
Homework 2 - Solutions

Fundamental Algorithms, Fall 2001

Professor Yap

October 19, 2001

1. (a) (10 points) Since Hn = ln n+Θ(1) it is enough to show that Hn →∞
as n →∞.
For n = 2k we have:

H2k =
2k∑
i=1

1
i

= 1 +
1
2

+ (
1
3

+
1
4
) + (

1
5

+ . . . +
1
8
) + . . . + (

1
2k−1 + 1

+ . . . +
1
2k

)

≥ 1 +
1
2

+ (
1
4

+
1
4
) + (

1
8

+ . . . +
1
8
) + . . . + (

1
2k

+ . . . +
1
2k

)

= 1 +
1
2

+ +2 · 1
4

+ 4 · 1
8

+ . . . + 2k−1 · 1
2k

= 1 +
k

2
.

We want to prove that Hn is unbounded. Let M be any positive
number. We show that

Hn > M

for n ≥ n0 where n0 is a natural number which we will compute. Let
k0 = d2Me and n0 = 2k0 . Then we have

Hn0 ≥
k0

2
≥ M.

We know also that Hn+1 = Hn + 1
n+1 , ∀n ≥ 1 so it follows Hn+1 ≥

Hn, ∀n ≥ 1. Using this observation we get:

Hn ≥ Hn0 ≥ M, ∀n ≥ n0.

Hence, we proved that Hn is unbounded and defines an increasing
sequence. That means exactly Hn →∞ as n →∞.

(b) (10 points) We split Hn as follows:

1

Hn = (
bn 1

2 c∑
i=1

1
i
) + (

n∑
bn 1

2 c+1

1
i
)

≤ (1 + . . . + 1) + (
1

n
1
2

+ . . . +
1

n
1
2
)

< n
1
2 +

n

n
1
2

= 2 · n 1
2 .

Hence Hn = O(n
1
2).

2. (a) (5 points) It is easy to compute the probability Pr(An|B), this is
just 1

2n . But what you need is the “opposite”, Pr(B|An). In general,
for any two events A and B, if you need to compute Pr(B|A) from
Pr(A|B), you must use Bayes’s theorem:

Theorem 1 (Bayes) For two events A and B, both with nonzero
probability, we have:

Pr(B | A) =
Pr(B)Pr(A | B)

Pr(B)Pr(A | B) + Pr(B̄)Pr(A | B̄)
.

[It is very easy to remember how to derive this theorem; this will
also help you remember Bayes’ formula above.] Returning to our
problem, we have : Pr(B) = 1

2 , Pr(An | B) = 1, Pr(B̄) = 1
2 and

Pr(An | B̄) = 1
2n . Applying Bayes’s theorem we get:

Pr(B | An) =
1
2 · 1

1
2 · 1 + 1

2 · 1
2n

=
2n

2n + 1
.

(b) (5 points) After we flip a coin n times and get head each time, we
want to conclude that the coin is fake with probability 99%. In part
(a), we computed the probability that the coin is fake if we had only
heads after n flips. So we just compute a minimal n such that this
probability is at least 99/100. This means Pr(B | An) ≥ 99

100 , or

2n

2n + 1
≥ 99

100

and we get 2n ≥ 99 so n = 7.
This is essentially it. But actually, there are two cases to consider
in the overall analysis. We have solved the “hard” case but there is
also an easy case: while trying to flip the coin 7 times, if you see a
tail, you can immediately stop flipping and conclude that the coin is
the fair coin (this conclusion is 100% correct). But if you do not see
any tails after the 7th flip, the above calculations say that you can
conclude that the coin is biased, with only 1% chance of error.

2

3. (10+5+10 points) The probability space in the analysis of Quicksort, for
a fixed input of size n, is the set of all complete runs of the algorithm. Let
Sn be the sample space for this probability space.

Each run of Quicksort is determined by the positions of the pivots during
the execution of Quicksort. At the first step, the last element is taken as
pivot and can be placed on each of the n positions in the array of size n.
Let the first pivot be placed on the k-th position. Then the Quicksort will
run for an array of size k − 1 and on another array of size n − k. If ω is
a complete run and ω1 is the run on the array of size k − 1, ω2 is the run
on the other array of size n− k then we have:

Pr(ω) =
1
n

Pr(ω1)Pr(ω2).

Let us represent the entire space of possibilities by a single tree Tn. (The
set Sn is “embedded” inside Tn, as we shall see.) When n = 0 or n = 1,
there are no pivots to choose, and thus T0 and T1 consists of just a single
node with no children. For n > 1, the tree Tn is built recursively from
T0, . . . , Tn−1 as follows: at the root, there are n choices for the pivots and
once the pivot i is chosen, we have two children corresponding to Ti−1 and
Tn−i. Here is the picture:

Tn

∧
T0 Tn−1

∧
T1 Tn−2

. . . ∧
Tn−1 T0

Each ω ∈ Sn can be viewed as a subtree of Tn in which, at each root of
a subtree Tk, we choose a pivot between 1 and k; this gives a child of Tk

with 2 children – we must choose BOTH children of this node, and repeat
the process recursively.

