
Basic Algorithms (V22.0310); Fall 2005; Yap

STUDY QUESTION (with SOLUTION)
Nov 30, 2005

Instructions

• Please study these questions carefully.

• They are designed to help you prepare for Quiz 2.

• They will form the basis for some questions in Quiz 2 (but I might ask
some unrelated questions as well).

• Quiz 2 will be based on Chapter 5 (Divide-and-Conquer) and Chapter 6
(Dynamic Programming).

Question 1

In a recurrence for a function T (n), I want you to think of n as a real number
(not only as natural number). I also allow you to choose ANY initial conditions
you like. E.g. you may choose T (n) = 0 for all n < 2. Of course you should
choose them so that your final result is as simple as possible.

Solve the following recurrences by Rote Method. Be sure to clearly indicate
the 4 steps (Expand, Guess, Verify, Stop).

• (i) T (n) = 7T (n/7) + n2.

• (ii) T (n) = 100T (n/10) + n.

Furthermore, please state the solution to (i) and (ii) that the Master Theo-
rem tells you. [This should confirm what your Rote Method tells you.]

SOLUTION:
(i)

T (n) = 7T (n/7) + n2 (1st expansion)
= 7[7T (n/49) + (n2/49)] + n2 (2nd expansion)
= 72T (n/72) + n2/7 + n2

= 72[7T (n/73) + (n2/74)] + n2/7 + n2 (3rd expansion)
= 73T (n/73) + n2/72 + n2/7 + n2

=
...

= 7iT (n/7i) +
∑i−1

j=0
nj/7j (GUESS : ith expansion)

= 7i[7T (n/7i+1) + (n2/72i)] +
∑i−1

j=0
nj/7j (i + 1st expansion)

= 7i+1T (n/7i+1) +
∑i

j=0
nj/7j (V ERIFIED)

= 7kT (n/7k) +
∑k−1

j=0
nj/7j (STOP : choose k = ⌈lg n⌉)

= n2
∑k−1

j=0
(1/7j) (T (n/7k) = 0, assuming T (x) = 0 for x < 1)

= Θ(n2) (since
∑k−1

j=0
(1/7j) = Θ(1))

1

The last step uses the geometric series,

∞
∑

i=0

xi =
1

1 − x

which is valid for any |x| < 1. If we choose x = 1/7, then we see that

1 ≤

k−1
∑

j=0

(1/7j) <

∞
∑

j=0

(1/7j) =
1

1 − 1/7
= 7/6).

In other words,
∑k−1

j=0
(1/7j) = Θ(1).

ADDITIONAL REMARKS: The geometric series is basically the ONLY se-
ries you need for simple analysis of algorithms. I call it ”mother of series”
because most simple infinite series can be derived from this one. It should be
committed to memory, and the best way to do this is to remember it’s simple
proof: just verify by direct multiplication!

(1 − x)

∞
∑

j=0

xj = (1 − x)(1 + x + x2 + x3 + · · ·)

= 1 + (x − x) + (x2 − x2) + (x3 − x3) + · · ·

= 1 + 0 + 0 + 0 + · · ·

= 1.

(ii)

T (n) = 100T (n/10) + n (1st expansion)
= 100[100T (n/102) + (n/10)] + n (2nd expansion)
= 1002T (n/102) + 10n + n
= 1002[100T (n/103) + (n/102)] + 10n + n (3rd expansion)
= 1003T (n/103) + 100n + 10n + n

=
...

= 100iT (n/10i) +
∑i−1

j=0
10jn (GUESS : ith expansion)

= 100i[100T (n/10i+1) + n/10i] +
∑i−1

j=0
10jn (i + 1st expansion)

= 100i+1T (n/10i+1) +
∑i

j=0
10jn (V ERIFIED)

= 100kT (n/10k) +
∑k−1

j=0
10jn (STOP : choose k = ⌈log10 n⌉)

= n
∑k−1

j=0
10j) (T (n/10k) = 0, assuming T (x) = 0 for x < 1)

= Θ(n2) (since
∑k−1

j=0
10j = Θ(n))

Again, the last step requires knowing how to sum a geometric series:

Sk =

k−1
∑

i=0

xi =
xk − 1

x − 1
(1)

2

where x > 1. Using x = 10, we get Sk = (10k − 1)/(10− 1) < 10k < 10n where
k = ⌈log1 0n⌉. Of course Sk > 10k ≥ n. Hence S = Θ(n).

