
Homework 2 Solutions

Chris Wu

The following solution were prepared by me (Chris), so if you find a typos email me at
wu@cs.nyu.edu and not the professor. One comment is that these solutions are complete
and contain many steps that are written for explanatory purposes so don’t worry if you
didn’t write everything here.

Question 1

First let’s find out how many ops we can do in one hour. So 1 hour is 60 minutes , which
is 3600 seconds. So we can do, at most, 3.6 · 1013 operations in one hour. The rest of the
question is just solving for n in each instance.

• 6000000

• 33019.2725

• 60000

• ≈ 9.06 · 1011

• ≈ 45

• ≈ 5.49

Aside: I just discovered that you can put “third root of 5” into google and it will give you
3
√

5. Is there anything google can’t do?

Question 2

First, let’s notice there’s a typo in the book. The third function is labeled g4; just in case
this causes confusion.

So the easiest way to do this is to take base 2 logs across the board. The important thing to
note is that you’re no longer working with O(·). So below we’ll say that f ≤ g when there
is a constant such that f ≤ g + c. This c corresponds to the multiplicative constant if we
did this with O(·). This leaves you with:√

log n, n,
4
3

log n, log n + 3 log log n, (log n)2, 2n, n2

Now, some structure should be familiar to you, namely:

4
3

log n ≤ n ≤ n2 ≤ 2n
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Now, for the last three. Let’s first consider
√

log n. Taking square roots certainly makes
this smaller than 4

3 log n. So we get:√
log n ≤ 4

3
log n ≤ n ≤ n2 ≤ 2n

What about log n+3 log log n? Well, it’s smaller than 4
3 log n because 4

3 log n = log n+ 1
3 log n

and 1
3 log n is bigger than 3 log n log n. It’s clearly large than

√
log n though. So we have:√

log n ≤ log n + 3 log log n ≤ 4
3

log n ≤ n ≤ n2 ≤ 2n

Finally, we have the term (log n)2. It’s obvious that it’s less than linear. Is it bigger than
4
3 log n? Yes. It’s same comparison as 4

3x ≤ x2.√
log n ≤ log n + 3 log log n ≤ 4

3
log n ≤ (log n)2 ≤ n ≤ n2 ≤ 2n

Translating back to the original functions we have:

2
√

log n ≤ n(log n)3 ≤ n
4
3 ≤ nlog n ≤ 2n ≤ 2n2

≤ 22n

Question 3

Part a)

Let’s first consider having just one jar. It’s pretty clear that with only one jar you can’t
do better than simply going from the bottom of the building up and dropping the jar from
every floor.

For two jars, the trick to beating O(n) time is to use the first jar to find a small inter-
val for the second jar. Drop the first jar from the

√
nth floor. If it breaks the do a simple

scan from the first floor to the
√

nth one. If it doesn’t break then proceed to the 2 ∗
√

nth
floor. If it breaks, you only need to start from the (

√
n + 1)st floor.

There are at most
√

n “chunks” of
√

n floors. So what’s the worst case for this? Well,
if the highest floor at which the jar breaks is the n − 1st one, then this approach will take√

n +
√

n = 2
√

n time. The first
√

n corresponds to the dropping of the first jar all the way
up. The second

√
n corresponds to searching the last

√
n or so floors for the n− 1st.

Part b)

The generalization of this question turned out to be a little more tricky than anticipated.

The idea is that if you have k jars, you can look at groups of floors of size n
k−1

k . Then,
using one jar and time at most n

1
k , you can reduce you search problem to one of size n

k−1
k

and k − 1 jars.

So, in general, using one jar you reduce a problem of size n
k−i−1

k to one of size n
k−1

k in
time n

1
k . So, in total, it will take kn

1
k which is O(nk) since k is a fixed constant.
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Question 4

Part a)

Let’s recap what we’re trying to show: we want a function f of h such that for any tree
of height h, the number of nodes n is bound by f(h). If we draw complete trees of height
0, 1, 2, 3, we’ll get sizes 1, 3, 7, 15. Let’s try and show that f(h) = 2h+1 − 1.

For the base case we start at h = 0. Clearly a tree of this height can’t have more than
1 node. So 1 ≤ 20+1 − 1. So we’re finished the base case.

For the induction assume that all trees of height less than k are bounded by our function.
What happens when we have a tree of height k, say T? Well, T will have a root and it’s two
children will be roots of subtrees of maximal height k−1. By our inductive hypothesis, these
two children will have at most 2k−1 nodes each. So size(T ) = 1+size(left)+size(right) ≤
1 + 2(2k − 1) = 2k+1. This completes the induction.

Part b)

This question is a little easier. We want a function f of n such that for a tree with n nodes,
it can’t be taller than h. Here f(n) = n− 1 is the answer. It corresponds to the case where
the tree is just a chain of nodes.

Question 5

Part a)

As suggested, we first show that i) nk � nk′ . For domination we need to show there is a
positive C as well as a starting point n0 such that

nk ≤ C · nk′ ∀n > n0

I choose C = 1 and n0 = 1. Then is it true that

nk ≤ nk′ ∀n > 1

Well, nk′−k > 1 for any n > 1 since we assumed that k′ > k. So, yeah, it is.

