
Fundamental Algorithm Homework 3 Solution
by Xing Xia

1.  Exercise 7.4-5, page 159 (5+10+10+5 points)
Solution:
(i) What we can say about the ordering in A is that: the output array A can be divided into
subarrays, each of size < k. The ith subarray has entries which are less than the entries in
the (i+1)th  subarray, for any i > 0. However, within each subarray, we don’t assume any
ordering on the entries.
Remark: we don’t know where these subarrays’ boundaries are.

(ii) Please read the method used in textbook page 156-158 for comparison.
Let Xij = I{z i is compared to zj}
If the distance between i and j, |i-j|, is >k/3, then Pr{zi is compared to zj} can be bounded
as in (7.3) in textbook. When j – i <= k/3, let Rij  be the set {zh: h-j <= k/3}, let Lij  be the
set {zh: i-h <= k/3}.

|----------|-----|----------|
      Lij      i      j     Rij

Let ELij = the event i or j is picked before any element in Lij.
Let ERij = the event i or j is picked before any element in Rij.
It is easy to see
Pr(ELij) = O(1/k), Pr(ERij) = O(1/k), Pr(ELij U ERij) <= Pr(ELij) + Pr(ERij) = O(1/k)
Since {Xij=1} is a subset of ELij U ERij, E[Xij] = O(1/k).
            n-1   n-i                        k-1                                           n-1

E[X] = Σ ( Σ 2/(j+1) - Σ (2/(j+1) – 1/k) ) = Σ ( lnn – lnk + O(1)) = O(nlog(n/k)) Q.E.D.
            i=1   j=1                       j=1                                           i=1

Alternative method: Let T(n) be the running time of k-truncated quicksort for n
elements. Then according to the description of k-trucated quicksort, T(n) = 0 for any n <
k. For any n >= k
T(n) = n + [((T(0)+T(n-1)) + (T(1) + T(n-2)) + … + (T(n-1)+T(0))]/n
        = n + (2/n)[T(k) + T(k+1) + … + T(n-1)]
How to solve T(n)? Do some changes to the above equation.
nT(n) = n*n + 2[T(k) + T(k+1) + … + T(n-1)]                                  (1)
substitue n by n-1 in (1), we have
(n-1)T(n-1) = (n-1)* (n-1) + 2[T(k) + T(k+1) + … + T(n-2)]            (2)
(1)– (2),
nT(n) – (n-1)T(n-1) = 2n – 1 + 2T(n-1) =>
T(n)/(n+1) – T(n-1)/n = (2n-1)/n(n+1)  =>
T(n)/(n+1) – T(n-1)/n = 2/n – 3/n(n+1)
Define S(n) = T(n)/(n+1), then
S(n) – S(n-1) <= 2/n                                                   (3)
Substitute n by n-1, n-2, …k in (3), we have
S(n-1) – S(n-2) <= 2/(n-1)
…
S(k) – S(k-1) <= 2/k



Add the above n-k+1 inequations together, we have
S(n) < 2(1/n + 1/(n-1) + … + 1/k)
When n and k are infinite, we know that
1/1 + 1/2 + … + 1/n = logn  and 1/1 + 1/2 + … + 1/k = logk
So S(n) = T(n)/(n+1) <= 2(logn – logk) = 2log(n/k), i.e. T(n) = O(nlog(n/k))  Q.E.D.

(iii) The key idea is that in insertion sort, each element is moved at most k times in total.
Why? The reason is that each element can only move within the boundary of its own
subarray, and we know from part (i) that the size of each subarray is less than k.

(iv) Consider T(n) = C1nlog(n/k) + C2kn as a function of k instead of n. You can think of
n as a constant. To get the minimum value of T(k), the derivative of T(k), i.e. T’(k)
should be 0, i.e. T’(k) = -C1n/k + C2n = 0, so k = C1/C2. Q.E.D.

