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Two Big Problems in Machine Learning

w

@ 1. The “Deep Learning Problem”

» “Deep” architectures are necessary to solve the invariance problem in
vision (and perception in general)

& 2. The ‘‘Partition Function Problem”

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

& This tutorial discusses problem #2

» The partition function problem arises with probabilistic approaches
» Non-probabilistic approaches may allow us to get around it.

@ Energy-Based Learning provides a framework in which to describe

probabilistic and non-probabilistic approaches to learning

& Paper: LeCun et al. : “A tutorial on energy-based learning”

» http://yann.lecun.com/exdb/publis
» http://www.cs.nyu.edu/~yann/research/ebm

Yann LeCun

t New York University



Plan of the Tutorial

@ Introduction to Energy-Based Models

» Energy-Based inference
» Examples of architectures and applications, structured outputs

@ Training Energy-Based Models

» Designing a loss function. Examples of loss functions
» Which loss functions work, and which ones don't work
» Getting around the partition function problem with EB learning

& 2. Architectures for Structured Outputs

» Energy-Based Graphical Models (non-probabilistic factor graphs)
» Latent variable models

» Linear factors: Conditional Random Fields and Maximum Margin
Markov Nets

» Gradient-based learning with non-linear factors

& Applications: supervised and unsupervised learning

» Integrated segmentation/recognition in vision, speech, and OCR.
» Invariant feature learning, manifold learning

Yann LeCun t New York University
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Energy-Based Model for Decision-Making

=SS . =

Human
A iifiial ¥ Model: Measures the compatibility
Alrplane between an observed variable X and
Car
Tl a variable to be predicted Y through
T B(Y. X) an energy function E(Y,X).
E Function E(Y, X * ;
nergy Function F(Y, X) Y p— ‘a,I'gHHHYEJ)ET(};j X)
T T @ Inference: Search for the Y that
X Y .« e . iy :
Observed variables Variables to be minimizes the energy within a set )
(input) predicted i@ If the set has low cardinality, we can
(answer) .
use exhaustive search.
Human
Animal
Airplane
Car
Truck
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\”Complex Tasks: Inference is non-trivial

=SS . =

! T T

E(Y, X) [ E(Y, X) ] [ E(y,x) |“#When the
: : . ' : ‘ cardinality or
YT YT dimension of Y
= 1054 10962 10962242507 0 004
Y] T ete R is large,
e exhaustive
search is
(a) (b) () impractical.
! T ! ¥ We need to use a
E(Y, X) E(Y, X) “smart”
XT YT XT YT inference

procedure: min-

! h LS "this" "This is easy"  (pronoun verb adj)

sum, Viterbi, .....

(d) (e) (®)
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What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:
» “Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3, Detection:

» “Is this value of Y compatible with X”?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

@ 4. Conditional Density Estimation:
» “What is the conditional distribution P(Y|X)?"
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun

t New York University



.Decision-Making versus Probabilistic Modeling

M

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?

» We turn them into probabilities (positive numbers that sum to 1).
» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature

Yann LeCun * New York University



_Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S —= {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L (E S ) L (W, S )
» Measures the quality of an energy function

& Training W$ = WIPIDW ﬁ(m S)
S

& Form of the loss functional
» invariant under permutations and repetitions of the samples

P
1 : .
L(E,S) =2 ) L', EW,Y, X)) + R(W).
izl/ \ ™~ AN
Energy surface Regularizer
Per-sample Desired ¢ given Xi

loss answer as Y varies

t New York University
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Designing a L.oss Functional
[ —

Human T |—F Human T ]
Animal BT |3+ After Animal B
Airplane I =%  (raining  Airplane "]

Car ] =* P Car HEEEET |
Truck T 1—F Truck T ]
> >
PV Y v Y\
A A
push down
< NJ\L After S
%ﬁ i training %:n
= | S
= =
- -~ - - — -
Y* Y* Y* Y*
Answer (V) Answer (V)

@ Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS

Yann LeCun * New York University



Designing a L.oss Functional
[ —

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one

Yann LeCun * New York University



rchitecture + Inference Algo + Loss Function =

B

E(W.,Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y ial 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?

Yann LeCun * New York University



Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

@ Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer

Yann LeCun t New York University



D(Gw(X),Y) ] [ -Y Gy (X) ] [ 4’.- - - --i }
T A 1 A ® ® ® :
|
go g1 g2 |
Gw(X) ] [ Gw(X) ] [ Gw (X) ] I
|
A i 3 |
|
X Y X Y X Y
@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),

Yann LeCun * New York University



E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture

» allows multiple answers to have low [IIG’1W1 (X) — Gay, (y)||1]
energy.

» Encodes a constraint between X and Y T T
rather than an explicit functional ( 1l
relationship Gy, (X) o, (V)

» This is useful for many applications

1 f

» Example: sentence completion: “The
cat ate the {mouse,bird,homework,...}" | |

» [Bengio et al. 2003]
» But, inference may be difficult.

X Y

Yann LeCun * New York University



Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(Y%aE(ﬂ/ﬂ an%)) — E(I/Va Y%aX%)'
» Simply pushes down on the energy of the correct answer

\
\\o.
«33’ '
0* [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

a A \ \

Neural Net ( input X X output Y )
ZE-EE;I;en b) <
) ( %Q.