For ii), we do a contradiction, assume there is a C and an n0 such that

nk′ ≤ C · nk ∀n > n0

Well, consider a value of n where n > C
1

k′−k . If C
1

k′−k < n0, then just choose n0 + 1. In
this case,

nk′ > C
k′

k′−k

= C
k′−k+k

k′−k

= C1+ k
k′−k

= C · C
k

k′−k

= C · nk
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This is a contradiction.

Aside: Where did I get the value of C
1

k′−k ? Well, you can solve for n in

nk′ ≤ C · nk ∀n > n0

by taking logs of both sides and isolating n. Then you’ll have something like n < t for some
term t which is independent of n. Just negate that statement and you’ll have your number
n.

Part b)

The trick is to group the terms of the harmonic series as follows: the first, the next two,
the next four, the next eight and so on. I’ll start counting from 0 so that (1) is the 0th group.

Before I do the proofs let’s notice a small fact about this grouping. If Gi refers to the
sum of all the terms in the ith group then

1/2 ≤ Gi ≤ 1

This isn’t too hard to see. Notice that the smallest term of the ith group is 1
2i+1−1 . The

group has size 2i. Since 2i

2i+1−1 > 1
2 , we know that if we replace all the items of a group

with the smallest, we get something more than 1
2 .

Similarly, the largest item of the group is 1
2i and 2i ∗ 1

2i = 1. So if we replaced all the
items of the group with copies of the largest, we’d get 1.

Let’s first show that Hn � log n. We have Hn = (1) + ( 1
2 + 1

3 ) + ( 1
4 + 1

5 + 1
6 + 1

7 ) + . . ..Now
notice that there are blog nc+ 1 groups if n is a power of 2. Otherwise, there’s one more.

So using this we know that:

Hn ≤ blog nc+ 2 ≤ log n + 2

We’re not quite done yet since this doesn’t follow the definition of dominance/eventuality.
So we can replace the 2 with another log n term if n > 4. Then we can conclude that
Hn ≤ 2 ∗ log n for n > 4. So setting C = 2 and n0 = 4 we’ve shown that

Hn � log n

Now to show that log n � Hn, we do something similar. This time, instead of working on
the largest term of a group, we’re going to work on the smallest term of a group.

So we know that

log n = 1 + 1 + . . . + 1 (log n 1’s)

≤ 2[(1) + (
1
2

+
1
3
) + (

1
4

+
1
5

+
1
6

+
1
7
) + . . .]

= 2Hn

For completion, we state that C = 1 and n0 = 1 to get the result.

Aside: Here, if n isn’t a power of 2, the proof still works. If the last group is incomplete,
the smallest member is larger than if the group had been complete.
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Question 6

Part a)

Remember that when we do an extract-min, we remove the root node, then replace it with
the last node in the tree and then fix the heap property down the length of the tree. There
are dlog 200e = 8 levels and we do two comparisons at each level so that’s 16 comparisons
total.

Part b)

The cleanest way to do this is the following approach. Assume that we have the function
heapify(A, i) as in the book. This assumes that i children are heaps themselves and simply
creates a heap from the two subtrees and the parent by pushing the parent down (if neces-
sary).

Now, given a tree, all the leaves are trivially heaps so we are done with them. Starting
from the n− 1st level, we heapify each node.

The formal pseudocode is below. I assume the input is in an array A and the n is the
size of the input.

for i = dn
2 e to 1 do

heapify(A,i)
end for

Part c)

Here’s how it looks at each iteration:
Start
17 3 1 11 7 5 19 13 16 4 2 10 8

Heapify(A, 6)
17 3 1 11 7 5 19 13 16 4 2 10 8

Heapify(A, 5)
17 3 1 11 2 5 19 13 16 4 7 10 8

Heapify(A, 4)
17 3 1 11 2 5 19 13 16 4 7 10 8

Heapify(A, 3)
17 3 1 11 2 5 19 13 16 4 7 10 8

Heapify(A, 2)
17 2 1 11 3 5 19 13 16 4 7 10 8

Heapify(A, 1)
1 2 17 11 3 5 19 13 16 4 7 10 8
1 2 5 11 3 17 19 13 16 4 7 10 8
1 2 5 11 3 8 19 13 16 4 7 10 17
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Part d)

Heapify(A, 6): 2 comparisons
Heapify(A, 5): 2 comparisons
Heapify(A, 4): 2 comparisons
Heapify(A, 3): 2 comparisons
Heapify(A, 2): 2 comparisons
Heapify(A, 1): 6 comparisons
For a total of 16 comparisons

Part e)

Since heapify(A, i) may take up to log n, a simple analysis would yield an O(n log n) run-
ning time. If we are more careful, we can do better.

Intuitively, we see that the log n bad cases only appear near the top of the tree: where
there are very few nodes. Most nodes are taken care of at the bottom: where the height is
low.

At a height of h, there are at most n
2h+1 nodes. A call to heapify can take as much

time as the height of the input node. So the total running time can be at most n
∑dlog ne

h=0
h
2h .

From summations we know that
∞∑

i=0

kxk =
x

(1− x)2

Which, for us gives
∞∑

h=0

h

2h
= 2

So we can upper bound the summation as

n

dlog ne∑
h=0

h

2h
≤ 2n

This means the running time is O(n).
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