
Homework 2
Fundamental Algorithms, Fall 2002, Professor Yap

Due: Thu Oct 3, in class

INSTRUCTIONS:

• TIP OF THE DAY: Your solution should be both LOGICAL (of course)
and GRAMMATICAL (what?). Some students think that mathematical
writing can ignore grammar, especially if you use some symbols. This
is not true. Grammatical means it is constructed like a normal English
writing: your solution is a sequence of complete ENGLISH sentences (even
if your sentence involves mathematical symbols equations)! That means
you begin each sentence with a capital letter, and end each sentence with
a full stop. You may think the last point is trivial, until you try to grade
a solution where you do not know where one sentence stops and the next
begins!

1. (10 Points) The Fibonacci recurrence is

F (n) = F (n− 1) + F (n− 2).

(i) Suppose φ = 1+
√

5
2 = 1.61803... (this is also called the golden ratio)

and φ̂ = 1 − φ = −0.61803.... Show that φ and φ̂ are solutions of the
equation x2 = x + 1
SOLUTION:

The roots of the equation ax2 + bx + c = 0 can be obtained using the

formula x = −b±
√

(b2−4ac)

2a . Thus, the roots of the equation x2−x− 1 = 0
are given by 1±√1+4

2 i.e. φ and φ̂.

(ii) Suppose the initial conditions are F (0) = a and F (1) = b. Find α, β
such that

F (n) = αφn + βφ̂n

is a solution.

SOLUTION:

We note that

• F (0) = α + β = a.

• F (1) = αφ + βφ̂ = b.

We now have a pair of linear equations in the two variables α and β and
they can be easily calculated to be α = b−aφ̂

φ−φ̂
and β = aφ−b

φ−φ̂
.
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2. (20 Points) Consider the sum T (n) =
∑n

i=1 f(i) in the following cases:
(i) f(i) = i3

(ii) f(i) = 1/i
(iii) f(i) = i/ log i
(iv) f(i) = i!
(v) f(i) = 2i

i2

(vi) f(i) = (log i)log i

In each case, say if T (n) is a polynomial-type sum, an exponential-type
sum or neither. You must prove your claim. When it is polynomial-type
or exponential-type sum, state the Θ-order of T (n).

SOLUTION:

For every function we need to first check if it’s decreasing or increasing. In
case it’s decreasing, we can eliminate the test for polynomial-type sums.
Then, we can apply the tests required for exponential-type sums.

The tests are given here for reference

• Polynomial type f(n) is increasing and f(n) = O(f(n
2 )). In this

case, T (n) = Θ(n.f(n)).

• Exponential type
(A) There exists a constant C > 1 such that for all i, f(i) ≥ C ·f(i−
1). In this case, T (n) = Θ(f(n)), or
(B) There exists a constant c < 1 such that for all i, f(i) ≤ c·f(i−1).
In this case, T (n) = Θ(f(1)).

(i) f(i) = i3

SOLUTION:

We note that f(i) is increasing with i and so we test for polynomial type.

We note that i3 ≤ C · ( i
2 )3 for all C ≥ 8. So, f(i) = O(f( i

2 )). Hence,
T (n) = Θ(n · n3) = Θ(n4).

(ii) f(i) = 1
i .

SOLUTION:

We note that f(i) = 1
i is decreasing and hence is not a polynomial type

sum. So, we test for the second case in exponential type sums i.e.,
1
i ≤ c0 · 1

i−1 for some c0 < 1
⇒ i−1

i ≤ c0

But this condition doesn’t hold for i > i0 where i0 = 1
1−c0

. Thus, we
conclude that f(n) is neither polynomial-type nor exponential-type.

(iii) f(i) = i/ log i.

SOLUTION:

We note that f(i) is increasing and so test for polynomial-type.
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We have to show that i
log i ≤ C · i

2
log i

2
for some C > 0. We now have

i
2

log i
2

= 1
2 · i

log i−1

> 1
2 · i

log i

This implies that i
log i ≤ 2 · i

2
log i

2
. Thus, T (n) = Θ(n · n

log n ) = Θ( n2

log n ).

(iv) f(i) = i!.

SOLUTION:

We note that f(i) is increasing and guess that it’s exponential-type. We
proceed to make test (A) for exponential-type sums.

We need to show that i! ≥ C · (i− 1)! for some C > 1. But this holds for
all i > 2 and hence f(n) grows exponentially. Hence T (n) = Θ(n!).

(v) f(i) = 2i

i2 .

SOLUTION:

We note that f(n) is increasing as
2i

i2
2i−1

(i−1)2

= 2 · ( i−1
i )2 > 1. We guess f(i)

grows exponentially large and make test (A).

We need to show that 2i

i2 ≥ C · 2i−1

(i−1)2 for some C > 1 i.e., 2 · ( i−1
i )2 > C.

limi→∞ i−1
i = 1 and hence we have to choose 1 < C < 2. Thus, f(i) grows

exponentially large and hence T (n) = O(2n

n2 ).

(vi) f(i) = (log i)log i.

SOLUTION:

We note that f(i) is increasing and show that it’s neither polynomial-type
nor exponential-type.

Assume that f(i) is polynomial-type, i.e., there exists a c > 0 such that
(log i)log i ≤ c · (log i

2 )log
i
2 for i large enough. We will derive a contradic-

tion. Taking logarithm of both sides, we get

log c + (log(i/2) log log(i/2) > log i · log log i
⇒ log c + (log(i/2) log log i > log i · log log i
⇒ log c > log log i · (log i− log(i/2))
⇒ log c > log log i · log 2

This is a contradiction since the R.H.S →∞ as i→∞. This proves that
f(i) is not polynomial-type.

