
§1. Potential Framework Lecture V Page 1

Lecture V

AMORTIZATION (Excerpt)

Many algorithms amount to a sequence of operations on a data structure. For instance, the well-known
heapsort algorithm is a sequence of insert’s into an initially empty priority queue, followed by a sequence
of deleteMin’s from the queue until it is empty. Thus if ci is the cost of the ith operation, the algorithm’s
running time is

∑2n
i=1 ci, since there are 2n operations for sorting n elements. We normally ensure that each

operation is efficient, say ci = O(log n), leading to the conclusion that the overall algorithm is O(n log n). The
idea of amortization exploits the fact that we may be able to obtain the same bound

∑2n
i=1 ci = O(n log n)

without ensuring that each ci is logarithmic. We then say that the amortized cost of each operation is
logarithmic. Thus “amortized complexity” is a kind of average complexity although it has nothing to do
with probability. Tarjan [3] gives the first systematic account of this topic.

Why amortize? Even in problems where we could have ensured each operation is logarithmic time, it
may be advantageous to achieve only logarithmic behavior in the amortized sense. This is because the extra
flexibility of amortized bounds may lead to simpler or more practical algorithms. In fact, many “amortized”
data structures seem to be quite implementable. To give a concrete example, consider any balance binary
search tree scheme. The algorithms for such trees must perform considerable book-keeping to maintain its
balanced shape. In contrast, we will see an amortization scheme for binary search tree which is considerably
simpler and “lax” about balancing. The operative word in such amortized data structures is1 laziness: try
to defer the book-keeping work to the future if it can be helped. This will be clearer when we discuss splay
trees below.

This lecture is in 3 parts: we begin by introducing the potential function framework for doing
amortization analysis. Then we introduce two data structures, splay trees and Fibonacci heaps, which
can be analyzed using this framework. We give a non-trivial application of each data structure: splay trees
are used to maintain the convex hull of a set of points in the plane, and Fibonacci heaps are used for
implement Prim’s algorithm for minimum spanning trees.

§1. The Potential Framework

We formulate an approach to amortized analysis using the concept of “potential functions”. Borrowing
a concept from Physics, we imagine data structures as storing “potential energy” that can be released to
do useful work. First, we view a data structure as a binary search tree as a persistent object that has a
state which can be changed by operations (e.g., insert, delete, etc). The characteristic property of potential
functions is that they are a function of the current state of the data structure alone, independent of the
history of how the data structure was derived.

A “Counter Example”. We begin with a simple example. Suppose that we have a binary counter C
that is represented by a linked list of 0’s and 1’s. The only operation on C is to increment its value. For
instance, if C = (011011) then after incrementing, C = (011100). This linked list representation determines
our cost model: the cost to increment C is defined to be the length of the suffix of C of the form 01∗. (We
may assume that C begins with a 0-bit in its binary representation, so a suffix of this form always exists.)
Thus in our example, the cost is 3 since C has the suffix 011. Let us now analyse the cost of a sequence of
n increments, starting from an initial counter value of 0. In the worst case, an increment operation costs
O(lg n). Therefore a worst-case analysis would conclude that the total cost is O(n lg n).

1In algorithmics, it appears that we like to turn conventional vices (greediness, laziness, gambling with chance, etc) into
virtues.

c© Chee-Keng Yap November 5, 2002



§1. Potential Framework Lecture V Page 2

We can do better by using amortized analysis: We also associate with C a potential Φ = Φ(C) that is
equal to the number of 1’s in its list representation. Informally, we will “store” in C exactly Φ units of work.
To analyze the increment operation, we consider two cases. (I) Suppose the least significant bit of C is 0.
Then the increment operation just changes this bit to 1. We can charge this operation 2 units – one unit to
do the work and one unit to pay for the increase in potential. (II) Suppose an increment operation changes
a suffix 0111 · · ·11︸ ︷︷ ︸

k

of length k ≥ 2 into 1000 · · ·00︸ ︷︷ ︸
k

: the cost incurred is Θ(k). Notice that the potential

Φ decreases by k − 2. This decrease “releases” k − 2 units of work that can pay for Θ(k − 2) of the cost
incurred. So we only need to charge this operation 2 units. Thus, in both cases (I) and (II), we only charge
2 units of work for an operation, and so the total charges over n operations is only 2n. We conclude that
the amortized cost of incrementing C is O(1).

