
HW2 Solution Set
1.(a) If both processes try to get into critical region, there are 6 statements must be

executed:

(a1) interested[0] = TRUE (b1) interested[1] = TRUE
(a2) turn = 0 (b2) turn = 1
(a3) while(turn == process and (b3) while(turn == process and

interested[1] == TRUE) interested[0] == TRUE)

• Case 1: Both processes called enter region function.

First, if process A went to step (a3) while process B still not yet executed (b1), then
process A will break out of the while loop immediately because interested[1] was still
FALSE. Thus A goes into the critical region first and B will be blocked by (b3)
because turn will be 1 and interested[0] was TRUE unless A leaves critical region.
The same argument holds if B went to step (b3) before (a1) was executed.

Second, if previous case does not hold, then both interested[0] and interested[1] are
TRUE before (a3) and (b3) were executed. Note turn must be either 0 or 1, depends
on which of (a2) and (a3) goes first. That one will leave the while loop after the turn
was set to the other process and use the critical region while the other one was blocked.

Note that either case the second process will have access to the critical region right
after the first one leaves because at that time interested[other] will become FALSE
for the second process. So it will not get blocked forever.

• Case 2: Only one process called enter region function.

In this case it will have the access of critical region immediately since interested[other]
will be FALSE.

Theorem 1. Peterson’s algorithm satisfies four conditions of critical region management.

Proof. The four criteria for critical region management will be:
Condition 1 : No two processes could be in critial region simultaneously.

This follows from Case 1.
Condition 2 : No assumption had been made about speeds or the number of CPUs.

This is true since every possible execution order of those 6 statements has been considered.
Condition 3 : No outside running process could block other processes.

This is ture because the interested value of outside running process is always FALSE.
Condition 4 : No process has to wait forever.

This follows from Case 1 and Case 2. 2

1



(b) Generalization of Peterson’s Algorithm:

#define FALSE 0
#define TRUE 1
#define N x /* x:number of processes */

int turn[N-1];
int interested[N]; /* All values were initially FALSE */

int count(void)
{

int cnt=0;
for(int i=0;i≤N;i++){

if(interested[i]){cnt++;}
}

}

void enter region(int process) /* process is 0..N-1 */
{

interested[process]=TRUE; /* show that you are interested */
for(int i=0;i≤count()-1;i++){

turn[i]=process; /* set flag */
while(turn[i]==process and i≤count()-1); /* null statement */

}
}

void leave region(int process) /* process: who is leaving */
{

interested[process]=FALSE;
}

At any time assume k processes have called enter region function, and m of them have
set its interested[] to TRUE. Then for these m processes, the return value of count function
will be greater or equal to m. Without loss of generality we may assume these m processes
were numbered 0, 1, 2, ...,m− 1.

Lemma 1. Process p could enter critical region only if all count function call returns m, i.e.
no other process set its interested[] to TRUE during this time, and p, turn[0], turn[1], ..., turn[m− 2]
is a permutation of 0, 1, ...,m− 1

Proof. If process p entered critical region, its i value must be count()−2 before the last loop
increment. Thus the reason it have left the last while loop must be turn[count() − 2] 6= p,

2



which means some other process already called turn[i] = process for i = count() − 2.
Similarly, the reason this process left the last while loop must be other process called turn[i] =
process for i = count() − 3, and so on. Note turn[a] 6= turn[b] for any a 6= b because if
turn[a] = turn[b] =process q for some a > b, then the loop index i of q would be a and
it has no way to set turn[b] again. So at least count() − 1 distinct processes was needed
to unblock p. There are only m − 1 processes, however, already proceeded to the for loop
while count() ≥ m all the time. This concludes count() = m when p just got the access
to the critical region. Also, since all turn[] were distinct, p, turn[0], turn[1], ..., turn[m− 2]
will be a permutation of 0, 1, ...,m− 1, which also means all other processes were blocked
by distinct layer of while loop, and cannot execute further statements before p leave critical
region or processes not yet set interested[] do so. 2

Theorem 2. No two process could use the critical region at the same time.

Proof. If one process, say p, was already using the region, it must have set its interest flag.
If any process q also wanted to use it, by lemma it needs at least m− 1 processes to unblock
it while only m− 2 available. (m processes exclude p and itself) 2

Theorem 3. No process has to wait forever.

Proof. This is equivalent to show that if no process were in the critical region, there must
be some process not yet blocked in while loop and have further statement to execute. If
some process calling enter region function but not yet set the interested flag, then this is
the desired step which would be executed. Thus we may assume all k processes have set
their interested[] to TURE. Now the count function will always return k. By pigeon hole
princeple, there exists p such that turn[i] 6= p, i = 0, 1, ..., k − 1. Thus process p will not be
blocked by while condition and has further statements to execute. 2

Corollary 1. Modified Peterson’s Algorithm is correct.

Proof. Here no assumption was made about speeds or the number of CPUs and interested
flag will always be FALSE for outside processes. Together with the above theorem this
completes the proof. 2

2. The reason that the state variable was set to HUNGRY was there should be a flag
telling other processes that ”I need to be woke up!”, so after the last one of its neighbors
finishing eating, it called the test function and woke it up. Note this algorithm do have a
problem, consider philosophers tried to get forks in the following order: 1, 2, 3, 1, 3, 1, 3, ...,
then there is chance that philosopher 2 never get woke up, which is called starvation.

3. If changing the order of commands, the condition in test function will always be
FALSE, thus the HUNGRY philosopher never got its chance to eat. Moreover, after the
state of original philosopher became THINK, no body had ways to know that its neighbor
is still HUNGRY .

3



4. Shortest Job First algorithm gives the minimum average response time. So the order
should be:

X, 3, 5, 6, 9 if X ≤ 3
3, X, 5, 6, 9 if 3 < X ≤ 5
3, 5, X, 6, 9 if 5 < X ≤ 6
3, 5, 6, X, 9 if 6 < X ≤ 9
3, 5, 6, 9, X if X > 9

5.(a) It is in fact the process sharing algorithm, i.e., the quantum is infinitely close to
zero such that it looks like every process has fair share of CPU.

So at the beginning, 5 processes are using CPU and the 2 minutes process actually needs
10 minutes to finish. After that, only 4 process are still running, and all of them already
done 2 minutes work. So the finishing time of 4 minutes process would be 10+(4−2)∗4 = 18
minutes. Now only 3 processes are running and all have completed 4 minutes work, so the 6
minutes process would take 18 + (6− 4) ∗ 3 = 24 minutes. Similarly, the 8 minutes process
needs 24 + (8 − 6) ∗ 2 = 28 and 10 minutes process needs 28 + (10 − 8) ∗ 1 = 30 minutes.
The answer would be 10+18+24+28+30

5
= 22 minutes.

(b) The running order will be B(6) → E(8) → A(10) → C(2) → D(4).
Turnaround time will be 6, 14, 24, 26, 30, respectively.
So the answer would be 6+14+24+26+30

5
= 20 minutes.

(c) The running order will be A(10) → B(6) → C(2) → D(4) → E(8).
Turnaround time will be 10, 16, 18, 22, 30, respectively.
So the answer would be 10+16+18+22+30

5
= 19.2 minutes.

(d) The running order will be C(2) → D(4) → B(6) → E(8) → A(10).
Turnaround time will be 2, 6, 12, 20, 30, respectively.
So the answer would be 2+6+12+20+30

5
= 14 minutes.

6. Answer = T0

8
+ T1

8
+ T2

4
+ T3

2
= 40

8
+ 20

8
+ 40

4
+ 15

2
= 25msec.

4