For instance, when n = 4, we enumerate the following subtrees of S4:

k = 4: the pivot is in the last position:

4

3

2

1 0

0

0

4

3

2

0 1

0

0

1
24

1
24

3

4

3

0 2

1 0

0

4

3

0 2

0 1

0

4

3

1 1

0

1
24

1
24

1
12

k = 3: If the pivot is in the third position,

4

2

1 0

1

4

2

0 1

1

1
8

1
8

k = 2: If the pivot is in the second position,

4

1 2

1 0

4

1 2

0 1

1
8

1
8

k = 1: If the pivot is in the first position,

4

0 3

1 1

4

0 3

2

1 0

0

4

0 3

2

0 1

0

1
12

1
24

1
24

4

4

0 3

0 2

1 0

4

0 3

0 2

0 1

1
24

1
24

Hence, we see that |S4| = 14 when n = 4.

Let’s try to find upper and lower bounds on the size of |Sn|. We denote
Cn := |Sn|. We get that:

Cn =
n∑

i=1

Ci−1Cn−i

since a run is determined by the position i of the first pivot and the runs on
the resulting subarrays. We have: C0 = C1 = 1, C2 = 2, C3 = 5, C4 = 14.
These numbers Cn are called the Catalan numbers, and they also count
the number of binary trees with exactly n nodes. An exact formula is also
known:

Cn =
(

2n

n

)
1

n + 1
.

However, in this problem we do not assume you know this fact, and only
want you to estimate upper and lower bounds on Cn.

We observe that for n ≥ 2 Cn ≥ 2
n
2 (and this is true for 2,3,4,5). We

prove that by induction. We assume Ci ≥ 2
i
2 ∀1 < i < n. Hence

Cn ≥
n−2∑
i=3

2
n−1

2 ≥ (n− 4)2
n−1

2 ≥ 2
n
2 . (We take only n ≥ 6)

For an upper bound we prove by induction that Cn ≤ nn. It is true for
n = 1. We have:

Cn ≤
i=n∑
i=1

(i− 1)i−1(n− i)n−i ≤
i=n∑
i=1

ni−1nn−i = nn.

4. (10 points) We want to prove that Randomize-in-Place(A) produces a uni-
form random permutation, that means at termination this algorithm pro-
duces every permutation with probability 1

n! . So, let σ = (x1, x2, . . . , xn)
be any permutation of [1, . . . , n]. Let Ai be the event A[i] = xi, ∀i =
1 . . . n. Using the following formula:

Pr(A1∩A2∩. . .∩An) = Pr(A1)·Pr(A2 | A1) · · ·Pr(An | A1∩A2∩. . .∩An−1).

5

for any collection of events A1, . . . , An−1, we get

Pr(A = σ) = Pr(A[1] = x1, . . . A[n] = xn) = Pr(A1∩A2∩. . .∩An) =
1
n
· 1
n− 1

· · · 1
1

=
1
n!

.

5. (10 points) Let Ai be the event that P [i] is unique. Using the formula:

Pr(A1∩A2∩. . .∩An) = Pr(A1)·Pr(A2 | A1) · · ·Pr(An | A1∩A2∩. . .∩An−1).

for any collection of events A1, . . . , An−1, we get

Pr(all elements in P are unique) = Pr(A1 ∩A2 ∩ . . . ∩An)
= Pr(A1) · Pr(A2 | A1) · · ·Pr(An | A1 ∩A2 ∩ . . . ∩An−1)

=
n3

n3
· n3 − 1

n3
· · · n

3 − i

n3
· · · n

3 − (n− 1)
n3

.

Now let’s try to prove that the right side is at least 1 − 1
n . First, let us

observe that 1− i
n3 ≥ 1− n

n3 = 1− 1
n2 for all i = 1 . . . n− 1. So

Pr(all elements in P are unique) ≥
n−1∏
i=1

(1− 1
n2

).

Now we use the following remark: for a, b ≥ 0, we have (1 − a)(1 − b) ≥
(1− a− b). From this we can deduce easily that for all a1, . . . , an ≥ 0, we
have (1− a1) · · · (1− an) ≥ (1− a1 − . . .− an). Hence, we get:

Pr(all elements in P are unique) ≥
n−1∏
i=1

(1− 1
n2

)

≥ 1−
n−1∑
i=1

1
n2

= 1− n− 1
n2

≥ 1− n

n2
= 1− 1

n
.

Additional Questions

1 The idea is similarly to the one in the first problem. We are interested
only in the case c ≤ 1

2 since for c ≥ 1
2 we have Hn ∈ O(n

1
2) ⊆ O(nc). Take

` the smallest number such that `c ≥ 1(i.e. ` = d 1
c e. The idea is to split

the sum in ` parts as follows:

6

Hn = (
bncc∑
i=1

1
i
) + (

bn2cc∑
bncc+1

1
i
) + . . . + (

n∑
bn(`−1)cc+1

1
i
)

≤ nc +
n2c

nc
+ . . . +

n`c

n(`−1)c

= ` · nc.

