
Homework 4 - Solutions

Fundamental Algorithms, Fall 2001

Professor Yap

November 28, 2001

1. (20 points) We will prove that the smallest AVL tree such that the deletion
of a node in T will cause two rotation events is of height= 4 and size= 12
(this is the smallest AVL tree of height 4). Hence it suffices to show that
deleting a node from an AVL tree of height 1, 2, 3 we do no more than
one rotation.

For an AVL tree of height 1:

1

2

1

2 3

a deletion of a node doesn’t determine any imbalance.

For an AVL tree of height 2 and 3 it is easy to see that after any deletion
at most one rotation is necessary to rebalance the tree.

So our next try is with the smallest AVL tree of height 4. One such tree
is:

1

2

3

4

5

6

7

8

9

12 10

11

If we delete 12 we get:

1



1

2

3

4

5

6

7

8

9

10

11

Now our tree is no more balanced at 9 so we do a left rotation at 9 and
we get:

1

2

3

4

5

6

7

8

10

9 11

Again we get an imbalance, this time at 1. We do a right rotation at 1
and we get:

2

3

4

5

6

1

7

8

10

9 11

And this time the tree is balanced. Hence after 2 rotations the tree is
balanced.

2. (15 points) We have 6 matrices with the following dimensions:

matrix dimension
A1 5× 10
A2 10× 3
A3 3× 12
A4 12× 5
A5 5× 50
A6 50× 6

The tables m and s are computed as follows:

m[1, 1] = 0 m[2, 2] = 0 m[3, 3] = 0
m[4, 4] = 0 m[5, 5] = 0 m[6, 6] = 0

2



since no multiplication is necessary to compute Ai.

m[1, 2] = 5× 10× 3 = 150 m[2, 3] = 10× 3× 12 = 360 m[3, 4] = 3× 12× 5 = 180
m[4, 5] = 12× 5× 50 = 3000 m[5, 6] = 5× 50× 6 = 1500

Also: s[1, 2] = 1, s[2, 3] = 2, s[3, 4] = 3, s[4, 5] = 4, s[5, 6] = 5

m[1, 3] = min
{
m[1, 2] + p0 · p2 · p3 = 150 + 180 = 330
m[2, 3] + p0 · p1 · p3 = 360 + 600 = 960

}
= 330

⇒ s[1, 3] = 2

m[2, 4] = min
{
m[2, 3] + p1 · p3 · p4 = 360 + 600 = 960
m[3, 4] + p1 · p2 · p4 = 180 + 150 = 330

}
= 330

⇒ s[2, 4] = 2

m[3, 5] = min
{
m[3, 4] + p2 · p4 · p5 = 180 + 750 = 930
m[4, 5] + p2 · p3 · p5 = 3000 + 1800 = 4800

}
= 930

⇒ s[3, 5] = 4

m[4, 6] = min
{
m[4, 5] + p3 · p5 · p6 = 3000 + 3600 = 6600
m[5, 6] + p3 · p4 · p6 = 1500 + 360 = 1860

}
= 1860

⇒ s[4, 6] = 4

m[1, 4] = min

 m[1, 3] +m[4, 4] + p0 · p3 · p4 = 330 + 300 = 630
m[1, 2] +m[3, 4] + p0 · p2 · p4 = 330 + 75 = 405
m[1, 1] +m[2, 4] + p0 · p1 · p4 = 330 + 250 = 580

 = 405

⇒ s[1, 4] = 2

m[2, 5] = min

 m[2, 4] +m[5, 5] + p1 · p4 · p5 = 330 + 2500 = 2830
m[2, 3] +m[4, 5] + p1 · p3 · p5 = 3360 + 6000 = 9360
m[2, 2] +m[3, 5] + p1 · p2 · p5 = 930 + 1500 = 2430

