
Homework 4 Solutions

Chris Wu

The following solution were prepared by me (Chris), so if you find a typos email me at
wu@cs.nyu.edu and not the professor. One comment is that these solutions are complete
and contain many steps that are written for explanatory purposes so don’t worry if you
didn’t write everything here.

Question 1

This is the solution for the non-programming portion. A good approach to this would be
a greedy algorithm. For any cell tower, the range of houses it covers is an 8 mile interval.
We move through the houses from left to right. The idea is that when we come upon an
unmarked house, we’ll place a tower 4 miles to it’s right. Then we’ll mark all houses that
fall in that 8 mile range.

Notice that we don’t really need to keep a boolean array of variables. As long as we don’t
move left, we can implicitly say that any house on our left has been ‘processed’ and those
are the right are not.

Assume the input is an array H of the n house locations ordered left to right. The output will
be the queue of locations for the cell towers, L. Here’s the pseudocode:

i = 0
while i < n do

L.enqueue(H[i] + 4)
x = H[i]
while H[i] < x + 8 do

i + +
end while

end while
What’s the running time? It’s clearly linear since we do only constant work for each iteration
and we only make one pass through the data.

1



Question 2

Here are the caches during the 3 times of eviction policies:
Request Farthest-in-future FIFO Queue FIFO with hit moves

d abc abc abc
a abd bcd bcd
d abd cda cda
b abd cda cad
a abd dab adb
c abd dab dba
a acd abc bac
e acd abc bca
d ecd bce cae
b ecd ced aed
c ecb edb edb
e ecb dbc dbc
f ecb bce bce
a efb cef cef
d eab efa efa
b edb fad fad
e edb adb adb
a edb dbe dbe

The Farthest-in-future policy causes 8 misses. The FIFO causes 15 as does the modified
FIFO.

Question 3

Part a)

Here is G13:

1

2

3

4

5

6

7

8

9

10

11

12

13

2

3

5

7

11

13

2

3

4
5

6

2

3

4

2

3

2

2

The vertex names are in black, the edges weight in red. The odd placement was simply to
make it planar and more readable.

2



Part b)

Here is the graph for G18:

1

2

3

4
5

6

7

8

9

10

11

12

13

2

3

5

7

11
13

2

3

4

5

6

2

3

4

2

3

2

2

14

15

16

17

18

17
2

8
7

2

4

9

3

6

2

3

5

The matrix for Prim’s algorithm is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
X 2 3 5 7 11 13 17

X 2 3 4 5 6 7 8 9
X 2 3 4

X 2
X

X 2 3 5 6
X 2 3

X
X 2

X
X 2 3

X
X

X 2
X

X
X

X

3



Question 4

Part a)

This will do

2

1

-2A

B

C

If we run Dijkstra’s algorithm on this starting at A, the algorithm will prematurely declare
that AC is the shortest path.

Part b)

Nothing. The problem with negative edges in Dijkstra is that the algorithm makes an as-
sumption about paths it has not yet seen. Namely, that they are longer. This is a correct
assumption if the edges are non-negative.

Prim’s doesn’t have that problem since it makes decisions based on the partial order of
the edges and whether or not their addition creates cycles.

Another way to see that Prim’s is ok with negative edge weights is to add a giant con-
stant to all the edge weights. If we add a constant larger than the absolute value of the
smallest negative edge then we’ll have a non-negative weighted graph. Prim’s handles that
fine and return an MST that will be the same MST and for original graph we had.

Part c)

A B C D E F G
0 ∞ ∞ ∞ ∞ ∞ ∞
X 7 1 10 13

X 11 17
X 9 16

X 16
X 15

X
X

Question 5

h e l o ! “ ” t i s m y w r d
2 2 5 2 2 5 3 3 2 1 1 1 1 1

All the frequencies are divided by 31 but since they’re all over the same denominator,

4



I’ll just ignore them.

I’m not going to draw all the tree, just the sets of nodes of the forest as they grow. This
is only one possible solution since all ties can be broken arbitrarily leading to many many
possible solutions.

{h}{e}{l}{o}{!}{“ ”}{t}{i}{s}{m}{y}{w}{r}{d}
{h}{e}{l}{o}{!}{“ ”}{t}{i}{s}{m}{y}{w}{r,d}
{h}{e}{l}{o}{!}{“ ”}{t}{i}{s}{m}{y,w}{r,d}
{h}{e}{l}{o}{!}{“ ”}{t}{i}{s}{m,y,w}{r,d}
{h}{e}{l}{o}{!}{“ ”}{t}{i}{m,y,w}{s,r,d}
{h,e}{l}{o}{!}{“ ”}{t}{i}{m,y,w}{s,r,d}
{h,e}{l}{o,!}{“ ”}{t}{i}{m,y,w}{s,r,d}
{h,e}{l}{o,!}{“ ”}{t,i}{m,y,w}{s,r,d}
{h,e}{l}{o,!}{“ ”}{t,i}{m,y,w,s,r,d}
{h,e,o,!}{l}{“ ”}{t,i}{m,y,w,s,r,d}
{h,e,o,!}{l,“ ”}{t,i}{m,y,w,s,r,d}
{h,e,o,!}{l,“ ”}{t,i,m,y,w,s,r,d}
{h,e,o,!,l,“ ”}{t,i,m,y,w,s,r,d}

By this run of the algorithm, we’d get this tree:

2
H

2
E

5
L

2
O

2
!

5
" "

3
T

3
I

2
S

1
M

1
Y

1
W

1
R

1
D

4 4

610
8

18

2 2

43

7

13

31

5