4 (§)

’ S

Nag
C input X X output Y ) \)
(a) N
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun * New York University
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| Perceptron Loss for Binary Classification
e IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)

Yann LeCun



i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yvi E(W, Y, X*). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

}_/i 2= H,Tgﬂ]iﬂ}rey_lll}x_y@|[}EE(H": Y.Xz} (9)

Yann LeCun
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Energy: EI

Qum (EW,Y' X", E(W,Y" X")).

™~

& Generalized Margin Loss

» Qm increases with the
energy of the correct
answer

» Qm decreases with the
energy of the most
offending incorrect
answer

» whenever it is less than
the energy of the
correct answer plus a

margin m.

i i
Lmargm( 4 Y )
1 T T T T \,‘I
— .
ook EC + M= EI ,\»
3 A
0.8F HP1 \,/
\/
- o’
0.7 R \,\
\/
0.6 Re
P4
0.5 \,\
ol \/ E — E
/, C
0.4} 3 .
o
0.3 ,\ i
| \
0.2 7 HP
o, 2
0147
O 1 | 1 1 | 1 l 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Energy: E_
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Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003]

» With the linearly-parameterized binary
classifier architecture, we get linear SVMs

—
% 1.5
o
—

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss
» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun * New York University




| Examples of Margin Losses: Square-Square Loss
h—-———.—._._.__A -

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

& Square-Square Loss P st
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

|| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6

param Wx param Wy
A [
\ \

( input X X output Y )
(b)

Yann LeCun t New York University



_Other Margin-Like Losses

& L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’

Yann LeCun * New York University



’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity

Yann LeCun * New York University



m =

Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW

Yann LeCun * New York University



Negative Log-Likelihood Loss: Binary Classification

& Binary Classifier Architecture:
P

1 . . i i i i
La(W,S) = 5> [—Y%GW(X%) + log (eY Gw(X") | o—Y'Gw(X >)} .

=1

[.’-HH(W 3 = Zlog (1 —+ 6_2Y GW(X )) ,

?,—1

@ Linear Binary Classifier Architecture

Lny(W,S) Z log (1 e YW (X! )>

z_l

@ Learning Rule: logistic regression

Yann LeCun

t New York University



at Makes a “Good” [

0.9 EC +m= EI ,~» ’
; . R A
i Loss Function 1 o |HP -
s — 0.7 R ,/,
|-_|J__ 0.6} ,\/" .
@ Good loss functions make the S os| e E_=E,
c _ ,/\
machine produce the correct Y+ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat m¢°-1 -
energy Su rfaces O0 011 0i2 Oi3 0i4 0i5 016 0i7 0i8 0i9 1

Energy: E.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

Yann LeCun t New York University




| What Make a ‘“Good’’ Loss Function

M&b

@@ Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun
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/ Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is

pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use a
loss with a single point in the contrastive term
& Variational methods pull up many points, but not as many as with the
full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is does not exist. It needs to be developed

Yann LeCun * New York University



@ The energy includes ‘“hidden’ variables Z whose value is never
given to us

» We can minimize the energy over those latent variables
» We can also “marginalize” the energy over the latent variables

Minimization over latent variables:

E(Y, X) = min B(Z,Y, X).
€

Marginalization over latent variables:

1
E(X,Y)=—=log e PEEY.X)
/6 z€Z

X Y
Estimation this integral may require some approximations

(sampling, variational methodes,....)

Yann LeCun

t New York University



@ The energy includes ‘“hidden’ variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

ez
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y. X) E(W, 2,Y, X)

IRGLOREE R EE .
( L’ ] * I
>3] ] '
|
| T |
| | . |
T | T T T T T I
Gface (X) : * ' ' . ' : :
§ : | |
A | CraceX)| |Grace )| |Crace(X)= = = = | Grace(X | |
| |
l I 1
1 lII l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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& Variables that would make the task easier if they were known:

» Face recognition: the gender of the person, the orientation of the
face.

» Object recognition: the pose parameters of the object (location,
orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence into
syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun t New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = J:ez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

@ Reduces to minimization when Beta->infinity

Yann LeCun * New York University



ace Detection and Pose Estimation with a Convolutional EBM

@ Training: 52,850, 32x32 E*(W, X) = ming||Gw (X) — F(Z)||
grey-level images of faces,
52,850 selected non-faces. 7" = argminz| |GW (X) — F(Z)H

& Each training image was used

. . . L. E(W,Z, X
5 times with random variation ( ‘)
in scale, in-plane rotation, l
brightness and contrast.
d - |16, (x)-F(2)
il 2" phase: half of the initial
negative set was replaced by G, (X V F(Z)
false positives of the initial analvtical
version of the detector convolutional .
' network ;nap ping .(;HIO
W(p aram) N ace Iilanl old
4 ™) 4 )
Small E*(W,X): face X 7
Large E*(W,X): no face (image) (pose)
. J . y

[Osadchy, Miller, LeCun, NIPS 2004]

Yann LeCun * New York University




KFace Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill = e G(X)

£
Face Manifold = i

—p
parameterized by pose L\

Apply =) Mapping: G
1




Probabilistic Approach: Density model of joint P(face,pose)

mﬁ;‘ - - — S

Probability that image exp(—E(W, Z, X))

: : P(Xa Z) =
X 1s a face with pose Z fX,ZEimages,poses exp(—E(W, Z, X))
Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Energy-Based Contrastive Loss Function
I

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convyolutional Network Architecture

m —

Cl: feature

maps & 28x.28
Ps B C3: f. maps

Input 20
, @10x10

| 8@l4xl4 ?U@Fﬂ? C5: 120

| ==

Output:

B

I —

25|

. : : Full
Convolutions FMEETR G : subsampling  onnection
Convalutions Convolutions

Hierarchy of local filters (convolution kernels),
sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University



“Simple cells”

‘Alternated Convolutlons “Complex cells”
,, and Poollng/Subsampll ng
@ Local features are extracted _
pooling

everywhere. Multiple subsampling

convolutions

@@ pooling/subsampling layer builds

robustness to variations in feature

i

locations.

