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@ The traditional model of pattern recognition (since the late 50's)
» Fixed/engineered features (or fixed kernel) + trainable classifier

hand-crafted “Simple” Trainable
—_—  —
Feature Extractor Classifier
@ End-to-end learning / Feature learning / Deep learning
» Trainable features (or kernel) + trainable classifier
Trainable Trainable
e —  ——

Feature Extractor Classifier
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This Basic Model has not evolved muc:p since the 50's

# The first learning machine: the Perceptron
» Built at Cornellin 1960

# The Perceptron was a linear classifier on
top of a simple feature extractor

# The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.

# Designing a feature extractor requires .
considerable efforts by experts. y—sign
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Architecture of “Mainstream”Pattern Recofnition S:S}stems

@ Modern architecture for pattern recognition
» Speech recognition: early 90's — 2011

W«M —{ MFCC [ Mix of Gaussians —» Classifier —

fixed unsupervised supervised

» Object Recognition: 2006 - 2012

SIFT K-means , .
— , — Pooling [ Classifier >
HoG Sparse Coding
fixed unsupervised supervised
Low-level Mid-level

Features Features
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Deep Learning = Learning Hterarchical Representations

=

@ It's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Trainable Fea’tﬁ'u re Hierarghy

@ Hierarchy of representations with increasing level of abstraction
@ Each stage is a kind of trainable feature transform
# Image recognition

» Pixel = edge — texton — motif - part — object

& Text
» Character > word — word group — clause — sentence — story
@ Speech
» Sample — spectral band = sound — ... = phone = phoneme — word —
— — — —
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. Learning Representafions a challenge for

ML CV, AIL, Neuroscience, CognltI/e Suence

@ How do we learn representations of the perceptual world?
» How can a perceptual system build itself by looking at
the world?
» How much prior structure is necessary

@ ML//CV/AI: learning features or feature hierarchies
» What is the fundamental principle? What is the learning
algorithm? What is the architecture?
@ Neuroscience: how does the cortex learn perception?
» Does the cortex “run” a single, general learning
algorithm? (or a small number of them)

& Cognitive Science: how does the mind learn abstract
concepts on top of less abstract ones?

il Deep Learning addresses the problem of learning
hierarchical representations with a single algorithm

® or perhaps with a few algorithms

I

Trainable Feature
Transform

I

Trainable Feature
Transform

I

Trainable Feature
Transform

I

Trainable Feature
Transform
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* The Mammalian Visual Cortex_ is ﬁlie_rarch--ﬁ:al

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

# Lots of intermediate representations

WHERE? {Motion,
Spatial Relationships) WHAT? {Farm, Color}

[Parietal stream)] [Inferotemporal stream] . o Miotor. command
gy o - ategorical judgments, 1 _ -
PP :: 6‘* i ﬁ’i : =i AIT, decision making 1”?0 . Simple visual forms
. _{@ % cCIT 120600 e edges, corners
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V2 — |
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507 5 D straam Retina 51 Intermediate visual
Thick Hrierbeenee 20-40 ms AlT _ fforms. feature
stripe 3 . groups, etc.
Biob /I;IJ:TIDD ms _ — . i
,,,,,,,,,, High level object
VI 4617 descriptions,
4Caj —™ faces, objects
Retina, | it e ~——» To spinal cord
LGN X i
K -<——— To finger muscle - __ ——160-220 ms
M 180-260 ms
1 Origntation — Direction W4, Pattern iolaid) /!:: Pursl 1 1
e e & e [picture from Simon Thorpe]
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‘Trainable Feature Hierarchies: End-tg-end le--éfrning

# A hierarchy of trainable feature transforms
» Each module transforms its input representation into a higher-level one.

» High-level features are more global and more invariant

» Low-level features are shared among categories

Trainable Trainable Trainable
Feature
Transform

Feature |—» Classifier/ —
Transform T Predictor

1
Learned Internal Representations

# How can we make all the modules trainable and get them to learn
appropriate representations?



Three Types of

aining Protocols

@ Purely Supervised
» Initialize parameters randomly
» Train in supervised mode

»typically with SGD, using backprop to compute gradients

» Used in most practical systems for speech and image recognition

# Unsupervised, layerwise + supervised classifier on top
» Train each layer unsupervised, one after the other

» Train a supervised classifier on top, keeping the other layers fixed
» Good when very few labeled samples are available