 = 2430

⇒ s[2, 5] = 2

m[3, 6] = min

 m[3, 5] +m[6, 6] + p2 · p5 · p6 = 930 + 900 = 1830
m[3, 4] +m[5, 6] + p2 · p4 · p6 = 1680 + 90 = 1770
m[3, 3] +m[4, 6] + p2 · p3 · p6 = 1880 + 216 = 2076

 = 1770

⇒ s[3, 6] = 4

m[1, 5] = min


m[1, 4] +m[5, 5] + p0 · p4 · p5 = 405 + 1250 = 1655
m[1, 3] +m[4, 5] + p0 · p3 · p5 = 3330 + 3000 = 6330
m[1, 2] +m[3, 5] + p0 · p2 · p5 = 1080 + 750 = 1830
m[1, 1] +m[2, 5] + p0 · p1 · p5 = 2430 + 2500 = 4930

 = 1655

⇒ s[1, 5] = 4

3



m[2, 6] = min


m[2, 5] +m[6, 6] + p1 · p5 · p6 = 2430 + 3000 = 5280
m[2, 4] +m[5, 6] + p1 · p4 · p6 = 1830 + 300 = 2130
m[2, 3] +m[4, 6] + p1 · p3 · p6 = 2220 + 720 = 2940
m[2, 2] +m[3, 6] + p1 · p2 · p6 = 1770 + 180 = 1950

 = 1950

⇒ s[2, 6] = 2

m[1, 6] = min


m[1, 5] +m[6, 6] + p0 · p5 · p6 = 1650 + 1500 = 3150
m[1, 4] +m[5, 6] + p0 · p4 · p6 = 1905 + 150 = 2055
m[1, 3] +m[4, 6] + p0 · p3 · p6 = 2190 + 360 = 2550
m[1, 2] +m[3, 6] + p0 · p2 · p6 = 1920 + 90 = 2010
m[1, 1] +m[2, 6] + p0 · p1 · p6 = 1860 + 300 = 2160

 = 2010

⇒ s[1, 6] = 2

Using the values in the s-table we conclude that the optimal way to mul-
tiply the given matrices is

(A1 ×A2)((A3 ×A4)(A5 ×A6)).

3. (15 points) We have : X = (0, 1, 0, 1, 1, 0, 1, 1, 0) and Y = (1, 0, 0, 1, 0, 1, 0, 1).
We denote by Xi the prefix of length i of the string X for each 0 ≤ i ≤ 9
and similarly Yj for each 0 ≤ j ≤ 8.

Trivially , c[0, j] = c[i, 0] = 0 for every 0 ≤ i ≤ 9 and 0 ≤ j ≤ 8.

Using the recurrence:

c[i, j] =
{

c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj .
max(c[i− 1, j], c[i, j − 1]) if i, j > 0 and xi 6= yj .

we fill the following table in row-major order. (the first row from left to
right, then the second row and so on).

j 0 1 2 3 4 5 6 7 8
i yj 1 0 0 1 0 1 0 1
0 xi 0 0 0 0 0 0 0 0 0
1 0 0 ↑ 0 ↖ 1 ↖ 1 ← 1 ↖ 1 ← 1 ↖ 1 ← 1
2 1 0 ↖ 1 ↑ 1 ↑ 1 ↖ 2 ← 2 ↖ 2 ← 2 ↖ 2
3 0 0 ↑ 1 ↖ 2 ↖ 2 ↑ 2 ↖ 3 ← 3 ↖ 3 ← 3
4 1 0 ↖ 1 ↑ 2 ↑ 2 ↖ 3 ↑ 3 ↖ 4 ← 4 ↖ 4
5 1 0 ↖ 1 ↑ 2 ↑ 2 ↖ 3 ↑ 3 ↖ 4 ↑ 4 ↖ 5
6 0 0 ↑ 1 ↖ 2 ↖ 3 ↑ 3 ↖ 4 ↑ 4 ↖ 5 ↑ 5
7 1 0 ↖ 1 ↑ 2 ↑ 3 ↖ 4 ↑ 4 ↖ 5 ↑ 5 ↖ 6
8 1 0 ↖ 1 ↑ 2 ↑ 3 ↖ 4 ↑ 4 ↖ 5 ↑ 5 ↖ 6
9 0 0 ↑ 1 ↖ 2 ↖ 3 ↑ 4 ↖ 5 ↑ 5 ↖ 6 ↑ 6

To build the LCS(X,Y) one has to follow the arrows from the lower right-
hand corner. In our case we get :

LCS(X,Y)=< 0, 1, 0, 1, 0, 1 >.