Hm! Wil
.,

@ Long history in neuroscience and

computer vision:

i Hubel/Wiesel 1962,

'l Fukushima 1971-82,

il LeCun 1988-06

il Poggio, Riesenhuber, Serre 02-06
'l Ullman 2002-06

i Triggs, Lowe,....

s MMl colRher

= .
"o ."
5.-m A

=rﬂh'
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Facke Detection: Results

1

S

Yann LeCun

DataSet->] TILTED PROFILE MIT+CMU
False positives per image-> 442 | 26.9 | 0.47 3.36 0.5 1.28
Our Detector 90% | 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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th a Convolut

i

Face Detect

1011 W

t New York University
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; Efficient In gy-Based Factor Graphs

. R R RO

& Graphical models have given us efficient inference algorithms, such as

belief propagation and its numerous variations.
@ Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models
(Bayesian networks) from the probabilistic view.

@ Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

&@ An EBFG is an energy function that can be written as a sum of ‘“factor”

functions that take different subsets of variables as inputs.

& Basically, most algorithms for probabilistic factor graphs (such as belief

prop) have a counterpart for EBFG:

» Operations are performed in the log domain
» The normalization steps are left out.

Yann LeCun t New York University




: nergy-Based Factor Graphs

M&-%} N ————— |

@ When the energy is a sum of partial energy functions (or when the

probability is a product of factors):

» An EBM can be seen as an unnormalized factor graph in the log domain

» Our favorite efficient inference algorithms can be used for inference
(without the normalization step).

» Min-sum algorithm (instead of max-product), Viterbi for chain graphs

» (Log/sum/exp)-sum algorithm (instead of sum-product), Forward
algorithm in the log domain for cl}ain graphs

E1xzD) | [E221.22)| [B322.23)| |E4(Z3.Y)
VRV Vi VA
X 71 72 73 Y

Yann LeCun * New York University
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; EBEG for S puts: Sequences, Graphs, Images

& Structured outputs

» When Y is a complex object with components that must satisfy
certain constraints.

& Typically, structured outputs are sequences of symbols that must satisfy

“srammatical’ constraints

» spoken/handwritten word recognition
» spoken/written sentence recognition
» DNA sequence analysis

» Parts of Speech tagging

» Automatic Machine Translation

@ In General, structured outputs are collections of variables in which

subsets of variables must satisfy constraints

» Pixels in an image for image restoration
» Labels of regions for image segmentations

@ We represent the constraints using an Energy-Based Factor Graph.

Yann LeCun t New York University



Energy-Based Factor Graphs: Three Inference Problems
[ — == ==

& X: input, Y: output, Z: latent variables

«® Minimization over Y and Z

» E(Y,X)=minE(ZY,X). Y
S
& Min over Y, marginalization over Z

E(X.Y) = —+log / ~BEGEY.X) Y = argminy o E(Y, X).
zeZ

@ Marginal Distribution over Y VX e~ BE(Y,X)
g (Y]X) = e—PE(y,X)’

argminy y F(Y, X).

fyey

E1Xz) | |E2Zz1,22)| |B3(Z2,723)| | E4(Z3,Y)
/ AV AV N N
71 72 73

X Y

Yann LeCun



Energy-Based Factor Graphs: simple graphs
R E————

@ Sequence Labeling ~ y* _ argminygy,ZezE(Zﬂ Y, X).

» Qutput is a sequence

Y1,Y2,Y3,Y4......

» NLP parsing, MT,
speech/handwriting
recognition, biological
sequence analysis

» The factors ensure
grammatical consistency

» They give low energy to
consistent sub-
sequences of output Y1
symbols

» The graph is generally
simple (chain or tree)/

» Inference is easy
(dynamic programming)

Y4

Yann LeCun * New York University
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_Energy-Based Factor Graphs: complex/loopy graphs

Mﬂml‘

@ Image restoration Y™ = argminy-o, E(Y, X).

» The factors ensure
local consistency on
small overlapping
patches

» They give low energy
to “clean” patches,
given the noisy
versions

» The graph is loopy
when the patches
overlap.

» Inference is difficult,
particularly when the
patches are large,and
when the number of
greyscale values is
large

Yann LeCun * New York University



Efficient Inference in simple EBFG

& The energy is a sum of ‘“factor” functions, the graph is a chain

& Example:

» Z1,Z2, Y1 are binary 2ees2d

» Z2 is ternary @

» A naive exhaustive inference
would require 2x2x2x3
energy evaluations (= 96 [E‘*”” [E“X’ZMZ?)] [E°<22’Y1> H Edm’m]
factor evaluations) NN TN

» BUT: Ea only has 2 possible szl/ \22/ \yl/ \y2
input configurations, Eb and
Ec have 4, and Ed 6. 2

» Hence, we can precompute
the 16 factor values, and put
them on the arcs in a graph S

» A path in the graph is a
config of variable

» The cost of the path is the

E.(0,0)

energy of the config Z: Z, Y, Y

Eq(0,0)

Yann LeCun t New York University



[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

Y* = argminYEy?ZEZE(Zj Yj X)

Yann LeCun t New York University
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; EnBed Belief Prop:

\ Minimization over Latent Variables
& The previous picture shows a chain graph of factors with 2 inputs.