# Unsupervised, layerwise + global supervised fine-tuning
» Train each layer unsupervised, one after the other

» Add a classifier layer, and retrain the whole thing supervised
» Good when label set is poor (e.g. pedestrian detection)

@ Unsupervised pre-training often uses reqularized auto-encoders




'-__D'eep Learning and Fegture Le_ar ling Tod?&

@l Deep Learning has been the hottest topic in speech recognition in the last 2 years
» A few long-standing performance records were broken with deep learning
methods

» Microsoft and Google have both deployed DL-based speech recognition system in
their products

» Microsoft, Google, IBM, Nuance, AT&T, and all the major academic and industrial
players in speech recognition have projects on deep learning
@l Deep Learning is the hottest topic in Computer Vision
» Feature engineering is the bread-and-butter of a large portion of the CV
community, which creates some resistance to feature learning

» But the record holders on ImageNet and Semantic Segmentation are
convolutional nets
@l Deep Learning is becoming hot in Natural Language Processing
@l Deep Learning/Feature Learning in Applied Mathematics

» The connection with Applied Math is through sparse coding, non-convex
optimization, stochastic gradient algorithms, etc...
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1In Several Fields, Feature Leaﬁﬂng Has Cqused Revolutlons

Speech Recognltlon Handwrltlng Iiecogntuon

# U= unsupervised, S=supervised, X=unsupervised+supervised
| Low-level feat. = mid-level feat. — classifier = contextual post-proc
\\ /
# Speech Recognition
» Early 1980s: DTW

» Late 1980s: GMM
» 1990s: discriminative GMM

» 2010: deep neural nets

# Handwriting Recognition and OCR
» Early 80's: features+classifier

» Late 80's: supervised convnet
» Mid 90's: convnet+CRF
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' In Several Fields, Feature Leaﬁiing Has_ C_“___used Re\,(.;-_i;lutions:

- Object Detection, Object Recognition, Scene Labeling

# Face & People Detection (1993-now)
» Supervised ConvNet on pixels (93, 94, 05, 07)

» Selected Haar features + Adaboost (2001)
» Unsup+Sup ConvNet on raw pixels (2011)

# Object Recognition
» SIFT/HoG+sparse+SVM (2005, 2006)

» unsup+sup convnet (2009, 2010)

» supervised convnet (2012)

—

# Semantic Segmentation / scene labeling
»unsup mid-lvl, CRF (2009, 10, 11, 12)
»supervised convnet (2008, 12, 13)




Basic Modules for Feature Lsarningx\.‘ |

@l Embed the input non-linearly into a high(er) dimensional space
» In the new space, things that were non separable may become separable

& Pool regions of the new space together
» Bringing together things that are semantically similar. Like pooling.

. Pooling
Non-Linear
— . [ Or "
Function :
Aggregation
Input | | Stable/invariant
high-dim

features
Unstable/non-smooth

features



Non-Linear Expansion = Pooling

@ Entangled data manifolds

Non-Linear Dim

Pooling.
Expansion, OOHES

Aggregation

Disentangling




Sparse Non-Linear Expan5|on ; Poollng

& Use clustering to break things apart, pool together similar things

Clustering, ,
L Pooling.
Quantization, Agoresation
Sparse Coding B5TE5
333
3 W
o

>
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Convolutional
Networks



Convolutional Network (_Con;vNet)

Input
/
/@ .
Convolutions

Conv.o.lutif)ns Pooling .Rectification Pooling Rectification
Rectification ~ Subsampling Subsampling

# Non-Linearity: half-wave rectification: out = max(O, in)
# Pooling: max, L2 norm, Lp norm....
# Training:

— Supervised (1988-2006),

— Unsupervised+Supervised (2006-now)



ConVoluti;nal Nets x

@ Are deployed in many commercial applications
» Check reading: AT&T 1996

» Handwriting recognition: Microsoft early 2000
» Face and person detection: NEC 2005

» Gender and age recognition: NEC 2010

» Photo tagging: Google and Baidu 2013

# Have won several competitions

» ImageNet LSVRC, Kaggle Facial Expression, Kaggle Multimodal Learning,
German Traffic Signs, Connectomics, Handwriting....