ADDITIONAL REMARKS: In this case, since x > 1, we cannot replace the
FINITE geometric series by the INFINITE (mother) series of the part(i). The
finite geometric series is somewhat more complicated than the infinite (mother)
geometric series above. Nevertheless, you could derive this from the mother
series. If S∞ is the infinite series, then you notice that

Sk = S∞ − xkS∞.

Now you can plug in S∞ = 1/(1 − x) and solve for Sk to get the formula (??).
Again, we strongly recommend committing to memory (??) (perhaps through
this proof).

Question 2

Real Induction is a method to confirm a guessed bound on a recurrence function.
Consider T (n) in part (ii) of Question 1. Suppose that you guessed that T (n) =
Θ(n2). You would then reduce this to two separate statements to prove:

• (a) T (n) ≥ K1n
2, for some K1 > 0

• (b) T (n) ≤ K2n
2, for some K2 > 0

Please prove (a) and (b). BUT you may have to modify the form of your
initial guess in (a) or (b) in order to carry out your induction.

If you prefer (or in hindsight), you may be able to directly choose specific
constants (e.g., pick K1 = 7, or whatever works).

SOLUTION:
(a) In induction, you may assume that the statement P (n) that you want

to prove is true for smaller values of n. In the present case, the statement P (n)
is “T (n) ≥ K1n

2” for some K1 > 0.
Now, it is clear that you have no hope of reaching the desired conclusion in

this way. As hinted, you need to modify the guess. The trick is to add a lower
order term (so it does not affect our main conclusion that T (n) = O(n2)). Let
us try to prove the modified statement P (n) ≡ T (n) ≤ K1n

2 −Cn (for some C
to be specified):

T (n) = 100T (n/10) + n
≤ 100[K1(n/10)2 − Cn] + n (by induction hypothesis)
= K1n

2 − 100Cn + n
= K1n

2 − 100n(C − 1/100)
≤ K1n

2 − Cn (provided C ≥ 101/100).

Thus we have shown what we need: we must choose K1 and C so that they
satisfy the initial conditions (but we normally do not specify these).

(b) This is simpler, as there is no need to modify our original hypothesis.

3

Question 3

Consider the farthest pair problem: given a set S = {p1, . . . , pn} of points,
compute the maximum distance d(pi, pj) between any pair of points.
(a) Does the ideas of the closest pair problem apply to this setting?
(b) Give a simple algorithm to solve this problem. You must write a program
that is very close to a proper Java Program. My reason for this is not to test
your Java ability, but to force you to reduce all operations to simple primitives.
(c) Analyze its running time.

SOLUTION:
(a) Apparently not. For if you recursively split the set S into two halfs S0, S1

by a vertical L, and discovered that the maximum pairwise distance on each
side is δ, you cannot conclude that the pairs from S0 × S1 to be searched must
lie OUTSIDE the strip of width δ centered about L. Why? It seems that you
still have to check Ω(n2) pairs. Since the original problem could be solved in
O(n2) time, it seems that you have not really reduced the problem.

(b) Assume that dist(p, q) computes the distance between two points p and
q. This is easily implemented and takes O(1) time.

FARTHEST PAIR(S)
INPUT: S = S[0..n − 1] is an array of points
OUTPUT: D, the distance between the farthest pair
D = 0
for (i = 0; i < n − 1; i++)

for (j = i + 1; i < n − 1; j++)
D = max(D, dist(S[i], S[j]))

Return(D)

(c) The double for-loop takes Θ(n2) time.

Question 4

You need to be able to do hand simulations of Dynamic Programming problems.
You need to set up the appropriate matrices and fill in the entries by hand.

I typed “ocruent” to Google and it asked if I meant “current”. Compute the
alignment distance between the two strings. Assume that the gap parameter is
δ = 3 and the cost of a mismatch is given by

αx,y =















0 if x = y,
1 if x, y are both consonants,
1 if x, y are both vowels,
2 else.

