1. Question 3.1-2 page 50 (15 points)

Show that for any real constants a and b, where b > 0 $(n+a)^b = \Theta(n^b)$

Solution:

To show $(n+a)^b = \Theta(n^b)$, we need to find constants c_1 , c_2 , n_0 such that

$$0 <= c_1 n^b <= (n+a)^b <= c_2 n^b$$

for all $n \ge n_0$, where c1 and c2 are positive.

Note that

$$n+a \le n+|a| \le 2n$$
, when $n > = |a|$

and

$$n+a >= n-|a| >= n/2$$
, when $n >= 2|a|$

So we have

$$0 \le n/2 \le n+a \le 2n$$
, when $n > 2|a|$

Since b > 0, when $1 \le n/2 \le n+a \le 2n$

$$0 <= (n/2)^b <= (n+a)^b <= (2n)^b$$
, when $n >= 2|a|$

i.e.

$$0 \le (1/2)^b n^b \le (n+a)^b \le 2^b n^b$$
, when $n > 2|a|$

Let

$$c_1 = (1/2)^b$$

 $c_2 = 2^b$

$$\begin{array}{l}
 c_2 = 2 \\
 n_0 = 2|a|
 \end{array}$$

we have
$$0 <= c_1 n^b <= (n+a)^b <= c_2 n^b$$
, so $(n+a)^b = \Theta(n^b)$. **Q.E.D.**

Note:

- (1) a could be negative
- (2) c_1 , c_2 are positive, 0 is not allowed.
- (3) c_1 , c_2 , n_0 are constants, so variable n is not allowed to appear in the expression of c_1 , c_2 , n_0 .
- (4) To prove this problem, you have to EXPLICITLY show the constants c_1 , c_2 , n_0 .

2. Question 3-2 page 58 (20 points)

Solution:

	A	В	O	Ω	Θ
a	lg _k n	n^{ϵ}	Yes	No	No
b	n ^k	c ⁿ	Yes	No	No
С	$n^{1/2}$	n ^{sin n}	No	No	No
d	2 ⁿ	$2^{n/2}$	No	Yes	No
e	n^{lgc}	$\mathrm{c}^{\mathrm{lgn}}$	Yes	Yes	Yes
f	lg(n!)	lg(n ⁿ)	Yes	Yes	Yes

- a) easy
- b) easy
- c) We know $-1 \le \sin n \le 1$. For some n_0 , any $n > n_0$, we can't determine the relationship between 1/2 and n.
- d) easy

- e) $\lg(n^{\lg c}) = \lg(c^{\lg n}) = \lg n \lg c$
- f) Sterling formula: $n! = (2\pi n)^{1/2} (n/e)^n (1+\theta(1/n))$ **Q.E.D.**

3. Question 4.3-2 page 75 (10 points)

Solution:

For
$$T(n) = 7T(n/2) + n^2$$
, we have
 $a = 7$, $b = 2$, $f(n) = n^2$ and
 $w(n) = n^{\log_b a} = n^{\log_2 7}$

For T'(n) =
$$aT'(n/4) + n^2$$
, we have
 $w'(n) = n^{\log_4 a}$

Since A' is asymptotically faster than A, we have

$$n_{4}^{\log_4 a} < n_{2}^{\log_2 7} = \log_4 a < \log_2 7 = \log_4 a < \log_4 49 = a < 49$$

So the largest integer value for a is 48. **Q.E.D.**

4. Question 4-1 (40 points)

Solution:

(a)
$$T(n) = 2T(n/2) + n^3$$

Use the master theorem

$$a = 2$$
, $b = 2$, $w(n) = n$ and $f(n) = n^3$

Clearly $f(n) = \Omega(w(n).n^{\epsilon})$, where $\epsilon=2$. And it's easy to verify that af(n/b) <= cf(n) for some constant c < 1. To see this, note that we need to choose c such that $2(n/2)^3 <= cn^3$; obviously we can choose $c = \frac{1}{4}$. Hence

$$\mathbf{T}(\mathbf{n}) = \Theta(\mathbf{n}^3)$$

(b)
$$T(n) = T(9n/10) + n$$

Use the master theorem,

$$a = 1$$
, $b = 10/9$, $w(n) = n^0 = 1$ and $f(n) = n$

Clearly $f(n) = \Omega(w(n).n^{\epsilon})$, where $\epsilon=1$. And it's easy to verify that af(n/b) <= cf(n) for some constant c < 1 and all sufficiently large n, so

