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Fundamental Algorithm Homework 5 Solution
By Xing Xia

1.
(i) Give a simple algorithm for the grouping problem
Solution:
The algorithm below outputs a list [n1, n2, … nk] that represents the subdivision as
described in the problem.
Subdivision = [];
Sum = 0;
For i = 1 to n do {

If  (Sum+W(i) <= M) {
Sum += W(i);

} else {
Subdivision = Subdivision + [i-1];
Sum = 0;

}
}
Subdivision = Subdivision + [n];
Print (Subdivision);

(ii) Prove that your algorithm is optimal
Solution:
Let [n1, n2, … np] be the subdivision given by the above algorithm. Suppose it’s not the
optimal subdivision, then there exists a number q, where q < p, such that [m1, m2, …mq]
is also a possible solution to grouping problem.
Now, we want to show nk >= mk, for any k, where 1 <= k <=p, by induction.
It’s easy to see n1 >= m1, since in greedy algorithm in (i), we always try to make Sum as
large as possible, as far as Sum+W(i) <= M.
Suppose when k = h, where h <p, nk and mk are both defined, nk >= mk. Then for k = h+1,
we claim if nh+1 is defined, so is m h+1, and nh+1 >= m h+1.
Since the last element of any subdivision equals n, the size of the input list, and n >= nh+1

> nh >= mh, we know mh+1 must be defined.
Suppose n h+1 < m h+1. Let

Gn
h =  (W(nh), W(nh + 1), …W(nh+1)) and

Gm
h =  (W(mh), W(mh + 1), …W(mh+1))

We know size(Gnh) <= M and size(Gmh) <=M. Now, let’s try to extend Gnh as Gn
h’, where

Gn
h’ =  (W(nh), W(nh + 1), …W(nh+1), W(nh+1+1))

According to the assumption, nh>=mh while nh+1<mh+1,  we know
size(Gn

h’) <= size(Gm
h) <= M

which contradicts with the greedy algorithm in (i), which implies Gn
h cannot be extended

any longer. So for k = h+1, we have nk >= m k

In particular, we have np >= mp, which implies p <=q.

(iii) Suppose W(i) may be negative as well. Either prove that your algorithm is still
optimal or show a counter example.
Solution:



2

The greedy algorithm in (i) is not optimal in this situation. A counter example:
M = 5, w = (2, 4, -6). 

The algorithm in (i) will give the solution [1, 3] , while the optimal solution is [3].

2.
(i) The overall bit length of the coded string is 1223 bits.
(ii)
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3.
(1) Prove that a Huffman tree with n leaves has exactly 2n – 2 edges.
Solution:
Use induction of the structure of the tree.
For n = 1, 2n-2 = 0, there is only one node with no edges.
Assume when n = k, any Huffman tree with k leaves has 2k – 2 edges.
Let’s see how many edges a Huffman tree with n = k + 1 leaves has.
Since Huffman tree is full binary tree, if we want to add one more leaf to a Huffman tree
with n = k leaves, we have to replace one leaf with an internal node and 2 leaves. It
means we add two more edges to the Huffman tree, i.e., the Huffman tree with k+1 have
(2k – 2) + 2 = 2(k+1) – 2 edges.
So we claim that the Huffman tree with n leaves has exactly 2n – 2 edges.

(2) Tell us how to construct the representation from any Huffman tree for set
C = {0, …n-1}.

Solution:
We represent the Huffman tree by depth-first traversing the edges of the tree, using 0 for
walking down the edge, using 1 for walking up the edge. Since the Huffman tree with n
leaves has 2n-2 edges, and each edge is traversed twice (once walking up, once walking
down), we use (2n - 2) * 2 = 4n-4 bits to represent the Huffman tree.
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Now we associate the elements of C to the leaves of the Huffman tree. For each element
in C, we need exactly [lgn] bits to represent it, thus n[lgn] in total for n elements in C.
Another point is we need to represent the elements in the order of depth-first traverse.
So the overall representation should use at most 4n – 4 + n[lgn] bits.

Alternative solution: we can improve the above solution by using 2n-1 bits instead of
using 4n-4 bits.
In this method, we record the nodes (both internal nodes and leaves) of the Huffman tree
row by row, starting from the root of the tree. If the node has two children, we use 1 to
represent it; Otherwise, i.e. the node is a leaf, we use 0 to represent it.
For example, the representation of the Huffman tree below is 11000.

Since the Huffman tree with n leaves has 2n-1 nodes in total ( you can prove it by
induction of the structure of the tree), we need exactly 2n-1 nodes to represent the
Huffman tree.
It’s important to note that you can know when the bit string has reached the end of its
description of a Huffman tree.

