Homework 4 Fundamental Algorithms, Fall 2001, Professor Yap

- DUE: Mon Nov 12, in class.
- 1. [20 POINTS] What is the smallest size of an AVL tree T such that the deletion of a node in T will cause two rotation events? Here a "rotation event" is either a single rotation or a double rotation. Give this number n, and draw such an AVL tree with n nodes; be sure to indicate the special node u such that if we delete u, the rebalancing will cause two rotation events.
- 2. Exercise 15.2-1, page 338. [**15 POINTS**] Matrix multiplication problem. You must display your working by filling the entries of a suitable matrix.
- 3. Exercise 15.4-1, page 355. LCS problem. [15 POINTS]
- 4. Exercise 15.4-5, page 356. Longest monotone subsequence. [25 POINTS] HINT: Let X be the input sequence of numbers, and X_i be the prefix of X of length i. Suppose we maintain a list $L_i = (a_1 \le a_2 \le \cdots \le a_{j(i)})$ of numbers where a_k (for $k = 1, \ldots, j(i)$) is the smallest number of X_i such that there exists a monotone subsequence of X_i of length k ends in a_k . The length of L_i is j(i) means that there are no monotone subsequence of X_i of length j(i) + 1. Note that $j(i) \le i$. How do you construct L_{i+1} from L_i ?

The following exercises are NOT to be handed in, but we encourage you to try to solve them.

1. Exercise 15-3, page 364. Edit distance of two strings. Do part (a) only. HINT: if the input strings are X and Y, let X_i and Y_j denote their respective prefixes of lengths *i* and *j*. Let $D(X_i, Y_j)$ be the edit distance between X_i and Y_j . Derive a recursive formula for $D(X_i, Y_j)$.