Abstract Formulation. We present now one abstract formulation of amortization analysis. It is assumed
that we are analyzing the cost of a sequence

p1, p2, . . . , pn

of requests on a data structure D. The term “request” is meant to cover two types of operations: “updates”
that modify D and “queries” that need not2 modify D. The data structure is dynamically changing: at any
moment, the data structure is in some state, and each request transforms the current state of D. Let Di

be the state of the data structure after request pi, with D0 the initial state.

Each pi has a non-negative cost, denoted Cost(pi). This cost depends on the complexity model which
is part of the problem specification. To carry out an amortization argument, we must specify a charging
scheme and a potential function. Unlike the cost function, the charging scheme and potential function
are not inherent to the complexity model, and requires some amount of ingenuity.

A charging scheme is just any systematic way to associate a non-negative number Charge(pi) to each
operation pi. Informally, we “levy” a charge of Charge(pi) on the operation. We emphasize that this levy
need not have any obvious relationship to the cost of pi. The credit of this operation is defined to be the
“excess charge”,

Credit(pi) :=Charge(pi)−Cost(pi). (1)

In view of this equation, specifying a charging scheme is equivalent to specifying a credit scheme. The credit
of an operation can be a negative number (in which case it is really a “debit”).

A potential function is a non-negative real function Φ on the set of possible states of D satisfying

Φ(D0) = 0.

We call Φ(Di) the potential of state Di. The amortization analysis amounts to verifying the following
inequality at every step:

Credit(pi) ≥ Φ(Di)− Φ(Di−1). (2)

We call this the credit-potential invariant. We denote the increase in potential by

∆Φi :=Φ(Di)− Φ(Di−1).

Thus equation (2) can be written: Credit(pi) ≥ ∆Φi.

The idea is that credit is stored as “potential” in the data structure.3 Conceptually, the potential
function and the charging scheme are independently defined, so the truth of the invariant ((2)) is not a

2Nevertheless, it may turn out to be advantageous to modify D into some other data structure (equivalent to D, of course).
Thus the state of D can change even in case of a query.

3Admittedly, we are mixing financial and physical metaphors. The credit or debit ought to be put into a “bank account”
and so Φ could be called the “current balance”.

c© Chee-Keng Yap November 5, 2002



§1. Potential Framework Lecture V Page 3

foregone conclusion. Moreover, the invariant may sometimes be a strict inequality – this means that some
credit is discarded (the analysis is not tight in this case).

If the credit-potential invariant is verified, we can call the charge for an operation its amortized cost.
This is justified by the following derivation:

∑n
i=1 Cost(pi) =

∑n
i=1(Charge(pi)−Credit(pi)) (by the definition of credit)

≤ ∑n
i=1 Charge(pi)−

∑n
i=1 ∆Φi (by the credit-potential invariant)

=
∑n

i=1 Charge(pi)− (Φ(Dn)− Φ(D0)) (telescopy)
≤ ∑n

i=1 Charge(pi) (since Φ(Dn)− Φ(D0) ≥ 0).

The distinction between “charge” and “amortized cost” should be clearly understood: the former is a
definition and the latter is an assertion. A charge can only be called an amortized cost if the overall scheme
satisfies the credit-potential invariant.

Summary. In an amortization analysis, we are given a sequence of operations on a data structure, together
with a cost model (often implicit). We must invent a charging scheme and a potential function. After verifying
that the credit-potential invariant holds for each operation, we may conclude that the charge is an amortized
cost.

Exercises

Exercise 1.1: We generalize the example of incrementing binary counters. Suppose we have a collection of
binary counters, all initialized to 0. We want to perform a sequence of operations, each of the type

inc(C), double(C), add(C, C′)

where C, C′ are names of counters. The operation inc(C) increments the counter C by 1; double(C)
doubles the counter C; finally, add(C, C′) adds the contents of C′ to C while simultaneously set the
counter C′ to zero. Show that this problem has amortized constant cost per operation.

