Basic Algorithms (V22.0310); Fall 2005; Yap

HOMEWORK 1
Date Due: Sep 21

Instructions

e Please read our homework policy under Course Information, in class home-
page.

e There are two ways to submit homeworks:

(1) Non-programs must be handed in as hardcopies. These are due during
class hours, and it should be properly bound (stapled) together.

(2) Programs must be handed in electronically, in ONE single email.
These are due by midnite of the due date. Please send them directly
to the grader, but cc’ed to me. Your grader is Ankit Sunil Malpani
(ankit.malpani@nyu.edu). If you have to change some files, please resend
the ENTIRE set in one email (we will just delete the earlier email).

e GENERAL RULE ABOUT PROGRAMMING ASSIGNMENTS: you must
submit a Makefile to accompany your program. There are links on our
homepage to resources for Java and Make programs. We should be able
to type "make” to compile your program, and type ”"make test” to run the
program. We normally tell you what to name your main program (e.g.,
”Matching.java”) because this simplifies our grading task.

e GRADING RULES: If your program does not compile, you get 0 point.
But please read the “Grader Instruction” in the class homepage for the
general rules.

1 Question 1

(5 points) Please do Exercise 1, page 23, chapter 1. True or false: “In every
instance of the Stable Matching Problem, there is a stable matching containing
a pair (m,w) such that m is ranked first by w, and w is ranked first by m.”

2 Question 2

(5 points) Please do Exercise 2, page 23, chapter 1. True or false: “Consider an
instance of the Stable Matching Problem in which there exists a man m and a
woman w such that m ir ranked first by w, and w is ranked first by m. Then
(m,w) must appear in every stable matching.”

3 Question 3

(5 points) Please do Exercise 3, page 23, chapter 1. We have two television

networks, A and B. Network A wants to schedule a set {ay,...,a,} of shows
into n time slots. Network B also wants to schedule a set {b1,...,b,} of shows
into the same n slots. Let p : {a1,...,an,b1,...,b,} — R denote the ratings

of each show (no 2 shows have the same rating). If a; and b; are scheduled to
the same slot, then we say network A wins this slot if p(a;) > p(b;); otherwise
network B wins this slot.

Does there exist a pair of schedules for networks A and B that is stable in

the following sense: no network can unilaterally change its scheduling to win
more slots.

4

Question 4

(5 points) Consider the following statement:

(Ve €Z)(Fy €R)(Iz €B) [(2 > 0) = (1° <z <y) Az <o < 2°) A (2 <)])

Note that the range of variable x is Z, not R. This is called a “universal state-
ment” because the leading quantifier is the universal quantifier (V). Similarly,
we have “existential statements”.

(i) Negate the statement (1), and then apply De Morgan’s law to rewrite the

result as an existential statement.

HINT: all our formal statements have the form (Q1)(Q2) - - - (Qn) [. . . predicate . .]
where (); is the ith quantifier part. A predicate is a function from some
domain to the set of Boolean values (true or false). E.g., the predicate “x

is married” might be written as the function Married(z) whose domain

is the set of humans; Married(x) is true iff is married.

(ii) Is the statement (1) true? Justify it or give a counter example.

5

Question 5

(5 points) We provide the following program MergeSort.java, and an accompa-
nying Makefile for you. The MergeSort program is mostly written for you — you
just need to fill in the "merge” routine. The purpose of this question is to (a)
introduce you to the Makefile program, (b) ensure that you have a basic Java
programming environment.

MergeSort. java
Basic Algorithms, V22.0310.001, Spring 2001

Merge sort is a popular recursive sorting algorithm.
In this program we implement merge sort to operate on integers.
Another purpose of this program is to illustrate simple

techniques used in Java.

You can specify as a command line argument the number of elements
that you wish to sort. Then an array of the specified size is
populated by random numbers and finally sorted.

If you put this file in a file called MergerSort. java,
then you can compile and run this program as follows:

% javac MergerSort.java
% java MergerSort 100

In this case you will be sorting 100 numbers. The output (the list of
sorted numbers) is sent to a data file called "output" that resides in the
current directory.

¥ X X X X X X X X X X X X X X

*
~

class MergeSort
{
/**
* @param num an array of numbers in any order
* Q@return a sorted array of the same numbers
*% /
static int[] mergeSort(int num[])
{ int size = num.length; // size of array holding the numbers to be sorted
if (size <= 1) // base step
{ return num;
}
else // recursive step
{ int mid = size / 2;
int firstHalf[] = new int[mid];
int secondHalf[] = new int[size - mid];
// Copy first half of the array
for (int i = 0; i < mid; i++)
{ firstHalf[i] = numl[i];
}
// Copy second half of the array
for (int i = mid; i < size; i++)
{ secondHalf[i - mid] = num[i];
}

return merge(mergeSort(firstHalf), mergeSort(secondHalf));
}

/**

* Q@param first array of sorted numbers

* Q@param second another second array of sorted numbers

* Q@return a sorted array containing all numbers from both first and second
*% /

static int[] merge(int first[], int second[])

{

// First, create a new array to store the answer. You
// can say something like:
// int res[] = new int[first.length + second.length];

// Then traverse through the arrays and compare their
// elements one by one and insert them in the new
// array (res) in sorted order.

// At last return the sorted array
// return res;

}

/**
* @param num array which is to be populated with randomly-generated integers
*%/
static void populate(int num[])
{ for (int i = 0; i < num.length; i++)
{ num[i] = (int) (Math.random() * 1000); // numbers will be in the range 1-1000

3

/**
* Q@param num array whose elems are to be sent to output
*% /

public static void output(int num[])

{ java.io.PrintWriter out;

try
{ out = new java.io.PrintWriter(new java.io.FileQutputStream("output"), true);
for (int i = 0; i < num.length; i++)
{ out.println(num[i]);
}
}
catch (java.io.IOException ioe) {ioe.printStackTrace(); }
}
/%%
* Q@param args command-line argumants. In this case number of elems
* to be srted is expected.
*% /

public static void main(String[] args)
{ int numbers[] = new int[Integer.parselnt(args[0])];

populate (numbers) ;

long start = System.currentTimeMillis();

int res[] = mergeSort(numbers);

long end = System.currentTimeMillis();

output (res) ;

System.out.println((end - start) + " ms");
}

} // end class MergeSort

HERE IS THE BASIC ”Makefile”: to use it, just type "make” to compile
MergeSort.java and type "make run” to run the MergeSort program.

Sample Makefile
for Basic Algorithms Class
s s s s s s s s

HHEHHEHEEHEEHHEEEHHEHHEHHEEEEHEEEEHR R
define the variables p and arg:

p=MergeSort
arg=100

HEHBHHAH B HAHHAEHBHH AR RS R RS HAF RS H AR HAH B SRR
First target (the default target):

c compile: $(p).java
javac $(p).java

B s s s e
To run the compiled program:

r run: $(p).class
java $(p) $(arg)

HESHH B R AR R R R R