SOLUTION:

4

Let X, Y be the two strings and OPT (i, j) denote minimum cost to align
Xi and Yj where Xi is the prefix of X of length i. Assume |X | = m, |Y | = n.
Then OPT (i, j) = 3(i + j) if ij = 0. Otherwise,

OPT (i, j) = min{α(xi, yj)+OPT (Xi−1, Yj−1), 3+OPT (Xi−1, Yj), 3+OPT (Xi, Yj−1)}.

We now use this rule to fill in the following array:

ǫ c u r r e n t

ǫ 0 3 6 9 12 15 18 21
o 3 2 4 7 10 13 16 19
c 6 3 4 5 8 11 14 17
r 9 6 5 4 5 8 11 14
u 12 9 6 7 6 6 9 12
e 15 12 9 8 9 6 8 11
n 18 15 12 11 10 9 6 9
t 21 18 15 14 13 12 9 6

So the alignment cost for the 2 strings is 6.
Food for Thought: In filling in this table for some other X and Y , suppose

you see two consecutive entries in a row with values 123 and 119. Is something
wrong?

Question 5

Longest path in an ordered graph problem (p.314 of text).
SOLUTION:
(a) You can get a counter example from Figure 6.29 by deleting one of the

edges, and modifying another one.
(b) Let Gi be the subgraph of the input graph induced by the first i vertices.

So Gn is the original graph. If OPT (i) is the length of the longest path in Gi,
then OPT (i) = 1 + max{OPT (j) : (vj , vn) ∈ E}. What is the running time for
this solution?

Question 6

Not all inversions are equal! The book discussed the problem of counting the
number of inversions in a permutation. E.g., The sequence S0 = (1, 2, 3, 4) has
no inversions, but sequence S1 = (2, 1, 4, 3) has two inversions, namely the pairs
{1, 2} and {3, 4}. Now, the sequence S2 = (2, 3, 1, 4) also has two inversions,
namely the pairs {1, 2} and {1, 3}.

I propose to distinguish between the quality of the inversions of S1 and S2.
The inversions {1, 2} and {3, 4} in S1 are said to have weight of 1 each, so the
weighted inversion of S1 is W (S1) = 2 = 1+1. But for S2, the inversion {1, 2}
has weight 2 while inversion {1, 3} has weight 1. So the weighted inversion is

5

W (S2) = 3 = 2+1. Thus the “weight” measures how far apart the two numbers
are.

In general, let W (S) denote the weighted inversion of an arbitrary sequence
S = (a1, . . . , an). A pair {ai, aj} is an inversion if i < j and ai > aj . The
weight of this inversion is j − i. Hence W (S) is the sum over the weights of all
inversions.

• (a) Design an algorithm to compute W (S). I.e., describe the ideas leading
to your algorithm and explain any data structures, etc.

• (b) Write Java-like code to implement (a).

• (c) Analyze its running time.

SOLUTION:
(a) As before, we do divide and conquer. We modify the Merge-and-Count(A, B)

subroutine in Chapter 5 (p.224): Assume that A[1..n], B[1..n] are arrays in
sorted (non-decreasing) order: A[i] ≤ A[i + 1] and B[i] ≤ B[i + 1].

We also maintain arrays APOS[1..n] and BPOS[1..n] telling us the original
positions of the elements in A and B. I.e., A[i] was originally the APOS[i]-th
element in A.

Merge-and-Count(A, B), we again have a counter C initialized to zero. Firse,
we compute the cumulative distance D of all the elements in A from its final
position n. More precisely, let

D =

n
∑

k=1

(n − APOS[k]).

Now, whenever we output the ith element of A, we decrement D using the rule

D− = (n − APOS[i]).

Whenever we output the jth element of B, we increment C using the rule

C+ = D + (n − i + 1) × BPOS[j].

It is easy to see that C is keeping track of the total weight of inversions.
(b) Keep the Sort-and-Count algorithm in page 225. We just have to re-

implement Merge-and-Count as described in (a).
(c) COMPLEXITY: The Merge-and-Count routine is O(n) as before. Hence

the recurrence is T (n) = 2T (n/2) + n with solution Θ(n log n).

6