To be precise, we need to define the cost model. The length of a counter is the number of bits
used to store its current value (so the length can change). The cost to double a counter C is just
1 (you only need to prepend a single bit to C). The cost of add(C, C′) is the number of bits that
the standard algorithm needs to look at (and possibly change) when when adding C and C′. E.g.,
if C = 11, 1001, 1101 and C′ = 110, then C + C′ = 11, 1010, 0011 and the cost is 9. This is because
the algorithm only has to look at 6 bits of C and 3 bits of C′. Note that the first 4 bits of C is not
looked at (you can think of them being simply “copied” to the output, although this happens by just
not doing anything). After this operation, C has the value 11, 1010, 0011 and C′ has the value 0.
HINT: The potential of a counter C should take into account the number of 1’s as well as the bit-length
of the counter.

REMARK: in our cost model, add(C, C′) and add(C′, C) have the same cost. How to implement this
so that our cost model is realistic is left for the next exercise.

♦

Exercise 1.2: In the previous counter problem, we define a cost model for add(C, C′) that depends only on
the bit patterns in C and C′. In particular, the cost of add(C, C′) and add(C′, C) are the same. How
can you implement this algorithm so that the cost model is realistic?

HINT: To understand the issues, suppose C = 11, 1010, 0011 and C′ = 11 as in the previous problem.
Instead of add(C, C′), suppose we want to implement add(C′, C). How can you implement this so that

c© Chee-Keng Yap November 5, 2002



§2. Splay Trees Lecture V Page 4

the cost of 9 is still realistic? If you simply “add C to C′” in the obvious way, the real cost would be
the sum of the lengths of C and C′, namely 2 + 10 = 12. One possibility is to first “add C′ to C, then
rename these counters”. But to implement it this way, you need detect which counter is longer, and to
always add the shorter counter to the longer. Another way is to copy the initial results of the addition
to an intermediate counter before committing yourself as to which counter will be zero’d out.

♦

Exercise 1.3: Joe Smart says: it stands to reason that if we can increment counters for an amortized cost
of O(1), we should be able to also support the operation of “decrementing a counter” in addition to
those in the previous exercise. Someone pointed out that the potential functions that have been used
so far does not bear out this conjecture of Smart. Smart retorts: of course, the failure of any particular
potential function is no proof that my suggestion is incorrect.
(a) Can you please give Joe Smart a more convincing argument?
(b) In what way is the intuition of Joe Smart about the symmetry of decrement and increments correct?
Formalize this by a result about amortized cost. ♦

Exercise 1.4: Generalize the previous exercise by assuming that the counters need not be initially zero,
but may contain powers of 2. ♦

End Exercises

§2. Splay Trees

The splay tree data structure of Sleator and Tarjan [2] is a practical approach to implementing all
operations listed in §III.2. A key motivation for splay trees is a simple heuristic called the move-to-front
heuristic – it basically says that if we want to repeatedly access items in a list, then it is a good idea to
move any accessed item to the front of the list, to facilitate future accesses to this item. Of course, there is
no guarantee that we would want to access this item again in the future. But even if we never again access
this item, we have not lost much because the cost of moving the item has already been paid for (using the
appropriate accounting method). Amortization (and probabilistic) analysis can be used to prove that this
heuristic is a good idea. This material is in appendix A.

The analogue of the move-to-front heuristic for maintaining binary search trees should be clear: after we
access (lookUp) an item in a tree, we move it to the root. We will call the operation of moving an item to
the root splaying. More precisely,

splay(Key K,Tree T ) (3)

re-structures the binary search tree T so that the root of T now contains K (if K occurs in T ) or else,
the root contains either the successor or predecessor of K in T . We are indifferent as to whether it is the
successor or predecessor. In particular, if K is smaller than any key in T , the root of T after splay(K, T )
will contain the smallest key in T . A similar remark applies if K is larger than any key in T . We will exploit
these properties of splaying below.

Whenever we use the operation (3) above, the following assumption on T will hold:

T is non-empty and all the keys in T are distinct.

c© Chee-Keng Yap November 5, 2002



§2. Splay Trees Lecture V Page 5

4

5

11

3

2

2

3

2

3

splay(4) 4

5

4

51

Figure 1: Splaying key 4 (an intermediate step shown).

Since T is non-empty, any key K will have a successor or predecessor (perhaps not both) in T and splay(K, T )
can always be well-defined. See figure 1 for examples of splaying.

Before describing the splay algorithm, we show how it will be used.

Reduction to Splaying. We now implement the fully mergeable dictionary ADT (§III.2). The imple-
mentation is quite simple: every ADT operation is reducible to one or two splaying operations.