@ The extension of this procedure to trees, with factors that can have
more than 2 inputs is the “min-sum” algorithm (a non-probabilistic

form of belief propagation)

@ Basically, it is the sum-product algorithm with a different semi-ring
algebra (min instead of sum, sum instead of product), and no

normalization step.
» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun * New York University



[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

1
Y* — argminYey — E log/ G_BE(Z,Y,X)- 5
zEZ

log/sum/exp-SUM Alg., Forward Algorithm P

Yann LeCun t New York University



‘ EnergyBased Bellef Prop

«Marginalization over Latent Variables
%ﬁmm —

@ The previous picture shows a chain graph of factors with 2

inputs.
» Going along a path: add up the energies
. _,BE Z
» When several paths meet: compute —— log E J

& The extension of this procedure to trees, with factors that can
have more than 2 inputs is the ‘‘[log/sum/exp]-sum” algorithm

(a non-probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (log/sum/exp instead of sum, sum instead of

product), and no normalization step.
» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun * New York University



@ Linearly Parameterized Factors A

EW,Y,X)= > W'f(X,Yn,Yo). -

(m,n)eF / Iy \

Yann LeCun



e ———————— E(W,Y, X)
1nearly Parameterlzed Factors T /
Negative Log Likelihood Loss =

(X, Y1,Ys) I\f (X,Y2,Y3 ] [f(X Ys Y)]

yConditional Random Flelds

— — Yl/\/|\ Ys Y,
@ Linearly Parameterized Factors + NLL loss = CRF

» [Lafferty, McCallum, Pereira, 2001]

P
1 T i i 1 —BWTF(X?,
ﬁnll(W)=FZW F(X,Y)+BlogZe BWF(X%y),
=1 yey
P
aﬁﬂn(W) 1 i 1 i
V) LS ROr Y - Y R P )
= ey implest/best learni
) t/best
| e—gBWTF(X ) simplest/best learning
P(y|X1, W) - , . procedure:

T T a4/
e~ BWHF(X*y') , ,
nyey stochastic gradient

Yann LeCun * New York University



GEE(W, Y, X)

Perceptron Loss = ? ? ?
o] || ]

@ Linearly Parameterized Factors + Perceptron loss X

» [LeCun, Bottou, Bengio, Haffner 1998, Collins 2000, Collins 2001]

P
Cperceptron(W) — F ZE(Wa Y%:X?J) — E(I/Va Y :X )a
1=1
1 P
ﬁperceptron(W) — F Z WT (F(X%a Yz) - F(X%;Y*z)) .
1=1

W W —n(F(X"Y")~F(X",Y*").

(LeCun 1998 used non-linear factors)

Yann LeCun * New York University



E(W,Y, X)

*\mearly Parameterlzed Factors T sy

7
||

Yi Y5 Y3 Y,
& Linearly Parameterized Factor + Hinge loss

» [Altun et a. 2003 Taskar et al. 2003]

Hinge Loss =

Lhinge(W) = Zmax 0,m+ EW,Y", X)) — E(W,Y", X%)) +~||[W]>.
=1
1 T () 1 2
Liinge(W) = 2 Zmax (O,m—l— W+ AF(X"Y )) + ~||W]~,
1=1

AF(X'Y") =F(X"Y") — F(X',Y?)

Simple gradient descent rule:
If AF(Xi, Y?") > —m then W — W — nAF(Xi, Yi) — 27W
Can be performed in the dual (like an SVM)

Yann LeCun



.Non-Linear Factors

@ Energy-Based sequence labeling systems trained discriminatively have
been used since the early 1990's

@ Almost all of them used non-linear factors, such as multi-layer neural nets

or mixtures of Gaussians.
@ They were used mostly for speech and handwriting recognition

@ There is a huge literature on the subject that has been somewhat ignored

or forgotten by the NIPS and NLP communities.

& Why use non linear factors?

» :—( the loss function is non-convex

» :-0 You have to use simple gradient-based optimization algorithms,
such as stochastic gradient descent (but that's what works best
anyway, even in the convex case)

» :-) linear factors simply don't cut it for speech and handwriting
(including SVM-like linear combinations of kernel functions)

Yann LeCun t New York University



; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and

various acoustic models

» Training the acoustic model (feature extractor) and a (normalized)
HMM in an integrated fashion.

@ With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

& with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)

Yann LeCun * New York University



Example 1: Integrated Disc. Training with Sequence Alignment

B

& Spoken word recognition with trainable elastic templates and trainable
feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

' A
Object models 4l/-_>
(elastic template) - |
Energies | Switch
Sequence of I
feature vectors |
|  LVQ2 Loss
Trainable feature |
extractors |
/IARIRIRIRIN |
I
Input Sequence |
(acoustic vectors) Warping  Category

(latent var) (output)

Yann LeCun t New York University
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: Example: 1-D Constellation Model (a.k.a. Dynamic Time Warping)

& Spoken word recognition with trainable elastic templates and trainable
feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

& Elastic matching using dynamic time warping (Viterbi algorithm on a trellis).

& The corresponding EBFG is implicit (it changes for every new sample).