@ Are applicable to array data where nearby values are correlated
» Images, sound, time-frequency representations, video,

» volumetric images, RGB-Depth images,.....

@ One of the few deep models that can be trained purely supervised



. Early Hierarchical Feature Mo.del% for Visioh

# [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple cells
within a retinotopic neighborhood.

Us1 Ucq Us2

A4

ﬁ
s

Ug

“Simple cells”

“Complex
cellg”

input / ~ . I
layer 6[
contrast S
extraction / recugr]ltlon , pooling
ayer Multiple subsampling
convolutions
UM / masker

layer

Cognitron & Neocognitron [Fukushima 1974-1982]



The Convolutid?al Net Madel

(Multistage Hubel-Wiesel system) .

" Convolutions w/ Poaling: Convs: Pooling: Gonvs: . :
Local Divisive . Linear Object

o filter bank: 20xdxd 100x7x7 20x4xd 800x7x7 ” Cateqaries / Positions
Nomalzation 20x7x7 kernels kernels kernels kemels kernels Classiter %

+{ O hat (x,y)

"-'!‘:,{U_IL;FFIF-'-_F
T ‘b L 8
: ! yat (4y)
§2: 20x123x123 Nw2deed | -1
Input Image Normalized Image .
1X500x500 X500¢500 | Sh20emd = (| ol hat o
C1: 20494494 C3: 20x117x117 e L
“Simple cells” C5: 200x23x23
“Complex cells” '
# Training is supervised
# With stochastic gradient
descent
o~ [LeCun et al. 89]
Multiple subsampling eun et al.
convolutions \ /

[LeCun et al. 98]

Retinotopic Feature Maps



- Feature Ténsform

Normallzatlon — Filter Bank — Non- Llnejrlty > Poollng

Filter Non- feature Filter Non- feature )
Norm [ = = TP Norm [°¢ -»> -»> o (Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Stacking multiple stages of
» [Normalization — Filter Bank — Non-Linearity — Pooling].

# Normalization: variations on whitening
» Subtractive: average removal, high pass filtering

» Divisive: local contrast normalization, variance normalization

# Filter Bank: dimension expansion, projection on overcomplete basis
# Non-Linearity: sparsification, saturation, lateral inhibition....
» Rectification, Component-wise shrinkage, tanh, winner-takes-all

# Pooling: aggregation over space or feature type, subsampling

> 1 bX |
Z,-: e

. P P . .
X;; L,V X[ PROB:log




- Feature T(ansform

Normallzatlon — Filter Bank — Non- Llnejrlty > Poollng

Filter Non- feature Filter Non- feature )
Norm [ = = TP Norm [°¢ -»> -»> o (Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Filter Bank — Non-Linearity = Non-linear embedding in high dimension

# Feature Pooling = contraction, dimensionality reduction, smoothing

# Learning the filter banks at every stage

# Creating a hierarchy of features

# Basic elements are inspired by models of the visual (and auditory) cortex
» Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]

» Many “traditional” feature extraction methods are based on this
» SIFT, GIST, HoG, SURF...