• lookUp(Key K,Tree T ): examine the root of splay(K, T ). It is important to realize that we intention-
ally modify the tree T by splaying it. This is necessary for our analysis.

• insert(Item X,Tree T ): examine the key K ′ at the root of splay(X.Key, T ). If K ′ = X.Key, we declare
an error (recall that keys are distinct in T ). If K ′ > X.Key, we can install a new root containing X ,
and K ′ becomes the right child of X as in figure 2. The case K ′ < X.Key is symmetrical. In either
case, the new root has key equal to X.Key.

• merge(Tree T1, T2) → T : recall that all the keys in T1 must be less than any key in T2. First let
T ← splay(+∞, T1). Here +∞ denotes an artificial key larger than any real key in T1. So the root of
T has no right child. We then make T2 the right subtree of T .

• delete(Key K,Tree T ): if splay(K, T ) does not contain K in its root, there is nothing to do. Other-
wise, delete the root and merge the left and right subtrees.

• split(Key K,Tree T ) → T ′: perform splay(K, T ) so that the root of T now contains the successor
or predecessor of K in T . Split off the right subtree of T , perhaps including the root of T , into a new
tree T ′.

K ′ > K

K ′

K ′

K

splay(K, T )

Figure 2: Inserting an item with key K: case K ′ > K.

c© Chee-Keng Yap November 5, 2002



§2. Splay Trees Lecture V Page 6

Reduction to SplayStep. Splaying T at key K is easily accomplished in two stages:

• Perform the usual binary tree search for K. Say we terminate at a node u that contains K in case T
contains such a node. Otherwise, u contains the successor or predecessor of K in T .

• Now repeatedly call the subroutine
splayStep(u)

until u becomes the root of T . Termination is guaranteed because splayStep(u) always reduce the
depth of u.

It remains to explain the SplayStep subroutine. We need a terminology: A grandchild u of a node v is
called a extreme left grandchild if u is the left child of the left child of v. Similarly for extreme right
grandchild.

splayStep(Node u):
There are three cases.

Base Case. If u.Parent is the root,
then we simply rotate(u) (see figure 4).

Case I. Else, if u is an extreme (left or right) grandchild,
perform two rotations: rotate(u.Parent), followed by rotate(u). See figure 3.

Case II. Else, we perform rotate(u) twice (see figure 3).

splayStep(u)

splayStep(u)

u

v

w u

v

w

u

v

w u

v w

Case I

Case II

A B

C

D A

B

C D

A B

C

D

C A B D

Figure 3: SplayStep at u: Cases I and II.

c© Chee-Keng Yap November 5, 2002



§2. Splay Trees Lecture V Page 7

In figure 1, we see two applications of splayStep(4). Following Sleator and Tarjan, we may also call the
three cases zig (base case), zig-zig (case I) and zig-zag (case II). It is easy to see that the depth of u decreases
by 1 in a zig, and decreases by 2 otherwise. Hence, if the depth of u is h, the splay operation will halt in
about h/2 splayStep’s. Recall in §III.6, we call the zig-zag a “double rotation”.

Before moving to the analysis of this data structure, briefly consider the possible behavior of this data
structure. Notice that the search trees are by no means required to be balanced. Imagine a sequence of
insertions to an empty tree: if the key of each successive insertion is larger than the previous one, we would
end up with a linear structure.

Top Down Splaying. We now introduce a variation of splaying. The Sleator-Tarjan splay algorithms
requires two passes over the splay path. Suppose we wish to have a one-pass algorithm. The basic idea is
this: for each node that we “visit” in our search path, we will make it the root before we “visit” it. Initially,
we begin at the root so the basic idea is satisfied. The next node (if any) we visit is either the left or right
child of the root. So our basic idea amounts to just performing a left or right rotation at the root, and now we
continue recursively. This idea has a pitfall (Exercise). The correct solution is as follows. Let the top-down
splaying procedure be denoted topSplay(KeyK,Nodeu). We have 4 possible states of our algorithm:

• State 0: Both uL and uR have not been visited.

• State 1: uL but not uR has been visited.

• State 2: uR but not uL has been visited.

• State 3: Both uL and uR have been visited.

Here is the transition rule for the states.