Energy
Trellis

(elastic template)

Object models

HOOOUD weeers

Sequence of (latent var)

feature vectors

t New York University

Yann LeCun
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Deep Factors / Deep Graph: ASR with TDNN/DTW

& Trainable Automatic Speech Recognition system with convolutional
nets (TDNN) and dynamic time warping (DTW)

AEW, Z Y, X)
@ Training the feature s w
”~
extractor as part of the lr,7,1 <
”/ 7 7/
whole process. . Wz~ DIW
A
& with the LVQ2 Loss : feature | vectors t L
» Driancourt and [ «=c- _]_
Bottou's speech 1\ ' . :
recognizer (1991) |
@ with NLL: [ TDNN ] !
» Bengio's speech A word templates
recognizer (1992) |
» Haffner's speech Path thw?rgimn
recognizer (1993) ¢ CAILO
X (acoustic vectors) A Y

Yann LeCun t New York University
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[T AIRIRri——— B — R —

Two types of ‘“‘deep” architectures

& Factors are deep / graph is deep

Yann LeCun * New York University



| Complex Trellises: procedural representation of trellises

@ When the trellis is too large, we cannot store it in its entirety in

memory.
» We must represent it proceduraly

& The cleanest way to represent complex graphs proceduraly is

through the formalism of finite-state transducer algebra
» [Mohri 1997, Pereira et al.]

Yann LeCun * New York University
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Really Deep Factors/ i

» Trained with NLL loss

N Viterbi i~ I
J— Transformer 4 ? i
; ) i
Grsel W‘ :
@ Handwriting Recognition with 3 A :
|
Graph Transformer Networks f !
. . . Path Selector 1"/ ““““““ e :
& Un-normalized hierarchical ¥ |
|
HMMs 2 :
G n
» Trained with Perceptron loss int Uol/‘f. i
[LeCun, Bottou, Bengio, i |
:
|
|
|
|
|
|
|
|
|
|
|

Haffner 1998] i

[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]
@ Answer = sequence of symbols GTseq o L
(3427 (path )
& Latent variable = segmentation X y 7z

Yann LeCun t New York University
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"End-to-End Learning.

M&J

E""-f%?"“’st @ Making every single module in the

system trainable.

Objective Function

actual / \desi red & Every module is trained simultaneously

output tput « .
P ourpt so as to optimize a global loss function.
t "two faces"
Context ual
postprocessor
Recognizer
I tunable
(trainable)
Segmenter parameters
Locator
!
0

Yann LeCun

t New York University
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' Using Graphs instead of Vectors.
|

B

traditional graph

radient-based transformer | @ Whereas traditional learning
earner network

i od—size St i machines manipulate fixed-size
vectors Varlables grapns

: vectors, Graph Transformer
A 0 A .
_'J ~ 7 Networks manipulate graphs.

Layer Graph
K

f
|
]

Graph
Transformer

Lo
0

Yann LeCun

t New York University



Transformer

& Variables:
» X: input image
» Z: path in the interpretation
graph/segmentation

» Y: sequence of labels on a
path

@ Loss function: computing the
energy of the desired answer:

E(W,Y, X)

Yann LeCun

[0.37i+1)

S CLAMPED PHASE

Gc:nj b‘t\mnxn]-/.

| Viterbi Tansformer *
Aok +[2440)
% 6\[3;55(?“/7'
ey v

|nterpretation
Graph

Gint

“\[_” /[+1:| (([_13 Fecognition
4 4 1 Tanstmear

w—

Meural Net
Weights

TI'BE

Segmentation
Graph

G

=g

|  Segmenter |

W

t New York University



3 [Aa4f0 =" 408} =

g Path Selector
Desined I _
Answer 3 [0.1]0) 4 [0 47i-1) ntepretation
5[2.3](0) —a2p~ Graph
Gint
3 [3.4]10)
4 [4.4]10y
Fecognition
Tambmar
W

] |
Vet ﬁ) g
? L‘ Geeg

Segmenter

-
K1

Yann LeCun * New York University




[0.7](+1)

s CLAMPED PHASE

Covit b"‘t\uunxn]-/.

| Viterbi Tansformer *
63\[&1 I“w + [L*IU];.
3 [34fT 4+[0B)+1)

nagn Path Selector
Desired I _
Answer 3 [0 110 4 [04]-1) 1[0.1]-1) ntepretation
2310 4124 Grap
Gint
Facogniticn
W Tambmar
MNeuml Met T rec
Weights '

Yann LeCun

t New York University



ra ph T 1@-61[—1:

Transformer FREE/UNCLAMPED PHASE /?\

3['31111 1]3*['”]( 1]31[”11: -1

1

I'Viterbi Transformer |

& Variables: /
3l

» X: input image

Int%rﬁaﬂghmtbn
» Z: path in the interpretation G
graph/segmentation
» Y: sequence of labels on a
path Recognition

4 4 1 Tanstomear
@ Loss function: computing the  Jisumie

constrastive term:

E(W,Y,X)

Yann LeCun * New York University



Transformer

\Networks

& Example: Perceptron loss

@ Loss = Energy of desired
answer — Energy of best

answer.
» (no margin)

Yann LeCun

Loss Function

[0.1](+1)
.71+1) % " -1
3[0.1]{+1)
CT "t + k)

3['1I 1]'1-1]\84['34]': 1]31[”11 -1l

| Viterbi Tansformer §

3 [34FD 4[oaf+1]
ll34ll I E{H BE Eaur I

Desired ‘

| Viterbi Trﬂ nsformer |

1 [3.1]i-1 |ntempretation
4[24 Graph
Gint

\en oo (o] et

Tamtmear

w  —
T
Meuml Met Mec
Weights
‘ Seqmentation
< Gaph
G seg

t New York University



Loss Function
[3]i+1)