2. Exercise 9.1-1, page 185 (10 points)
Solution:
Set up a binary tree T with n leaves and height [lgn]. Place the numbers in leaves of T
and use it as a “tournament” to compute the largest. It’s easy to see we need n–1
comparisons to get the largest number. (Why? Image a tournament, in each round,
exactly one team is eliminated, we eliminate n-1 teams in total to get the champion).
Now, we can search along the path traced by the largest value to find which [logn]
elements ever compared with the largest number, since the second largest number must
be among those [logn] numbers. To find the “largest number among those [logn]
numbers”, we need [logn] –1 comparisons. So the total number of comparison is (n-1) +
([logn] – 1) = n + [logn] – 2.
Note: [m] is the smallest that is no less than m. Q.E.D.

3. Exercise 9.3-9, page 193 (10 points)
Solution:
For simplicity, assume the y-coordinates of points are distinct.
Generally, for any n, if n is even, we should put the main pipeline in the position such
that there are exactly n/2 points above it and n/2 points below it. Otherwise, suppose
there are na points above the main pipeline and nb points below it, where na is not equal to
nb. For example, if na > nb,  we can move the main pipeline up gradually until there are na

– 1 point above it and nb – 1 points below it. It’s easy to see the total length of spurs is
decreased, so this is a contradiction that we have chosen the optimal placement.
If n is odd, we should put the main pipeline right across the median point, i.e., there are
exactly (n-1)/2 points above it and (n-1)/2 points below it.
So, the problem is reduced to find the median number of an array, which can be
determined in linear  time (see proof in the textbook). Q.E.D.

4. Median analysis (10+20 points)
Solution:
(i) To show T(n) = Θ(n), we need to show two facts: T(n) = Ο(n) and T(n) = Ω(n). T(n) =
Ω(n) is trivial, since T(n) = n + T(c1n) + T(c2n). Now we use an induction argument to



show that T(n) = O(n). It’s easy to show T(n) >= 0. All we need is to show T(n) <=Cn for
all n > n0.
Without loss of generality, suppose T(n) <= C for all n <= n0. Note: C and n0 are arbitary
but given to us. So pick K1, such that T(n) <= K1n, for n = n0.
Fix any m.  Suppose T(n) <= Kn for any n such that m > n >= 1 (K is not determined
yet).  Let’s consider the situation when n = m.
T(m) = m + T(c1m) + T(c2m)
       <= m + Kc1m + Kc2m (by assumption and the fact c1m<m, c2m<m)
         = (1+ K (c1+c2))m
To let T(m) <= Km, we need to pick K such that 1+ K(c1+c2) < K, since c1+c2<1, we have
K >= 1/(1-(c1+c2)). Let K2 = 1/(1-(c1+c2)). We need to pick K = max(K1, K2).
By induction, we know T(n) <= Kn for all n >= n0. So T(n) = O(n).

(ii) First we guess T(n) = Θ(nlogn). Why? If you set c1=1/2 and c2=1/2, and use master
theorem to get the answer.  So this is a reasonable initial guess.
To prove T(n) = Θ(nlogn), we need to prove two facts: T(n) = Ω(nlogn) and T(n) =
Ο(nlogn).
First, we show T(n) = Ω(nlogn).
Suppose T(n) >= K1n, for any m > n >= n0. Now we use induction to show when n = m,
T(n) >= K1n.
T(m) = m + T(c1m) + T(c2m)
       >= m + c1m log(c1m) + c2mlog(c2m) (by assumption and the fact c1m<m c2m<m)
         = m + (c1+c2)mlogm + c1mlogc1 + c2mlogc2

         > mlogm (since c1+c2=1)
By induction, we know T(n) >= K1n for all n>=n0. So T(n) = Ω(nlogn).
Similarly we can show T(n) = Ο(nlogn). So T(n) = Θ(nlogn). Q.E.D.