State 0: Initially, we are in state 0. If u.Key > K, then rotate u.Left and we move into state 1; if u.Key < K,
then we rotate u.Right and we move into state 2.

State 1: If u.Key > K then we next move into state 3 and perform the actions

v ← u.Left.Right; rotate(v); rotate(v); topSplay(K, v).

Otherwise, u.Key < K and remain in state 1 and perform the actions

v ← u.Right; rotate(v); topSplay(K, v).

State 2: This is symmetrical to State 1.

State 3: Once we are in state 3, we remain in state 3. If u.Key > K then v ← u.Left.Right else v ←
u.Right.Left. In any case, perform the actions

rotate(v); rotate(v); topSplay(K, v).

An alternative description is to perform cases I, II or III in direct analogy to SplayStep.

c© Chee-Keng Yap November 5, 2002



§3. Splay Analysis Lecture V Page 8

What, really, is a Splay Tree? We never quite “characterize splay trees”, other than require that they
be binary search trees! Let us, for the sake of the exercises below, define a binary search tree to be a splay
tree if it arises from a sequence of splay tree operations (insertions, deletions, lookups, merges and splits),
starting from initially empty trees.

Exercises

Exercise 2.1: Perform the following splay tree operations, starting from an initially empty tree.

Ins(3, 2, 1, 6, 5, 4, 9, 8, 7), LookUp(3), Del(7), Ins(12, 15, 14, 13), Split(8).

Show the splay tree after each step. ♦

Exercise 2.2: Show that the worst case time for any of the splay tree operations is Ω(n). ♦

Exercise 2.3: To splay a tree at a key K, our algorithm begins by doing the conventional lookUp of K. If
K is not in the tree, and u is the last node reached, then clearly u has at most one child. Prove that
u contains the successor or predecessor of K. ♦

Exercise 2.4: Let T be a binary search tree in which every non-leaf has one child. Thus T has a linear
structure with a unique leaf.
(a) What is the effect of lookUp on the key at the leaf of T ?
(b) What is the minimum number of lookUp’s to make T balanced? ♦

Exercise 2.5: A variant of the insertion algorithm is to make the inserted node to be equal to either the
left or right child of the root. What are the relative advantages/disadvantages of this over what we
specified in the text? ♦

Exercise 2.6: (Top Down Splaying)
(a) Explain the “pitfall” mentioned for the obvious implementation of the top-down splaying algorithm.
(b) Give an efficient implementation of topSplay as described above. Efficiency here means trying to
reduce the number of pointer manipulations, and this may entail combining the pointer manipulations
of several rotations.
(c) Do an empirical study of Top Down Splaying, comparing its performance to standard Splaying.

♦

Exercise 2.7: The following question seems to be unexplored. Is every binary search tree a splay tree
(defined to mean one that arises from a sequence of splay tree operations, starting from empty trees).
A similar question is: can every binary search tree be obtained by repeated splay-tree insertions,
starting from an initially empty binary tree? ♦

End Exercises

§3. Splay Analysis

c© Chee-Keng Yap November 5, 2002



§3. Splay Analysis Lecture V Page 9

Our main goal next is to prove:

(*) The amortized cost of each splay operation is O(log n) assuming at most n items in a tree.

Let Size(u) denote as usual the number of nodes in the subtree rooted at u, and define its potential to
be

Φ(u) = blg Size(u)c .
Initially, the data structure has no items and has zero potential. If S = {u1, u2, . . .} is a set of nodes, we
may write Φ(S) or Φ(u1, u2, . . .) for the sum

∑
u∈S Φ(u). If S is the set of nodes in a splay tree T or in the

entire data structure then Φ(S) is called the potential of (respectively) T or the entire data structure.

Lemma 1 (key) Let Φ be the potential function before we apply splayStep(u), and let Φ′ be the potential
after. The credit-potential invariant is preserved if we charge the SplayStep

3(Φ′(u)− Φ(u)) (4)

units of work in cases I and II. In the base case, we charge one extra unit, in addition to the charge (4).