(3) Apply your code to the tree in Figure 16.4(b), assuming that a = 0, … f = 5.
Solution:
We could represent the Huffman tree in Figure 16.4(b) using the following binary code:
01000101100010110111  000 010 001 101 100 011
^^^^^^^^^^^^^^^^^^^^^  ^^^  ^^^ ^^^ ^^^  ^^^  ^^^
The representation of tree    a     c    b     f     e     d

(4) Describe how to reconstruct the Huffman tree from your representation.
Solution:
Note that we do not know in advance what n is and thus the separation between the first
4n-4 bits and the rest.
Look at the bits one by one, we use the following method to reconstruct the Huffman
tree:
First, we create a root node with no children, and set it as the current node. We use
root_visited_times to record the number of times the root node is visited. We initialize
root_visited_times = 0.
1. If the current bit is 0 and the current node has no left child, create a left child for the

current node and traverse to the left child.
2. If the current bit is 0 and the current node has left child, create a right child for the

current node and traverse to the right child.
3. If the current bit is 1, traverse to the parent of current node. If the parent is root,

root_visited_times ++. The process is finished when root_visited_times = 2;
We can do the same for the alternative 2n-1 bits solution.
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4. The generalization of incrementing binary counters
Solution:
First we define

len(C): the length of bits of the counter C,
one(C): the number of bit “1” of the counter C.
Φ = Σ(3len(C) + one(C)), for all counter C in collection

Now let’s analyze the cost of operation add(C, C’). For simplicity, we only consider the
situation when len(C) >= len(C’).
As the hint given by professor Yap, the cost of add(C, C’) is the number of bits of C and
C’ that you need to look at. We define d be the difference of the number of bits of C and
C’ you need to look at. For example, if C = 10011101 and C’ = 110, then C+C’ =
10100011. The cost is 9, this is because you need to look at 6 bits of C and 3 bits of C’.
On the other hand, d = 6 – 3 = 3, as the above definition of d. We can compute the cost
with the following equation:

Cost = 2len(C’) + d
Now, let’s estimate ∆Φ, the increase in potential during the operation add(C, C’). Since
C’ is set to zero after the add(C, C’) operation, ∆Φ is charged by – 3len(C’) - one(C’).
On the other hand, Len(C) is increased at most by 1.
Let’s see how one(C) changed after the add operation. For the lowest len(C’) bits of the
counter C, the increased number of bit “1” is at most len(C’). For the next d bits of the
counter C, the decreased number of bit “1” is exactly d-1. So, in total,
∆Φ = -3len(C’) – one(C’) + 3*1 + len(C’) – (d-1) <= -2len(C’) – d + 4
The amortized cost for add(C, C’) operation therefore
Cost’ = Cost + ∆Φ <= (2len(C’) + d) + (-2len(C’) – d + 4) = 4.
Thus the amortized cost for add(C, C’) is a constant.
As we know from the textbook, the amortized cost for inc(C) is 2, a constant, too.
So we know the problem has an amortized cost that is constant per operation.

5. Problem 17-2, page 426
(a) Describe how to perform the SEARCH operation for this data structure. Analyze its

worst-case running time.
Solution:
Search k sorted arrays A0, A1, …, Ak-1 one by one until the searched element is found; for
each array Ai (0 <= I < k), do binary search.
The worst-case running time T(n) = 1 + 2 + … + k = k(k+1)/2 = O(k2) = O(lg2n)

(b) Describe how to insert a new element into this data structure. Analyze its worst-case
and amortized running times.

Solution:
How to insert a new element?
Check A0, A1, …, Ak-1 in order one by one, find the first empty array Ai.
If i = 0, insert the new element in A0 directly. Otherwise, sort all the elements in A0, …
Ai-1 and the inserted new element, put these sorted elements in Ai and empty A0, … Ai-1.

Worst case running time:
The worst case occurs when all A0, … Ak-2 are full and Ak-1 is empty before the insertion.
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We need to sort all the elements in A0, … Ak-2 and the new inserted elements and insert
them into Ak-1. We can merge these arrays one by one, the total running time is O(n).

Amortized running time:
Using the aggregate analysis, we observe that the cost to fill Ai is 2i, and Ai is filled after
every 2i+1 insertions (Actually after every 2 i insertions, Ai is filled, after another 2 i

insertions Ai is emptied, and so on). It means Ai will be filled [n/2i+1] times in total. So
the total cost for N insertions is
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(c) Discuss how to implement DELETE
Solution:
When deleting an element, say X, first perform search to locate the X.
If X is in A0, delete it directly from A0. Otherwise, we exchange the element X with an
element Y in jA , where jA  is the first non-empty array starting from A0.  If j=0, just

empty 0A .  Else, delete the elements in jA  and break jA  into 10 ~ −jAA .  Keep the order

in iA  and jA .