@71k 1) [0.6](-1)

3 [0.1](+1)
o]

C "bt\ﬂun]in]"’. S

3 [0.1]i-1) [0.4]i—1) g1 [O1F-1]
I Viterbi Tansformer :|| 15 Hl t H J"LI'

A[oak+ +[24}0]
G. 6\\ '_? Viterbi Transformer
3[34Fa +[OEY+1]

T Path Selector
Desired

Answer 3 [0.1]i0) 4 [04]1-13 1[0.1]i-1) Intepretation
5 [2.3](0) 4[2 Graph
Gint
Facognition
W Tamsibmar
T
Meuml Net rec
Weights

Yann LeCun

t New York University



W“! : ' — "Script'

' . o A
Global Training Helps Viterbl Graph
— — i
Beam Search
.. . Transformer
& Pen-based handwriting recognition ]
Interpretation Graph
(for tablet computer) $
. Language
» [Bengio&LeCun 1995] Modsl O DRg—> C“"‘f“‘-‘
» Trained with NLL loss (aka MM') Recognitlon Graph 5
Recognition
Transformer
)
SDNNHMM [z Langusgs todel AMAP Graph
no giobaliraining e L LAV £330 2T 124 d‘i‘%ﬂ"

Wi gbalaiing . —— 2 AMAP Computation

+
HOS | Ne Language Model Segmentatlon Graph
no ghobaliraining TN TN TN TR TTT N )

with global fraining Segmentation
Transformer
HOS | 25K Word Lexicon Normalized Word
no ghobaliraining ERETHEERE (3
with globalfrainin 1.4 —
@ ° p— Word Normalization
o 3 1Q 15 E c i p t

Yann LeCun t New York University



Interpretations:

s aph Interpretation graph cut (2.0)
cap (0.8)
oy 0.8 cat (1.4)

Composition,

grammar graph

& The composition of two

graphs can be computed,

the same way the dot
product between two

vectors can be computed.

Graph Composition

& General theory: semi-ring

algebra on weighted finite-

Recognltion
Graph

state transducers and

acceptors.

Yann LeCun * New York University



1.1 discrdminant cost

P ——————a b
. Check Reader . -
[ —— — — negative log-likellhood 4.3 3.2 negatlve log-llkellhood
Forwand Forward
' e ! =5-c2 all possible
& Graph transformer network corect Interpretation oQay,e -4} ﬁ o1 Interpretations
. + * - Grammar
trained to read check amounts. Compose Compose |~ .9
° ° ‘-__‘—\‘_‘—‘\_‘——_ ,—--"‘E:Ej'
& Trained globally with ‘ Recognition Graph S
q BT 238
Negative-Log-LikelihOOd loss. correct Character
answer Recognlzer
& 50% percent corrent, 49 % Segmentation Graph mcé.b; =
: i
reject, 1% error (detectable Segmenter
later in the process. Fleld Graph b lsmsss
oo HRAE
i 45 |
& Fielded in 1996, used in many Field Locator
banks in the US and Europe. Check Graph oL
@ Processes an estimated 10% of S

all the checks written in the
UJS.

Yann LeCun t New York University
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Learning when the space of Y is huge
I ————

@ learning when Y is in a high-dimensional continuous spaces
& Image restoration, Image segmentation

& Unsupervised learning in high-dimensional space

Yann LeCun * New York University
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Learning when the space of Y is huge

& Solutions:

& Use an energy function such that contrastive term in the loss is either

constant or easy to compute

» e.g. Energy is quadratic: convex (inference is easy), integral of
exponential is easily computable or constant.

& Approximate the derivative of the contrastive term in the loss with a

variational approximation

@ Simple sampling approximation:
» Pull down on the energy of the training samples

» Pull up on the energies of other configurations that have low energy
(that are threatening)

» Question: how do we pick those configurations?
» One idea: contrastive Divergence

Yann LeCun t New York University



ontrastive Divergence
[ ———

& To generate the ‘“bad” configurations:
& 1. Start from the correct value of Y
& 2. Pull down the energy of the correct value

& 3. To obtain a ‘“bad” configuration, go down the energy surface

with ‘““some noise”’

& 4. pull up the energy of the obtained configuration

A A
push down
S \NAL After <
%ﬁ i training %n
= | =
& i S
- -~ - . — -
Y* Y? Y* Y
Answer (Y) Answer (Y')

Yann LeCun * New York University



ontrastive Divergence

" = : ' P—

& To generate the ‘“bad” configurations:

& Hybrid Monte-Carlo Sampling: simulate a ball rolling down the
energy surface in Y space.

@@ Kick the ball in the a random direction (with a random

momentum), and run the simulation for a few iterations.

@ The final configuration is quite likely to have lower energy than

t 4 \
push down
3 ¢¢¢ After <0
>i i training %
= =
= =
= — o . — a
Y* Y? Y* Y
Answer (Y) Answer (Y')

Yann LeCun * New York University
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| Energy-Based Unsupervised Learning with Margin Loss
| >

& Example: learning a spiral in 2D

@ Energy: Il Y - F(W,Y)lI*2 where F is a 2-layer neural net
L(Y,W)=xE(Y,W)+max(0,m—E(Y ,W))

Yann LeCun t New York University



[Ning, Delhome, LeCun, Piano, Bottou, Barbano: “Toward Automatic Phenotyping of Developing

Embryos from Videos” IEEE Trans. Image Processing, September 2005]

Using Energy-Based Models for image “cleanup”

(segmentation, denoising,.....)