The main goal (*) follows easily from this key lemma. To see this, suppose that splaying at u reduces
to a sequence of k SplaySteps at u and let Φi(u) be the potential of u after the ith SplayStep. The total
charges to this sequence of SplaySteps is

1 +
k∑

i=1

3[Φi(u)− Φi−1(u)] = 1 + 3[Φk(u)− Φ0(u)]

by telescopy. Note that the “1” comes from the fact that the last SplayStep may belong to the base case.
Clearly this total charge is at most 1 + 3 lg n. To finish off the argument, we must account for the cost of
looking up u. But it easy to see that this cost is proportional to k and so it can be covered by charging one
extra unit to every SplayStep. This only affects the constant factor in our charging scheme. This concludes
the proof of the main goal.

We now address address the Key Lemma. The following is a useful remark about rotations:

Lemma 2 Let Φ be the potential function before a rotation at u and Φ′ the potential function after. Then
the increase in potential of the overall data structure is at most

Φ′(u)− Φ(u).

The expression Φ′(u)− Φ(u) is always non-negative.

Proof. We refer to figure 4. The increase in potential is

∆Φ = Φ′(u, v)− Φ(u, v)
= Φ′(v)− Φ(u) (as Φ′(u) = Φ(v))
≤ Φ′(u)− Φ(u) (as Φ′(u) ≥ Φ′(v)).

It is obvious that Φ′(u) ≥ Φ(u). Q.E.D.

Proof of Key Lemma. The base case is almost immediate from lemma 2: the increase in potential is
at most Φ′(u) − Φ(u). This is at most 3(Φ′(u) − Φ(u)) since Φ′(u) − Φ(u) is non-negative. The charge of
1 + 3(Φ′(u)− Φ(u)) can therefore pay for the cost of this rotation and any increase in potential.

c© Chee-Keng Yap November 5, 2002



§3. Splay Analysis Lecture V Page 10

v

u

A B

C

u

v

A

B C

rotate(u)

Figure 4: Rotation at u.

Refer to figure 3 for the remaining two cases. Let the sizes of the subtrees A, B, C, D be a, b, c, d,
respectively.

Consider case I. The increase in potential is

∆Φ = Φ′(u, v, w)− Φ(u, v, w)
= Φ′(v, w) − Φ(u, v) (as Φ′(u) = Φ(w))
≤ 2(Φ′(u)− Φ(u)) (as 2Φ′(u) ≥ Φ′(v, w), 2Φ(u) ≤ Φ(u, v)).

Since Φ′(u) ≥ Φ(u), we have two possibilities: (a) If Φ′(u) > Φ(u), then the charge of 3(Φ′(u)−Φ(u)) can pay
for the increased potential and the cost of this splay step. (b) Next suppose Φ′(u) = Φ(u). By assumption,
Φ′(u) = blg(3 + a + b + c + d)c and Φ(u) = blg(1 + a + b)c are equal. Thus 1 + a + b > 2 + c + d, and so
3 + a + b + c + d > 2(2 + c + d) and

Φ′(w) = blg(1 + c + d)c < blg(3 + a + b + c + d)c = Φ(u).

Also,
Φ′(v) ≤ Φ′(u) = Φ(u) ≤ Φ(v).

Combining these two inequalities, we conclude that

Φ′(w, v) < Φ(u, v).

Hence ∆Φ = Φ′(w, v) − Φ(u, v) < 0. Since potentials are integer-valued, this means that ∆Φ ≤ −1. Thus
the change in potential releases at least one unit of work to pay for the cost of the splay step. Note that in
this case, we charge nothing since 3(Φ′(u)− Φ(u)) = 0. Thus the credit-potential invariant holds.

Consider case II. The increase in potential is again ∆Φ = Φ′(v, w) − Φ(u, v). Since Φ′(v) ≤ Φ(v) and
Φ′(w) ≤ Φ′(u), we get

∆Φ ≤ Φ′(u)− Φ(u).

If Φ′(u) − Φ(u) > 0, then our charge of 3(Φ′(u) − Φ(u)) can pay for the increase in potential and the cost
of this splay step. Hence we may assume otherwise and let t = Φ′(u) = Φ(u). In this case, our charge is
3(Φ′(u)− Φ(u)) = 0, and for the credit potential invariant to hold, it suffices to show

∆Φ < 0.