$$T(n) = \Theta(n)$$

(c)
$$T(n) = 16T(n/4) + n^2$$

Use the master theorem,

$$a = 16$$
, $b = 4$, $w(n) = n^2$ and $f(n) = n^2$

Clearly $f(n) = \Theta(w(n))$. So

$$\mathbf{T}(\mathbf{n}) = \Theta(\mathbf{n}^2 \mathbf{lgn})$$

(d)
$$T(n) = 7T(n/3) + n^2$$

Use the master theorem,

$$a = 7$$
, $b = 3$, $w(n) = n^{\log_3 7}$ and $f(n) = n^2$

Clearly $f(n) = \Omega(w(n).n^{\epsilon})$, where $\epsilon > 0$. And it's easy to verify that af(n/b) <= cf(n) for some constant c < 1 and all sufficiently large n, so

$$\mathbf{T}(\mathbf{n}) = \Theta(\mathbf{n}^2)$$

(e)
$$T(n) = 7T(n/2) + n^2$$

Use the master theorem,

$$a = 7$$
, $b = 2$, $w(n) = n^{\log_2 7}$ and $f(n) = n^2$
Clearly $f(n) = O(w(n).n^{-\epsilon})$, where $\epsilon > 0$. So $T(n) = \Theta(n^{\log_2 7})$

(f)
$$T(n) = 2T(n/4) + n^{1/2}$$

Use the master theorem,

$$a = 2$$
, $b = 4$, $w(n) = n^{1/2}$ and $f(n) = n^{1/2}$

Clearly $f(n) = \Theta(w(n))$. So

$$\mathbf{T}(\mathbf{n}) = \Theta(\mathbf{n}^{1/2} \mathbf{lgn})$$

$$(g) T(n) = T(n-1) + n$$

Master theorem is not applicable, however, we can solve the equation directly as follows:

$$T(n) = n + T(n-1) = n + (n-1) + T(n-2) = ... = n + (n-1) + (n-2) + ... + 2 + 1 = n(n+1)/2,$$

So $T(n) = \Theta(n^2)$

(h)
$$T(n) = T(n^{1/2}) + 1$$

Master theorem is not applicable, however, we can use "domain transformation" as follows:

Let
$$k = log_2 n$$
, so that $n = 2^k$

Let
$$S(k) = T(2^k) = T(2^{k/2}) + 1 = S(k/2) + 1$$

Use the master theorem to S(k), we have

$$w(k) = 1$$

So
$$S(k) = \Theta(lgk)$$
, and $T(n) = S(lgn) = \Theta(lglgn)$ Q.E.D.

Additional Questions

1. Question 3.1-4, page 50

Solution:

- (a) Since $0 \le 2^{n+1} \le C_1 * 2^n$, for any $n > n_0 > 0$, $C_1 > 2$, $O(2^n) = 2^{n+1}$

2. Question 3.2-3, page 57

Prove that $lg(n!) = \Theta(nlgn)$

Solution:

According to sterling's approximation,

$$n! = (2\pi n)^{1/2} (n/e)^n (1+\Theta(1/n))$$

So
$$lgn! = nlgn + (1/2)*lgn - nlge + lg(2\pi)^{1/2} + lg(1+\Theta(1/n))$$

Choose $c_1=1/2$, $c_2=3$, $n_0=e^2$, we have

$$0 \le c_1 \text{nlgn} \le lg(n!) \le c_2 \text{nlgn}$$

is hold for any $n \ge n0$

So
$$lg(n!) = \Theta(nlgn)$$
 Q.E.D.

3. Question 4.3-1, page 75

Solution:

(a)
$$T(n) = 4T(n/2) + n$$

Since $w(n) = n^2$ and $f(n) = n$, $f(n) = O(w(n)n^{-\epsilon})$, where $\epsilon = 1$
So $T(n) = \Theta(n^2)$ **Q.E.D.**
(b) $T(n) = 4T(n/2) + n^2$
Since $w(n) = n^2$, $f(n) = n^2$, we have $f(n) = \Theta(w(n))$
So $T(n) = \Theta(w(n)lgn) = \Theta(n^2lgn)$ **Q.E.D.**

(c)
$$T(n) = 4T(n/2) + n^3$$

Since $w(n) = n^2$, $f(n) = n^3$, we have $f(n) = \Omega(w(n)n^{\epsilon})$, where $\epsilon = 1$. And it's easy to verify that $af(n/b) <= cf(n)$ for some constant $c < 1$ and all sufficiently large n , so $T(n) = \Theta(n^3)$ **Q.E.D.**