Before we prove that (log i)log i is not exponential, we note a very useful
fact, namely, log i− log(i−1) = Θ(1

i ). To see this, note that log i− log(i−
1) = Θ(H(i)−H(i− 1)) = Θ(1

i ).

For exponential type, we need to show that there exists a C > 1 such that
(log i)log i ≥ C · (log (i− 1))log (i−1). Taking logarithms of both sides, we
get
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log i · log log i ≥ log C + log (i− 1) · log log (i− 1)
log i · log log i− log (i− 1) · log log (i− 1) ≥ log C

log (i− 1)(log log i− log log(i− 1)) + Θ( log log i
i ) ≥ log C > 0

The term Θ( log log i
i ) arises from (log i− log(i−1)) log log i. This term goes

to 0 as i→∞. Next consider the term log (i− 1)(log log i−log log (i− 1)).
We have log log i− log log (i− 1) = Θ(

∫ log i

log (i−1)
dx
x ) = Θ( log i−log (i−1)

log (i−1) ) ob-
tained by replacing 1

x with the largest value 1
log (i−1) in the integral. So the

term log (i− 1)(log log i− log log (i− 1)) = log (i− 1) ·Θ( log i−log (i−1)
log (i−1) ) =

Θ(1
i ) → 0 as i → ∞. Thus, we have shown that the LHS goes to 0 but

the RHS is positive (since C > 1). This is a contradiction.

In summary, we have shown that f(i) is neither polynomial-type nor
exponential-type.

3. Exercise 1.1 in the handout on Master Theorem. NOTE: no proofs are
necessary for this question.

State the solution, up to Θ− order of the following recurrences:

(i) T (n) = 10T ( n
10 ) + log10 n.

(ii) T (n) = 100T ( n
10 ) + n10.

(iii) T (n) = 10T ( n
100 ) + (log n)log log n.

(iv) T (n) = 16T (n
4 ) + 4lg n.

SOLUTION:

We now state the Master theorem and then read off the Θ− order of the
recurrences by stating the applicable case:

Theorem 1 Let a ≥ 1 and b > 1 be constants, let f(n) be a function and
let T (n) be defined on the nonnegative integers by the recurrence
T (n) = aT (n

b ) + f(n).

where we interpret n
b to mean either

⌊
n
b

⌋
or

⌈
n
b

⌉
. Then T (n) can be

bounded asymptotically as follows:

(a) If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

(b) If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n).

(c) If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n
b ) ≤ cf(n)

for some constant c < 1 and all sufficiently large n, then T (n) =
Θ(f(n)).

(i) T (n) = 10T ( n
10 ) + log1 0n.

SOLUTION:
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We note that f(n) = log10 n = O(nlog10 100−ε) and hence case (1) applies
and so T (n) = Θ(n).

(ii) T (n) = 100T ( n
10 ) + n10.

SOLUTION:

We note that f(n) = n10 and nlogb a = n2. We see that n10 = Ω(n2+ε)
and also, 100f( n

10 ) = n10

108 ≤ 1
108 · n10 = c · f(n). Thus taking c = 1

108 < 1
works. Hence, we note that case 2 applies and T (n) = Θ(n10).

(iii) T (n) = 10T ( n
100 ) + (log n)log log n.

SOLUTION:

Here, we need to compare (log n)log log n and n
1
2 . Thus, we have

(log n)log log n ≤ n
1
2−ε

⇐⇒ (log log n)2 ≤ (1
2 − ε) · log n

which is true as logk n = O(nc) for all k, c > 0. Thus, case 1 applies and
T (n) = Θ(n

1
2 ).

(iv) T (n) = 16T (n
4 ) + 4lg n.

SOLUTION:

We have f(n) = 4lg n = n2 = nlog4 16. So, case 2 appleis and we get
T (n) = Θ(n2 log n).

4. Exercise 1.3 in the handout on Master Theorem. Solve the master recur-
rence when f(n) = w(n) logk n, for any k.

SOLUTION:

We have T (n) = aT (n
b ) + f(n). We make a domain transformation by

substituting n with the form bm and t(m) = T (bm). Then, we get t(m) =
at(m−1)+f(bm). We now make a range transformation by dividing with
am and setting s(m) = t(m)

am . We then obtain s(m) = s(m− 1) + f(bm)
am .

We set s(0) = 0 and obtain s(m) =
∑m

i=1
w(bi) logk bi

ai where n = bm. Now,∑m
i=1

w(bi) logk bi

ai =
∑m

i=1
ai logk bi

ai

=
∑m

i=1 logk bi

First, we assume that k ≥ 0 . Then, we observe that this is a polynomial-
type sum and hence∑m

i=1 logk bi = Θ(l · logk bm) = Θ(log bm · logk bm) = Θ(logk+1 n).

If k = −1, we have∑m
i=1 log−1 (bi) = log−1 (b) ·∑m

i=1
1
i = log−1 (b) ·Θ(log m) = Θ(log log n)

Finally, if k < −1, we have∑m
i=1 logk bi = Θ

∑m
i=1

1
ik = Θ(1).

Using the fact that we note that am = w(n), we have

T (n) = t(bm) = s(m).(am) =




Θ(w(n) · logk+1 n) if k ≥ 0
Θ(w(n) · log log n) if k = −1
Θ(w(n)) if k < −1

.
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You should get most of the credit if you solved the case for k ≥ 0 correctly.
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