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MIDTERM

QUESTION 1. (Recurrences)
(a) Solve to Θ-order:

T1(n) = 8T1(n/2) + n4.

Be sure to justify the application of any known result.
(b) Suppose

T2(n) = 1 + T2(n− n

lnn
).

Give an upper bound on T2(n). HINT: It is useful to know that ln(1 + x) ≤ x when |x| < 1,
Expanding the recurrence once,

T2(n) = 1 + T2

(
n

(
1− 1

lnn

))
≤ 2 + T2

(
n

(
1− 1

lnn

)2
)
.

If you repeat this expansion k times, what do you get? When do you stop expanding?

ANSWER
(a) et f(n) = n4. The watershed function is f0(n) = n3. Hence f(n) = Ω(n3+ε). This suggests
that we have case (+) of the Master theorem. To verify this, we need to show a·f(n/b) ≤ c·f(n)
for some c < 1. Here a = 8, b = 2, and hence the choice of c = 1/2 will lead to an equality. We
conclude by the Master Theorem that

T1(n) = Θ(n4).

(b) e have

T (n) = 1 + T

(
n

(
1− 1

log n

))
≤ 2 + T

(
n

(
1− 1

log n

)2
)
, (why?)

...

≤ k + T

(
n

(
1− 1

log n

)k)
,

using monotonicity of T (n). Hence T (n) = k if we assume T (n) = 0 for n ≤ 1 and k is chosen
so that (

1− 1
log n

)k+1

≤ 1/n <
(

1− 1
log n

)k
.

Taking natural logs,

k ln
(

1− 1
lnn

)
> − lnn,

k

(
− 1

lnn

)
> − lnn, (since ln(1 + x) ≤ x for |x| < 1),

k < ln2 n.

NOTE: If you had guessed O(ln2 n), you could directly verify this by induction. One can
also verify by induction that this is the lower bound.
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QUESTION 2. (Red-Black Trees)
Draw a red-black tree T with black height 3 and specify a key k such that deleting k from T
will decrease the black height of T . Draw the red-black tree after deleting k. HINT: when does
the black height decrease in the deletion procedure? Ignore this hint if it is not helpful!

ANSWER

B_4 B_4
/ \ / \
/ \ Delete k = 3 / \

B_2 B_6 ==============> B_2 R_6
/ \ / \ / / \

B_1 B_3 B_5 B_7 R_1 B_5 B_7

Notes: B_i denotes a black node with key i.
R_i denotes a red node with key i.

QUESTION 3. (Greedy Algorithm)
A vertex cover for a undirected graph G = (V,E) is a subset C of the vertex set V such that
for all edge e in E, at least one of its two vertices is contained in the set C. A minimum vertex
cover is a vertex cover with the smallest size among all the vertex covers for the given graph.
Below is a greedy algorithm that finds a vertex cover V C:

1. Initialize V C to the empty set.
2. Choose from the graph a vertex v with the largest out-degree.

Add vertex v to the set V C, and remove vertex v and
all edges that are incident on it from the graph.

3. Repeat step 2 until the graph has no more edges.
4. The final set V C is a vertex cover of the original graph.

Show a graph G, for which this greedy algorithm fails to give a minimum vertex cover.

ANSWER

* - *
/

* - * - *
\
* - *

where “*” denotes a vertex, and “-” denotes an edge. Our algorithm will initially put into V C
the unique vertex of degree 3. The final vertex cover has size 4. But the optimal vertex cover
size is 3, obtained by choosing the three vertices of degree 2.
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QUESTION 4. (Splay Trees)
Consider the following idea as an alternative for splaying: when splaying a key K, we always
keep the current node in our search path at the root. (One advantage is that this becomes a
“one-pass” algorithm as opposed to the original “two-pass” algorithm.) The following recursive
code TopSplay is an attempt to implement this idea:

topSplay(Key K, Node N):
case of N.Key:
(1) N.Key = K:

return(“found”).
(2) N.Key < K:

if u.Right = nil, return(“pred”);
else u← u.Right; rotate(u); topSplay(K,u).

(3) N.Key > K:
if u.Left = nil, return(“succ”);
else u← u.Left; rotate(u); topSplay(K,u).

(a) Please indicate why this solution does not work.
(b) Propose a correct solution. Instead of the program code (as in (a)), we prefer that you
provide a clear verbal description. Of course, you can supplement that with code if you prefer.
HINT: the original SplayStep algorithm may give you an idea of what is needed.
(c) Does your solution have amortized cost of logn, as in the original splay algorithm? Argue
why or why not.

ANSWER
(a) onsider the binary search tree

u(3)
/

v(1)
\
w(2)

If u is the root of this tree, topSplay(2, u) will get into an infinite loop: we first rotate v and
then recursively call topSplay(2, v). This will rotate u and recursively call topSplay(2, u), and
so on. (b) e reimplement topSplayK,u. Let uL, uR be the left and right children of the root
u. We have 4 possible states of our algorithm:

• State 0: Both uL and uR have not been visited.

• State 1: uL but not uR has been visited.

• State 2: uR but not uL has been visited.

• State 3: Both uL and uR have been visited.

Here is the transition rule for the states. In any state, if u.Key = K, we are done. Otherwise
we take the following actions.

State 0: Initially, we are in state 0. If u.Key > K, then

u← .Left; rotate(u); state← 1.

If u.Key < K, we do the symmetrical thing and move into state 2.
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State 1: If u.Key < K then we next move into state 3 and perform the actions

v ← u.Right.Left; rotate(v); rotate(v); topSplay(K, v).

Otherwise, we remain in state 1 and perform the actions

v ← u.Left; rotate(v); topSplay(K, v).

State 2: This is symmetrical to State 1.

State 3: Once we are in state 3, we remain in state 3. If u.Key > K then v ← u.Left.Right
else v ← u.Right.Left. In any case, perform the actions

rotate(v); rotate(v); topSplay(K, v).

An alternative description is to perform cases I, II or III in direct analogy to SplayStep.
(c) he above algorithm performs a collection of rotations and double rotations (or zig-zags).

The rotations can in turn be decomposed into a sequence of zig-zig actions and a single rotation.
Then the analysis of splay trees tells us that for each of the zig-zig and zig-zag actions, the
credit-potential invariant is preserved. The single rotation can be paid for directly. Hence the
logarithmic amortized cost of splaying is preserved.