# [Fukushima 1974-1982], [LeCun 1988-now],
» since the mid 2000: Hinton, Seung, Poggio, Ng,....
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" Convolutional Network (vintage 1990)

M filters = tanh — average-tanh — filters = tanh — average-tanh — filters = tanh
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' ”Mamstream object recogﬁltlon plpellne 2006 2012

IS not very dlfferent from Com/Nets

Filter - .Non-. L feat?re 1], Filter - .Non—. L, featl.lre L Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented Winner Histogram K-means Spatial Max Any simple
Edges Takes All (sum) Sparse Coding Or average (|assifier
T \/
Fixed (SIFT/HoG/...) Unsupervised Supervised

# Fixed Features + unsupervised mid-level features + simple classifier
» SIFT + Vector Quantization + Pyramid pooling + SVM

@ [Lazebnik et al. CVPR 2006]
» SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM

@ [Boureau et al. ICCV 2011]
» SIFT + Fisher Vectors + Deformable Parts Pooling + SVM

@ [Perronin et al. 2012]



Tasks'for Which Deep Convolutionat I\?ts are t‘he Best

# Handwriting recognition MNIST (many), Arabic HWX (IDSIA)

# OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
# Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)

# Pedestrian Detection [2013]: INRIA datasets and others (NYU)

# Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
# Human Action Recognition [2011] Hollywood II dataset (Stanford)

# Object Recognition [2012] ImageNet competition

# Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU)

# Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
# Speech Recognition [2012] Acoustic modeling (IBM and Google)

# Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

# The list of perceptual tasks for which ConvNets hold the record is growing.
# Most of these tasks (but not all) use purely supervised convnets.
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Slmple ConvNet Applications with State- of the Art Performance

# Traffic Sign Recognition (GTSRB) # House Number Recognition (Google)
» German Traffic Sign Reco Bench » Street View House Numbers

» 99.2% accuracy » 94.3 % accuracy

I.Ml..wl”ﬂ
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“Objéct Recognition [Krizhevsky, Sutskeier;'Hintqﬁ201 2]

@ Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4M FULL CONNECT 4Mflop 'ﬁ*‘g
i - | £
16M | FULL 4096/ReLU 16w .
37M FULL 4096/RelLU 37M = £
MAX POOLING =
442K CONV 3x3/ReLU 256fm 74\ | iy,
1.3M CONV 3x3ReLU 384fm 204 o
884K CONYV 3x3/ReLU 384fm 149M =z
MAX POOLING 2x2sub 22— 2%
LOCAL CONTRAST NORM ‘ =
307K CONV 11x11/ReLU 256fm 223\ ‘ s = e
MAX POOL 2x2sub — == -
LOCAL CONTRAST NORM L5 £z
e =
35K CONV 11x11/ReLU 96fm 105M i :
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*'Object Recognition: ILSVRC 20 12 results’
) e ||| e T = N\

# ImageNet Large Scale Visual Recognition Challenge
# 1000 categories, 1.5 Million labeled training samples

TASK 1 - CLASSIFICATION TASK2 - DETECTION

CNN  SIFT+FV SVM1  SVYM2  NCM CNN DPM-SVM1 DPM-SVM2
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Object Recognition [KrizhevSky, Sutske\f;er, Hinton 2012]

# Method: large convolutional net
» 650K neurons, 832M synapses, 60M parameters

» Trained with backprop on GPU

» Trained “with all the tricks Yann came up with in the
last 20 years, plus dropout” (Hinton, NIPS 2012)

» Rectification, contrast normalization,...

# Error rate: 15% (whenever correct class isn't in top 5)
# Previous state of the art: 25% error

# Has changed many people's opinion of ConvNets in
the vision community.

# Acquired by Google in Jan 2013
# Deployed in Google+ Photo Tagging in May 2013




motor scooter

Ieopa rd

starfish

container shi#;
ip

musnroom

erry

¥
ﬂ

mite container shi motor scooter leapard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

drilling platform golfcart Egyptian cat

lagascar cat

~ convertible
grille

pickup

beach wagon
fire engine

agaric
mushroom

jelly fungus

gill fungus
dead-man's-fingers

dalmatian

squﬁ?‘el monkey

grape

elderberry
ffordshire bullterrier
currant

spider monkey
titi

indri

howler monkey

Y LeCun

Object Recognltlon [Krlzhevskl Sutske‘ﬁer Hmton 2012]
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*.* " ConvNet-Based Google+ Photo Tagger