It is easy to see that Φ(v) = t, and so Φ(u, v) = 2t. Clearly, Φ′(v, w) ≤ 2Φ′(u) = 2t. If Φ′(v, w) < 2t, then
∆Φ = Φ′(v, w) − Φ(u, v) < 0 as desired. So it remains to show that Φ′(v, w) = 2t is impossible. For, if
Φ′(v, w) = 2t then Φ′(v) = Φ′(w) = t (since Φ′(v), Φ′(w) are both no larger than t). But then

Φ′(u) =
⌊
lg(Size

′(v) + Size
′(w) + 1)

⌋ ≥ ⌊
lg(2t + 2t + 1)

⌋ ≥ t + 1,

c© Chee-Keng Yap November 5, 2002



§3. Splay Analysis Lecture V Page 11

a contradiction. This proves the Key Lemma.

We conclude with the main result on splay trees.

Theorem 3 A sequence of m splay tree requests (lookUp, insert, merge, delete, split) involving a total
of n items takes O(m log n) time to process. As usual, we assume that the potential of the data structure is
initially 0.

Proof. This follows almost immediately from (*) since each request can be reduced to a constant number of
splay operations plus O(1) extra work. We need to attend to one detail in Insertion. Here, we introduce a
new node with potential at most lg n. This increase of potential must be charged but clearly this additional
does not change our overall cost. Similarly for Merge and Deletion. Q.E.D.

Application: Splaysort Clearly we can obtain a sorting algorithm by repeated insertion into a splay tree.
Such an algorithm has been implemented [1]. Splaysort has the ability to take advantage of “presortedness”
in the input sequence and hence may run faster than Quicksort for some inputs. One way to quantify
presortedness is to count the number of pairwise inversions in the input sequence.

Exercises

Exercise 3.1: Where in the proof is the constant “3” actually needed in our charge of 3(Φ′(u)−Φ(u))? ♦

Exercise 3.2: Adapt the proof of the Key Lemma to justify the following variation of SplayStep:

VarSplayStep(u):

(Base Case) if u is a child or grandchild of the root,
then rotate once or twice at u until it becomes the root.

(General Case) else rotate at u.Parent, followed by two rotations at u.

♦

Exercise 3.3:
(i) Is it true that splays always decrease the height of a tree? The average height of a tree? (Define
the average height to be the average depth of the leaves.)
(ii) What is the effect of splay on the last node of a binary tree that has a linear structure, i.e., in which
every internal node has only one child? HINT: First consider two simple cases, where all non-roots is
a left child and where each non-root is alternately a left child and a right child. ♦

Exercise 3.4: Assume that node u has a great-grandparent. Give a simple description of the effect of the
following sequence of three rotations: rotate(u.Parent.Parent); rotate(u.Parent); rotate(u). ♦

Exercise 3.5: For any node u,
Φ(uL) = Φ(uR)⇒ Φ(u) = Φ(uL) + 1

where uL, uR are the left and right child of u. ♦

c© Chee-Keng Yap November 5, 2002



§3. Splay Analysis Lecture V Page 12

Exercise 3.6: Modify our splay trees to maintain (in addition to the usual children and parent pointers)
pointers to the successor and predecessor of each node. Show that this can be done without affecting
the asympotic complexity of all the operations (lookUp, insert, delete, merge, split) of splay trees.

♦

Exercise 3.7: We consider some possible simplifications of the splayStep.
(A) One-rotation version: Let splayStep(u) simply amount to rotate(u).
(B) Two-rotation version:

SplayStep(u):

(Base Case) if u.Parent is the root, rotate(u).
(General Case) else do rotate(u.Parent), followed by rotate(u).

For both (A) and (B):
(i) Indicate how the proposed SplayStep algorithm differs from the original.
(ii) Give a general counter example showing that this variation does not permit a result similar to the
Key Lemma. ♦

Exercise 3.8: Modify the above algorithms so that we allow the search trees to have identical keys. Make
reasonable conventions about semantics, such as what it means to lookup a key. ♦

Exercise 3.9: Can we use the simpler potential function Φ(u) = lg Size(u) in our splay analysis? ♦

End Exercises

References

[1] A. Moffat, G. Eddy, and O. Petersson. Splaysort: Fast, versatile, practical. Software - Practice and
Experience, 126(7):781–797, 1996.

[2] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. of the ACM, 32:652–686, 1985.

[3] R. E. Tarjan. Amortized computational complexity. SIAM J. on Algebraic and Discrete Methods, 6:306–
318, 1985.

c© Chee-Keng Yap November 5, 2002