Input image
(noisy) X =====p-| FITTING ENERGY

Output image = E(Y.X,W)

(clean) Y INTERNAL ENERGY

E(Y.W)

E(Y,X,W) = Ep(Y,X) + E/(Y,W)

MAP Inference: clamp X and find a Y that minimizes E(Y,X,W)



=

Conditional PoE: Contrastive Divergence Training
e —————— = R———

Input
x =] FITTING ENERGY

_> E(Y,X,W)

output
Y INTERNAL ENERGY

E(Y.W)

Lan(Y', X", W) =E(Y", X", W) + % log [Z exp(—BE(y, X', W))
Yy

The negative log-likelihood loss has an intractable sum over all possible configurations of Y
Hinton's method:

- use MCMC to approximate the derivative of the log partition function
- realize it takes too long. Get bored waiting.

- decide to cut the number of iterations of MCMC.

- realize that it's a sensible thing to do, and call is Contrastive Divergence

- come up with a complicated justification for it.



]

onditional PoE: Training with the Linear-Exponential Loss

o o SIS S A

Input
x =] FITTING ENERGY

output
Y INTERNAL ENERGY

E(Y.W)

"E(Y.X.W)
Energy-based loss: make the energy of the desired answer low, and make the energy of

the most offending undesired answer high (forget about likelihoods altogether)



m@l

Conditional Product of Experts: Training
|

Input
x =] FITTING ENERGY

—> E(Y,X,W)

output
Y INTERNAL ENERGY

E(Y,W)

L(Y%a X?:a W) = E(Y%: Xia W) — C. eXp(_ﬁminy,|y—Y’5|>5E(ya Xia W))



:andAitional Product of Experts

S S -

Input
X >

E(Y.W)

EY, X, W) = Z Ep(Yij, Xij) + Z Er(Y, W)
ij k

Fitting energy: summed over “sites” (e.g. pixels)

Internal energy: summed over “experts” (e.g. Features) and sites.
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C. Elegans Embryo Phenotyping

wi‘,, S

[Ning, Delhome, LeCun, Piano, Bottou, Barbano
IEEE Trans. Image Processing, October 20035]

& Analyzing results for Gene Knock-Out

Experiments

¥ Automatically determining if a
roundworm embryo is developing
normally after a gene has been knocked

out.

Time-lapse movie



rchitecture

Mss;,»;; >

i@ Region Classification with a convolutional network
& Local Consistency with a Conditional Product of Experts

& Embryo classification with elastic model matching

X i

Region Labeling Local Consistency

1 . .
Convolutional Satisfaction E(Y,X)

Network Conditional PoE

Y & Classification
Elastic Model .
R
Matching
Elastic model

of embryo




&

i Supervised training fromhand-labeled images
& 5 categories:

¥ nucleus, nuclear membrane, cytoplasm, cell wall, external medium

+0001:27.5719




| Image Segmentation with Local Consistency Constraints
[ =
[Teh, Welling, Osindero, Hinton, 2001], [Kumar, Hebert 2003], [Zemel 2004]

@ Learn local consistency constraints with an Energy-Based Model so as to

clean up images produced by the segmentor.

Association Energy

Total Energy

Discrete 5-valued pixels

Yann LeCun * New York University
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. Convolutional Conditional PoE

M@‘A,

E(Y, X, W) Z Cyij,xi; + Z > g > WhipgYiipig

k=1 1j lpg=(1,—2,—-2)

Fitting Energy

L onvolutions U
/ g(u) =7 + u2
Inference with Gibbs sampling

Yann LeCun
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. Elegans Embryo Phenotyping

Lﬂ“

i@ Analyzing results for Gene Knock-Out Experiments

(2) (3) 4) (5)

Original Images

Segmentation #1

Segmentation #2

CCPoE
Cleanup

(1)




C Elegans Embryo Phenotyplng

i@ Analyzing results for Gene Knock-Out Experiments




W =

Convolutional Conditional PoE for Image Denoising
SR ——— i = J——

L(Y%a X?:a W) = E(Y%a X?:a W) +c. eXp(_ﬁminy,|y—Yi|>5E(ya Xia W))

E(Y.W)



ional Conditional PoE for Image Denoising

e NS = |

Input
X >

CCPoE output
Y

output

FoE Y

E(Y.W)



Convolutlonal Condltlonal PoE for Image Denmsmg

N01sy peppers PSNR=22.10 CCPoE PSNR=30.40



:anyplutional Conditional PoE for Image Denoising

= A =5

i

FoE PSNR=30.41 CCPoE PSNR=30.40
(Roth & Black report 30.58)




:anyplutional Conditional PoE for Image Denoising

= A =5

e

Random Kernels, PSNR= 29.70 CCPoE PSNR=30.40
(Gasp!)
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onvolutional Conditional PoE for Image Denoising

]

e o o

1:7.652+00/-7.142+00 2:6.48e+00/-3.812+00 32:3.46e+00V—4.982+00 44 00e+00/-5.08e+00 5:8.302+00/-6.01e+00 §:6.732+00/-7 . 70=+00