4



4. (25 points) Let X be the input sequence of numbers and Xi be the prefix
of X of length i. Suppose for each list Xi we keep a list Li = (a1 ≤
a2 ≤ . . . ≤ aj(i)) of numbers such that ak for each 1 ≤ k ≤ j(i) has the
properties:

(a) there exists a monotone subsequence of length k in Xi that ends in
ak.

(b) if there are more monotone subsequences of length k in Xi then ak
is the smallest endpoint of all such subsequences.

Note: a1 is the smallest element in the Xi. We start to compute the values
L1, . . . , Ln. Finally the length of Ln is the length of the longest monotone
subsequence in X. We have: L1 = x(1). Let’s try to find a way to derive
Li+1 from Li. We have: Xi+1 = Xi ∪ x(i + 1). Since the elements in
Li are in increasing order there exists a unique position l in Li such that
al ≤ x(i + 1) and l is maximum with this property (if x(i + 1) < a1 we
take l = 0).
If l < j(i) we replace al+1 by x(i+1).The idea behind this is that in Xi we
have a monotone subsequence of length l ending in al. Since al ≤ x(i+ 1)
we get a monotone subsequence of length l + 1 in Xi+1 with endpoint
x(i+1). On the other hand x(i+1) < al+1 (which is the smallest endpoint
of a monotone subsequence of length l in Xi) , hence we have to update
al+1 to the value x(i + 1). In order to be able to rebuild the longest
monotone subsequence (not only its length, but the path also) we keep a
pointer from x(i+ 1) to al (if l = 0, then this pointer is nil).
If l = j(i) then we add a x(i+1) to the end of the list Li and we get Li+1.
We keep also a pointer from x(i+ 1) to aj(i).
We claim that the complexity of the algorithm is O(n2). Indeed, for each
element x(i) in the list X we compare x(i) to at most j(i) ≤ i ≤ n
elements, hence for all n elements in X we have O(n2) comparisons. And
from this results our claim.

Optional Exercises

1. Let X and Y be the two input strings. Let Xi and Yj denote their respec-
tive prefixes of length i and j. Let D(Xi, Yj) be the edit distance between
Xi and Yj , but we don’t allow kill at this moment. We look for a recursive
definition for D(Xi, Yj). We have: D(Xi, Y0) = i·cost(delete) where Y0 is
the empty string and 0 ≤ i ≤ m. D(X0, Yj) = j·cost(insert) where X0 is
the empty string and 0 ≤ j ≤ n. For 0 < i ≤ m and 0 < j ≤ n we have
the recursive formula:

D(Xi, Yj) = min



D(Xi−1, Yj−1 + cost(copy) if x(i) = y(j)
D(Xi−1, Yj−1 + cost(replace)
D(Xi−1, Yj) + cost(delete)
D(Xi, Yj−1) + cost(insert)
D(Xi−2, Y j − 2) + cost(twiddle) if x(i) = y(j − 1)

and x(i− 1) = y(j)

5



Now to compute D(X,Y ) with all operations (including kill) we have the
formula:

EditDistance(X,Y ) = min(D(Xm, Yn),min
i

(D(Xi, Yn) + cost(kill)))

. We notice that we have to fill all the entries D(i, j) for all 0 ≤ i ≤ m
and 0 ≤ j ≤ n. So the space requirement is O(mn). In order to fill an
entry D(i, j) we need O(1) time, hence the running time is O(mn).

6