# Searched my personal collection for “bird”

4 € | 8 https://plus.google.com/u/0/photos/sez :
& academic.rese... &2 ArduinoBlog | Printrbot Talk F... FD FrenchDistrict... 3 Hacka Day

[ Y Seanch results

oy — —
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Another ImageNet-trained ConvNet lZeiler & kergus

2013] i

@ Convolutional Net with 8 layers, input is 224x224 pixels
» conv-pool-conv-pool-conv-conv-conv-full-full-full

» Rectified-Linear Units (ReLU): y = max(0,x)
» Divisive contrast normalization across features [Jarrett et al. ICCV 2009]

& Trained on ImageNet 2012 training set
» 1.3M images, 1000 classes

» 10 different crops/flips per image

& Reqularization: Dropout
» [Hinton 2012]

» zeroing random subsets of units

# Stochastic gradient descent
» for 70 epochs (7-10 days)

» With learning rate annealing




Object Recognition on-line demo [Z_eilei-r & Fergus 2013]

E

http://horatio.cs.nyu.edu

Image Classifier Demo - Chromium

|_] I/mage Classifier Demo
€ € | [ horatio.cs.nyu.edu w @ & By S &= 2
academic.rese... &2 Arduino Blog [ Printrbot Talk F... FD French District... [T]BeingBeoing ~ [ other Bookmarks

Image Classifier Demo Demo About Terms

Image Classifier Demo

Upload your images to have them classified by a machine! Upload multiple images using the button below or dropping them on
this page. The predicted objects will be refreshed automatically. Images are resized such that the smallest dimension becomes
256, then the center 256x256 crop is used. More about the demo can be found here .

| agree to the Terms of Use

Demo Notes

+ [If your images have objects that are not in the 1,000 categories of ImageMet, the model will not know about them.

+« Other objects can be added from all 20,000+ ImageMet categories (it may be slow to load the autocomplete results.. just wait a little ).
+ The maximum file size for uploads in this demo is 10 MB.

« Only image files (JPEG, JPG, GIF, PNG) are allowed in this demo .

+ You can drag & drop files from your desktop on this webpage with Google Chrome, Mozilla Firefox and Apple Safari.

+ Some mobile browsers are known to work, others will not. Try updating your browser or contact us with the problem.

+ All images for your current IP and browsing session are shown above and not shown to others.

+ This demo is powered by research out of New York University. Click here to find out more

+ If you encounter problems, please contact zeiler@cs.nyu.edu

Demo created by: Matthew Zeiler

NEW YORK UNIVERSITY © Copyright 2013
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Error %

Val
Top-1

Val
Top-5

Deng et al. SIFT + FV [7]
Krizhevsky et al. [12], 1 convnet
Krizhevsky et al. [12], 5 convnets
*Krizhevsky et al. [12], 1 convnets
*Krizhevsky et al. [12], 7 convnets

40.7
38.1
39.0
36.7

18.2
16.4
16.6
15.4

Our replication of [12], 1 convnet

41.7

19.0

1 convnet - our model

38.4 = 0.05

16.5 &= 0.05

5 convnets - our model (a)

36.7

15.3

1 convnet - tweaked model (b)

37.5

16.0

6 convnets, (a) & (b) combined

36.0

14.7




Features are generic: Ca_lte¢ih 256 ,@.

@ Network first 75 — —=
trained on 70

ImageNet. >l Stateoftheartwuth """""""

Ol A only6tra|n|ngexamples """""""

T s B b mmm e S i A
M Last layer Ssofl T SUSUUUUUSURI SOOI T —
chopped off Sasl ¥ L R T .

