Basic Algorithms (V22.0310); Fall 2005; Yap

HOMEWORK 5
Date Due: Wed Nov 23

Instructions

e Please write clearly. If you have poor handwriting, please consider printing your solutions. WE
CANNOT GRADE WHAT WE CAN'T READ.

e Please start early, especially since there is programming involved.

Question 1

(20 Points)

The textbook (chap. 5, p.229) gives a bound of 15 for the merge part of divide-and-conquer algorithm
for closest pair problem. Let us give an improved bound.

Let S be the subset of input points within § from the line L (p.229 of Text). Here § is the minimum
distance between any two input points on either side of L. Suppose sp,sr € S achieves the minimum
distance in S, i.e., d(sg,sr) = min{d(s,s’) : s, € S,s # s'}. Assume that d(sr,sr) < . Let B be the
rectangular box defined by the horizontal lines through sz, and sg, and by the vertical lines z = z* — § and
r=ax*+0.

(a) Let S’ = SN B. Show that |S’| < 24/7. HINT: Let B’ be the expansion of the box B by §/2 all around.
How many pairwise-disjoint balls of radius §/2 can fit inside the expanded box B'?
(b) Conclude that the number 15 can be improved to 7.

)

Question 2

(Recurrences, 40 Points)

(a) Use Rote method to solve T'(n) = 8T (n/2) + n?.

(b) Use Induction method to prove that your bound in the Rote method is truly an upper bound.

(c) Recall the Master Theorem discussed in class: Let T'(n) = aT'(n/b) + n* where a > 0, b > 1 and k
are constants. Let w = log, a. Then the theorem says:

O(nk) it k> w,
T(n)=4{ O(n") it k<w,
O(nklgn) if k=w.

Suppose you have two strategies to solve a problem: you can either divide it into 3 subproblems each of size
n/2 or divide it into 2 subproblems each of size n/3. The work to combine subproblems is n in both cases.
What is a better solution?

(d) Same as part (c), except that the work to combine subproblems is now n?. Whis is a better solution?

Question 3

(Karatsuba, 50 Points)

The sizes of the primitive datatypes are fixed by the Java standard, e.g., the number type int is 32 bits.
Many applications need large numbers beyond the sizes of the primitive number types. E.g., in cryptography
and computer security applications, we routinely perform integer arithmetic on integers with up to 1024 bits
or more. Java provides the class BigInteger to support such applications. In addition to the standard
arithmetic operations of add, subtract, multiply and integer division, it support methods to perform bitwise

operations such as AND, OR, XOR, NOT, left and right shifts. There are also methods to generate random
Biglntegers. We give you various sample programs so that you can easily modify it to accomplish the tasks.

e (a) Please implement Karatsuba’s multiplication algorithm using the BigInteger class. The only
rule is that you MUST NOT use the multiplication, division, reciprocal or squaring functions in the
biginteger class. What you can (and SHOULD) use are its addition, subtraction and shifting functions.
Your main class should be called Karat (so your main file should be Karat. java).

e (b) The second part of this question is to write a program called Timing.java. Suppose a program
has time complexity T (n) = Cn® for some constants C' > 0 and e. Call C and e the constant and
exponent of the program. For instance, the exponent of of Karatsuba’s algorithm should be Ig3
or about 1.58. But the constant depends on implementation details. We want you to estimate the
exponent and constant of two programs:

(A) your implementation of Karatsuba’s algorithm, and
(B) Java’s multiplication algorithm in BigInteger.

Your Java program called Timing. java should take four optional arguments and outputs as follows:

% Timing [noPoints] [stepSize] [startSize] [noTrials]
> (A) exponent = 1.59, constant = 2001
> (B) exponent = 1.29, constant = 183

where lines (A) and (B) illustrate the kind of outputs we expect. Here is an explanation of the
arguments:

[noPoints] = number of random pairs (X,Y) of BigIntegers
you want to generate. Both X and Y
are supposed to have the same number of bits.
[noTrials] = for each pair (X,Y), this is the number
of times you want to multiply them
using both algorithms (A) and (B)
[stepSize] = the increase in the bit sizes of
successive pairs (X,Y)
[startSize] = the bit size of the first pair (X,Y)

All these arguments are optional, and you must supply default values when the user does not specify
them. The reason you need [noTrials] is because if your computer is very fast and the bit size is
not that large, your time (which is in milliseconds) may not be accurate! Hence you need to execute
a multiplication many times and then take their average.

Of course, in practice almost no program has time complexity that is exactly of the form T'(n) = Cn®.
So in running your Timing program with different parameters, you may not get consistent values for
e and/or C. But you should get a consistent exponent when n gets sufficiently large. You will first
need to determine the running time taken by the programs (A) and (B) on various pairs (X,Y) of
BigIntegers. For this purpose, you will use BigInteger’s ability to generate random numbers, and Java’
function to return the current time in milliseconds:

long startTime = System.currentTimeMillis()

BigInteger Z = mult(X,Y); // the code you want to time
long endTime = System.currentTimeMillis()
System.out.println("Time taken = " + (endTime - startTime));

We provide examples of these timing usage.

There are two problems with this approach: the time we measure is "user time”, not the time the
system actually use to run your code. So if you are in a time-sharing environment, try to do your
experiments when there are not too many users on the system. Another possible source of error is

that Java may do garbage collection between startTime and endTime. You just have to live with this
possibility.

FINALLY, how do you estimate the exponent and constant from the running times you have collected?
The idea is to take the logarithm of the time complexity function: hence we have

log(T(n)) = log(C) + e. log(n)
y c + e.x

which is a linear equation with slope e and y-intercept given by c¢. Our problem becomes one of finding
the best straight line to "fit” the data. For this purpose, we will provide you a function

double[] fitLine(double[] x, double[] y)

where x,y are vectors of the same length and fitLine returns a vector of lenth 2 containing the
values ¢, e that represents a line with the least squares error. This function is found in the program
fitLine. java.

WHAT TO HAND IN: As usual, please submit (a) your program files, (b) README file, and (c¢) a
Makefile. Send these as a single TAR file to the grader, with cc’s to me and the T.A. Your Makefile should
have these targets:

(1) The default target ("make”) is to compile all your programs.
(2) Typing "make a” will test your Karatsuba program of part (a).
(3) Typing "make b” will run your timing program to show us the exponent for your Karatsuba multiplication
(you should pre-select the parameters so that this will be self-evident).
(4) Typing "make ¢” will show us the exponent for Java’s multiplication.
Remember the rule that if your programs do not compile, you get zero points.