Since ` is constant, we have proved Hn ∈ O(nc).

2 Here is a trick: use the fact that

1
k2

<
1

k(k − 1)
=

1
k − 1

− 1
k

.

Then
n∑

k=1

1
k2

< 1 +
∞∑

k=2

(
1

k − 1
− 1

k

)

= 1 + (
1
1
− 1

2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + · · ·

= 2.

If you want to use calculus, we could also use approximation by integrals
of a sum (textbook, page 1067). We take f(x) = 1

x2 and we get:

n∑
k=2

1
k2

≤
∫ n

1

dx

x2
= − 1

x
|n1= 1− 1

n
≤ 1.

Hence
∑n

k=1
1
k2 ≤ 1 + 1 = 2.

3 (a) We use the following approximations. On the one hand we have:

n∑
k=1

kr ≤
n∑

k=1

nr = nr+1.

On the other we have:
n∑

k=1

kr = 1 + 2r + · · ·+ bn
2
cr + dn

2
er + · · ·+ nr

≥
n∑

k=dn
2 e

(
n

2
)r

= (n− dn
2
e+ 1)(

n

2
)r

7

≥ n

2
(
n

2
)r

= (
n

2
)r+1

=
nr+1

2r+1

Since 2r+1 is constant, we get

n∑
k=1

kr = Θ(nr+1).

Another way to solve the problem is to use calculus. In this case we
take f(x) = xr. We get:

∫ n

0

xrdx ≤
n∑

k=1

kr ≤
∫ n+1

1

xrdx.

We compute the integrals and get:

nr+1

r + 1
≤

n∑
k=1

kr ≤ (n + 1)r+1 − 1
r + 1

.

Both bounds are in Θ(nr+1).

(b) We use the same idea as above.
For an upper bound we have:

n∑
k=1

lns k ≤
n∑

k=1

lns n = n lns n.

Let’s find now a lower bound. We have:
n∑

k=1

lns k = lns 1 + lns 2 + · · ·+ lnsbn
2
c+ lnsdn

2
e+ · · ·+ lns n

≥
∑

k=dn
2 e

lns(
n

2
)

= (n− dn
2
e+ 1) lns(

n

2
)

≥ n

2
lns(

n

2
)

=
n

2
lns n− n

2
lns 2

Both bounds are in Θ(n lns n).

8

Another solution with calculus would be:
We take f(x) = lns(x) and first we compute the indefinite integral
Is =

∫
lns xdx. We use integration by parts:

Is =
∫

(x)′ lns xdx = x lns x−
∫

x
s

x
lns−1 xdx = x lns x− sIs−1.

For s = 1 I1 = x ln x− x and then by induction we get:

Is = x lns x− sx lns−1 x + s(s− 1)x lns−2 x− · · ·+ (−1)ss!x.

We denote by F (y) =
∫ y

1 lns xdx = [x lns x − sx lns−1 x + s(s −
1)x lns−2 x−· · ·+(−1)ss!x] |y1= y lns y−sy lns−1 y+s(s−1)y lns−2 y−
· · ·+(−1)ss!y− (−1)ss!. We observe that F (n) ∈ Θ(n lns n). For our
sum we get:

F (n) =
∫ n

1

lns xdx ≤
n∑

k=2

lns k ≤
∫ n+1

2

lns xdx = F (n + 1)− F (2).

Hence our sum is in Θ(n lns n).

(c) We try to find an upper bound and a lower bound for
∑n

k=1 kr lns k.
For an upper bound:

n∑
k=1

kr lns k ≤
n∑

k=1

nr lns n = nr+1 lns n.

For a lower bound:
n∑

k=1

kr lns k = 1r lns 1 + · · ·+ (bn
2
c)r lns(bn

2
c) +

+ (dn
2
e)r lns(dn

2
e) + · · ·+ nr lns n

≥
∑

k=d n
2 e

(
n

2
)r lns(

n

2
)

= (n− dn
2
e+ 1)(

n

2
)r lns(

n

2
)

≥ (
n

2
)r+1 lns(

n

2
)

Both bounds are in Θ(nr+1 lns n).
Again the problem can be solved using calculus. We proceed similarly
as in (b), the only change is the computation of the integral.
We denote: Is =

∫
xr lns xdx. We have:

Is =
∫

(
xr+1

r + 1
)′ lns xdx =

xr+1

r + 1
lns x−

∫
xr+1

r + 1
s

x
lns−1 xdx =

xr+1

r + 1
lns x− s

r + 1
Is−1.

9

We have I1 = xr+1

r+1 ln x− xr+1

(r+1)2 . By induction one can get an exact
formula for Is. The dominant term is xr+1 lns x. The same argument
as above gives that our sum is in Θ(nr+1 lns n).

10