T T e P R

as-| e T R ——Our Model| =

—_— B0 etal

sopf S - Sohnetal |

@ Last layer
trained on
CalteCh 256: Tralnlng Images per— class

Acc % Acc % Acc % Acc %
kept fixed. Sohn et al. [16] 35 1 42. 1 45 7 47.9

3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]
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** 'Features are generic: PASCAL ‘OC 2012

o ['[EPa
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@ Network first trained on ImageNet.
@ Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

Acc %

Dining table
Dog

Horse
Motorbike
Person

Potted plant

Tv/monitor

# won

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In
PASCAL VOC Classification Challenge 2012,
[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized

hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification
Challenge 2012



model

*.Building a-ConvNet Model:

-- stage 1

model:

model:
model:

model:

add(nn.

add(nn.
add (nn.

add(nn.

-- stage 2

model:

model:
model:

model:

add(nn.

add(nn.
add(nn.

add(nn.

-- stage 3

model:
model:
model:
model:

add(nn.
add(nn.
add(nn.
add(nn.

-

Examﬁle In To_..-ﬁ&h7

nn.Sequential ()

filter bank -> squashing -> L2 pooling -> normalization
SpatialConvolutionMM(nfeats, nstates[1l], filtsiz, filtsiz))

Tanh())
SpatiallLPPooling(nstates[1l],2,poolsiz,poolsiz,poolsiz,poolsiz))

SpatialSubtractiveNormalization(nstates[1l], normkernel))
filter bank -> squashing -> L2 pooling -> normalization
SpatialConvolutionMM(nstates[1l],nstates[2],filtsiz,filtsiz))

Tanh())
SpatiallLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))

SpatialSubtractiveNormalization(nstates[2], normkernel))
2 fully-connected layers
Reshape(nstates[2]*filtsize*filtsize))
Linear(nstates[2]*filtsize*filtsize, nstates[3]))
Tanh())

Linear(nstates[3], noutputs))

- http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
— http://code.cogbits.com/wiki/doku.php (Torch7 tutorials/demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)



Convolutional Networks
For

Semantic Segmentation,

Scene Labeling/parsing




Applying a&onvNet o

Sliding Windows is Very Cheap!

. output: 3x3

96x96

mput:120x120

@ Traditional Detectors/Classifiers must be applied to every location on
a large input image, at multiple scales.

& Convolutional nets can be applied to large images very cheaply.

@ The network can be applied to multiple scales every half octave



Building a Deteﬂor/'R_f”ecognizer:

Replicated Convolutional Nets

& Computational cost for replicated convolutional net:
& 96x96 -> 4.6 million multiply-accumulate operations
¥ 120x120 -> 8.3 million multiply-accumulate ops
¥ 240x240 -> 47.5 million multiply-accumulate ops
¥ 480x480 -> 232 million multiply-accumulate ops

&® Computational cost for a non-convolutional detector
of the same size, applied every 12 pixels:

& 96x96 -> 4.6 million multiply-accumulate operations

& 120x120 -> 42.0 million multiply-accumulate
operations

¥ 240x240 -> 788.0 million multiply-accumulate ops
¥ 480x480 -> 5,083 million multiply-accumulate ops

< 96x96 window

= 12 pixel shift

- 84x84 overlap
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CorivNets for Pedestrian Detection,iFace Detéction

b
\__

GOOSSENS - N-ADAMS
OTLiB~COUTELIS=SoLE

Face [Vaillant et al IEE 1994] [Garcia et al PAMI 2005] [Osadchy et al JMLR 2007]
Pedestrian: [Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]
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anvNet Architecture M’ch Multi- -Stage Features

for Object Detectmni

& Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

» Pooled low-level features: good for textures and local motifs
» High-level features: good for “gestalt” and global shape

2040 9x9 :
Av Pooling

filtersttanh |, filter+tanh
68 feat maps

Input
78x126xYUV

1
7x7 filter+tanh, L2 Pooling \_) T
38 feat maps  3x3 subsampling output
Task Single-Stage features | Multi-Stage features | Improvement %
Pedestrians detection (INRIA) 14.26% 9.85% 31%
Traffic S1gns classification (GTSRB) [ 7] 1.80% 0.83% 54%
House Numbers classification (SVHN) [5] 5.54% 5.36% 3.2%

