height of the treap. On average, doing BST INSERT
takes time linearly proportional to h.

And for randomly chosen k, the number of rotations done on (x, k) after-
wards is also linearly proportional to h.

Therefore on average, we take time Θ(h).

And from part (b), we’ve proven the expected h = lgn. Thus, expected
average time is Θ(lgn).

16