R4 BRI O S S

T T Te+00/-6 B0e+00 B8:6.292+00/—4 712400 9:9.12e+00V-56.212+00 10:8.20e+00/-5.622+0011:7 91 2+00/-7.042+0012:4 502+00/'—4. B02+00

et Rl R N

13:8.77e+00/—6. G4e+0014:5.522+00/-6.2Fe+0015:5,. 002+ 00/-8.202+0016:8. 18+ 00/ -7 . 58e+00 17 4 20e+00/-7. 082+ 0015 8.7 2e+00/—58,13+00

il 6% 0o 53 L

19:2.842+00'—4 B4 e+ 00207 582+ 00/- 7. 00e+0021:6.02e+00/-5.1 Yo+ 0022:5 48+ 00/-7 .08+ 00 236 562+00/-7 372+ 0024 5. 962+00/'-5. 42+ 00
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Convolutional Conditional PoE for Image Denoising
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Roth & Black Kernels, PSNR= 30.58
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CCPoE Kernels, PSNR= 30.40



\ for ace Recognition

& X and Y are images
E(W.,X,Y)

& Y is a discrete variable with many

Il Gw(X)-Gw(Y)ll possible values
» All the people in our gallery

& Example of architecture:
Gw(X) Gw(Y)

» A function G(X) maps input images
into a low-dimensional space in
which the Euclidean distance
measures dissemblance.

@ Inference:

» Find the Y in the gallery that
minimizes the energy (find the Y
that is most similar to X)

» Minimization through exhaustive
search.

Yann LeCun * New York University



Learmng an Invariant Dissimilarity Metric with EBM

miif_‘l S
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[Chopra, Hadsell, LeCun CVPR 2005]

& Training a parameterized, invariant dissimilarity metric

may be a solution to the many-category problem.

& Find a mapping Gw(X) such that the Euclidean distance

IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of
training samples (used as prototypes).

& This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to
models that can be normalized over the space of input pairs.

@ With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

il Application: face verification/recognition

E(W.X1.X2)

uFW(Xl) Gwo’cJ

E(W.X1.X2)

qu(Xl) GW(X2)
‘ Gw(X1) ‘ ‘ Gw(X2) \




Loss Function
‘,, SR SERCICN——

Siames=a Cost Funcliaon

E(W.X1,X2)

A
\l;}w(XD-Gw(Xz')n_I

Gw(X1) Gw(X2)

X1 X

a 1Q 20 a3a
sudidean dietfanocs

& Siamese models: distance between the outputs of two identical copies of a model.
@@ Energy function: E(W,X1,X2) = IGw(X1)-Gw(X2)Il

@ If X1 and X2 are from the same category (genuine pair), train the two copies of the model

to produce similar outputs (low energy)

@ If X1 and X2 are from different categories (impostor pair), train the two copies of the
model to produce different outputs (high energy)

i@ Loss function: increasing function of genuine pair energy, decreasing function of

impostor pair energy.



m‘{,\

Loss Function

=SS —

i@ Our Loss function for a single training pair (X1,X2):
L(W, XI’X2)=( 1— Y)LG <EW(X1,X2>)+YL1(EW(X1,X2>)

) —2.77 E, (X, X)
:(1_y)E(EW(XLX2)2)+(Y)2Re g
E, (X X,)=lG,(X,)=G (X ),

And R is the largest possible value of

EW<X1,X2)

Y=0 for a genuine pair, and Y=1 for

an impostor pair.
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Face Verlficatlon datasets: AT&T, FERET, and AR/Purdue

® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset
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Face Verification datasets: AT&T, FERET, and A

R/Purdue__

®* The FERET dataset. part of the dataset was used only for training.
* Total subjects: 96. Images per subject: 6. Total images: 1122.

* Images had high degree of variation in pose, lighting, expression and head position.
* The images were used for training only.

* http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset
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:Architecture for the Mapping Function Gw(X)

Convolutional net

Layer 6
Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Fully connected
i 45@20x15
maee 15@50x40  15@25x20 h @55 250

2@56x46
Low-dimensional

invariant representation

-

—
I
7x7 4x3 5x5
convolution subsampling convolution subsampling convolution

(15 kernels) (198 kernels) (11250 kernels)



Internal state for genuine and impostor pairs
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Dataset for Verification Verlflcatlon Results

Magu;: — ———— Mm.m‘ SIS

il tested on AT&T and AR/Purdue gl The AT&T dataset & The AR/Purdue dataset

@ AT&T dataset “alse Accept-alglsAReept False Reject
Number of subjects: 5 10.00% 100000% 11.00%
7.50% 7.3004¢ 14.60%

Images/subject: 10 5 00% 50004 19.00%

Images/Model: 5

Total test size: 5000

Number of Genuine: 500

Number of Impostors: 4500 i
il Purdue/AR dataset >

Number of subjects: 40 Eu

Images/subject: 26 3

Images/Model: 13 "

Total test size: 5000 5

Number of Genuine: 500 -

10% 510 1520 2530 3540 ﬁmFssuesm 758 85 9 95100
A

Number of Impostors: 4500
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Classification Examples
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& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
i@ Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs




'similar idea L= 5D, Lassimar =75 | max(0, m=Dy) |

'yﬂlfor Learning

. Margin
a Manifold &
() [ ] m
twith Invariance =& /
@ Loss function: 1G (x) =G, ()
» Pay quadratically A A A A

for making outputs
of neighbors far
apart

» Pay quadratically
for making outputs
of non-neighbors
smaller than a
margin m

Yann LeCun

t New York University



AManifold with Invariance to Shifts
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@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and

nearest neighbors
i@ Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

599990991999 7

t New York University

Yann LeCun



\_WlthInvarlant to Illumination
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'Automatlc Discovery of the Vlewpomt Manifold
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