5. Exercise 11.3-2, page 236 (10 points)
Implementing the division method for a radix-128 number.
Solution:
Let Nr = xrxr-1…x2x1 be the string of r characters, treated as a radix-128 number. If we
compute Nr mod m without any tricks, it’s easy to see the space needed to store Nr is
Θ(r), not a constant number of words of storage. Now let’s see how to compute Nr mod m
in a constant number of words of storage.
         r                                                                                                           r
Nr = Σ xi(128)i-1 = 128Nr-1 + x1, where Nr-1 = Σ xi(128)i-2
            i=1                                                                                                        i=2

Nr mod m = (128*Nr-1 + x1) mod m
                 = (128*(Nr-1 mod m) + x1) mod m
                               ^^^^^^^^^^ this is the trick
Here we use the fact that (a*b) mod m = ((a mod m) * b) mod m.
The above equation implies that to compute Nr mod m, we can first compute Nr-1 mod m;
Similarly to compute Nr-1 mod m, we can compute Nr-2 mod m, …The idea is to keep all
the intermediate results (Ni-1 mod m) in the same space. In step (r-i) of computation, we
store the value of Ni mod m, which only need one 32-bit word, and we use this value to
compute Ni+1 mod m. So all the bits we need to compute Nr are 7(for constant 128) +



32(for Ni mod m) + 7(for x1) + 32(for m), which obviously is a constant number of
words. Q.E.D.

6. Perfect Hashing (Section 11.5 page 245) (20 + 10 + 15 points)
Solution:
(i) Data structure (please refer to figure 11.6 in page 246 of the textbook)
Basically, we use an array T for the primary table, and for each secondary table, use a
separate array S. i.e.

entry{
int m;
int a;
int b;
int[] S;

}
T: array[n] of entry;

Hash search algorithm:
For a key k,

(1) Compute h(k), say, h(k) = i, where h is the primary hash function.
(2) Retrieve mi, ai, bi.
(3) Compute hi(k) = (aik+bi) mod mi

If T[i].S[hi (k)] = k, return “found”; else return “not found”

(ii) According to the hints given by professor Yap at
http://www.cs.nyu.edu/~yap/classes/funAlgo/01f/hw/hw3/hints.html, we can find a hash
function h* that maps U to {0, 1, … n2} such that h*(x) is different from h*(y) for all
distinct elements x, y in K, i.e. h* is perfect for K.
We add three arrays, C, L and S, where C is used to store all the ASCII strings of K; L is
used to store the lengths of the string where L[i] is the length of the ith string; S is used to
store the beginning position of  each string in array C. e.g. (Note that L is somewhat
redundant, since we can compute the length of some specific string by the information
give by array S. We just want to use L to make the solution clear).
K = {“this”, “that”, “ok”}
C = [‘t’, ’h’, ’i’, ’s’, ’t’, ’h’, ’a’, ’t’, ’o’, ’k’]
L = [4, 4, 2]
S = [1, 5, 9]
Now, the ith key (i=1,2,..n) has length L[i] and is stored in the subarray of C[S[i], …, S[i]
+ L[i] – 1].
The idea is you now use h*(k) instead of k (k is a ASCII string) as the parameter of
primary hash function h, and you store the index of the k in array C (e.g. In the example
above, the index of “this” is 1, the index of “that” is 2) instead of k itself into the
secondary hash table. Why? Suppose given a query string k, after you compute the hash
functions: h*, h and hi, you find the entry in the secondary hash table where k should be
stored. Suppose I (the index of some key) is now stored in that entry, all you need to do is
to compare the subarray C[S[i], …, S[i] + L[i] – 1] and query string k.

(iii) Question A: how many times do you expect to do this test until it is passed?



Apply Markov’s inequality, for random variable X, Pr{X>=t} <= E[X]/t, we have
     n-1

Pr{Σ|h-1(i)|2 >= 4n} <= 1/2
     i=0

According to the hint given by professor Yap, the expected number of times to do the test
is
        n-1

<= 1/Pr{Σ|h-1(i)|2 >= 4n} = 2.
        i=0

So, the times you expect to do this test is 2.

Question B: Give more detils about how you would implement this test, and say how
much time is needed for each test.
Repeat

T[i] = 0, for 0 <= i <= n-1.
For any k in K, T[h(k)]++;
S=0;
For i = 0 to n-1

S += T[i]2;
Until S <4n;
Obviously, the time for each test is O(n). Q.E.D.


