

Basic Algorithms (V22.0310); Fall 2005; Yap
HOMEWORK 1
Date Due: Sep 21

SOLUTIONS to HW1

1 Question 1

(5 points) Please do Exercise 1, page 23, chapter 1. True or false: “In every instance of the Stable Matching Problem, there is a stable matching containing a pair (m, w) such that m is ranked first by w , and w is ranked first by m .”

SOLUTION:

False. Suppose we have two men m, m' and two women w, w' . Let m rank w first; w rank m' first; m' rank w' first; and w' rank m first.

We see that such a pair as described by the claim does not exist.

2 Question 2

(5 points) Please do Exercise 2, page 23, chapter 1. True or false: “Consider an instance of the Stable Matching Problem in which there exists a man m and a woman w such that m is ranked first by w , and w is ranked first by m . Then (m, w) must appear in every stable matching.”

SOLUTION:

True. Suppose S is a stable matching that contains the pairs (m, w') and (m', w) , for some m', w' . But clearly, (m, w) forms an instability pair, contradicting the stability of S .

3 Question 3

(5 points) Please do Exercise 3, page 23, chapter 1. We have two television networks, A and B . Network A wants to schedule a set $\{a_1, \dots, a_n\}$ of shows into n time slots. Network B also wants to schedule a set $\{b_1, \dots, b_n\}$ of shows into the same n slots. Let $\rho : \{a_1, \dots, a_n, b_1, \dots, b_n\} \rightarrow \mathbb{R}$ denote the ratings of each show (no 2 shows have the same rating). If a_i and b_j are scheduled to the same slot, then we say network A wins this slot if $\rho(a_i) > \rho(b_j)$; otherwise network B wins this slot.

Does there exist a pair of schedules for networks A and B that is stable in the following sense: no network can unilaterally change its scheduling to win more slots.

SOLUTION: Solution:

We claim that there exists a rating such that no stable scheduling exists.

The scheduling of network A may be represented by a bijection:

$$\alpha : \{1, \dots, n\} \rightarrow \{a_1, \dots, a_n\}.$$

Similarly, the scheduling of network B is represented by a bijection

$$\beta : \{1, \dots, n\} \rightarrow \{b_1, \dots, b_n\}.$$

The number of wins of network A is given by

$$\#(\alpha, \beta) = |\{i \in n; \rho(\alpha(i)) > \rho(\beta(i))\}|.$$

We now choose the rating where $\rho(a_i) = i$ and $\rho(b_i) = i + \frac{1}{2}$ (for all $i = 1, \dots, n$).

We claim that every pair (α, β) of schedules is unstable, i.e., at least one of the following two statements is true:

- (A) Network A can change α so that $\#(\alpha, \beta)$ increases.
- (B) Network B can change β so that $\#(\alpha, \beta)$ decreases.

Here is how: Note that $\#(\alpha, \beta)$ lies between 0 and $n-1$. Indeed, $\#(\alpha, \beta) = 0$ if (and only if) for all $i = 1, \dots, n$, we have a_i and b_i in the same slot. Also, $\#(\alpha, \beta) = n-1$ if (and only if) for all $i = 1, \dots, n-1$, we have a_{i+1} and b_i in the same slot (this implies a_1 and b_n are in the same slot). Now notice that:

(A') If $\#(\alpha, \beta) < n-1$, then network A can surely reschedule α so that $\#(\alpha, \beta) = n-1$. Thus network A has improved unilaterally.

(B') If $\#(\alpha, \beta) > 0$, then network B can surely reschedule β so that $\#(\alpha, \beta) = 0$. Thus network B has improved unilaterally.

Since either (A') or (B') must be true, we are done.

4 Question 4

(5 points) Consider the following statement:

$$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{R})(\exists z \in \mathbb{R}) \left[(x > 0) \Rightarrow ((y^2 < x < y) \wedge (z < x < z^2) \wedge (z < y)) \right] \quad (1)$$

Note that the range of variable x is \mathbb{Z} , not \mathbb{R} . This is called a “universal statement” because the leading quantifier is the universal quantifier (\forall). Similarly, we have “existential statements”.

(i) Negate the statement (1), and then apply De Morgan’s law to rewrite the result as an existential statement.

HINT: all our formal statements have the form $(Q_1)(Q_2) \cdots (Q_n) [\dots \text{predicate} \dots]$ where Q_i is the i th quantifier part. A predicate is a function from some domain to the set of Boolean values (true or false). E.g., the predicate “ x is married” might be written as the function $\text{Married}(x)$ whose domain is the set of humans; $\text{Married}(x)$ is true iff x is married.

(ii) Is the statement (1) true? Justify it or give a counter example.

SOLUTION:

(i)

$$(\exists x \in \mathbb{Z})(\forall y \in \mathbb{R})(\forall z \in \mathbb{R}) \left[(x > 0) \wedge (\neg(y^2 < x < y) \vee \neg(z < x < z^2) \vee (z \geq y)) \right]$$

(ii)

This is false. A counter example is $x = 1$. In order for $y^2 < x < y$, we must have $y < 1$ (so that $y^2 < y$). But then $x < y$ cannot be true.

5 Question 5

(5 points) We provide the following program MergeSort.java, and an accompanying Makefile for you. The MergeSort program is mostly written for you – you just need to fill in the "merge" routine. The purpose of this question is to (a) introduce you to the Makefile program, (b) ensure that you have a basic Java programming environment.

OMITTED