[Sermanet, Chintala, LeCun CVPR 2013]
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Pedestrian Detection: IN RIA Dataset MISS rﬁte VS falsé positives

Cun

e e e e e e TR

Area Under Curve [0, 1] FPPI
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[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]
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Results.on “Near Scale” Images (>80 pixels tall, no occ usions)

EO] EO]
© T o) | =— 71.89% VJ
% % = = = 58 19% FeatSynth
= = - = == 44.68% HOG
42.50% LatSvm-V1
——— 80 .34% \/J — 41 .48% HikSvm
10H = = =s5t1129%HOG | NN T o 10H ™ = =38883%Ps | ..
) —50.36% HikSvm ) —— 37 .61% HogLbp
45.29% MultiFtr 35.01% MultiFtr
37.78% LatSvm-V1 23.16% MultiFtr+CSS
33.23% MultiFtr+CSS s wm D0).24% ChnFirs
05 || === 18.22% HoglL bp 05 L 19.52% FPDW
) 16.85% LatSvm-V2 : : : ) ——18.76% ConvNet
— 14.63% ConvNet 17.91% LatSvm-V2
1 1 1 1 1 1 1 1 1 1
107 1072 107" 10° 10" 107 1072 107" 10° 10"
false positives per image false positives per image
1r R 1r
80 . 80 .
50 -- ET H . 50
AO o B N Ty SRR 40+
_30_,,p rrrrrrr DT 30
RO ‘ ‘ ‘ ‘ [
S 20f ‘ S 20}
@ e 87 17 % VJ @ :
é 64.70% LatSvm—V1 é —— 93.01% VJ
— 59 .23% HikSvm 81.29% LatSvm-V1
= = = 53.48% HOG = = = 73.55% HOG
1ok 50.98% MultiFtr+CSS| ... . . I E 10 || == 73.08% HikSvm | ... ... . ...
) 50.69% FPDW : : : ) 66.31% MultiFtr
50.32% MultiFtr : : : = = = 51.56% Pls
= == == 48.34% ChnFirs . . . 58.05% LatSvm-V2
- = = 46.01% Pls : : : 56.29% MultiFtr+CSS
05 || === 42.97% HoglLbp ‘ ‘ ‘ o5l 49.98% FPDW
) 40.57% LatSvm-V2 : : : ) — 49.95% ConvNet
m—— 39 26% ConvNet = = = 49 64% ChnFtrs
1 1 1 1 1 1 1 1 1 1
107 1072 107" 10° 10" 107 1072 107" 10° 10"

false positives per imaae false positives per imaae



miss rate

miss rate

.20

.10

.05

.80
.64
.50
.40

.30

.20

.10

.05

" Daimler

.30

| p=21790

L]

Results an “Reasonable” Images

—— O4.26% VJ

= mm == 59 .44% HOG
57.44% LatSvm-V1
56.94% MultiFtr

—— 56.85% HikSvm

— 49.04% HoglLbp
42.25% MultiFtr+CSS
37.90% LatSvm-Vv2

— 32.66% ConvNet

YV TUlv

(>50

.20

.10

.05

b

: P Y LeCun
pixels tall, few occlusions)

72.48% VJ
59.33% FeatSynth
45.98% HOG
43.83% LatSvm-V1
42.82% HikSvm

39.10% HoglLbp
36.50% MultiFtr
24.74% MultiFtr+CSS
22.18% ChnFtrs
21.47% FPDW
19.96% LatSvm-V2
19.78% ConvNet

1072 107" 10° 10
false positives per image

.80
.64
.50
.40

.30

——
- s mm
= = = 40.09% Pls
—
—
1

1072 107" 10° 10
false positives per image

‘TudBrussels
5=508

)
5_20 9‘,,,
e 89.89% VJ 3 : : ‘ : .
76.66% LatSvm-—V1 : s 94.53% VJ : *e
s 72.00% HikSvm : 90.22% LatSvm-V1 : i
= = = 54.23% HOG ~, s 82 54% HikSvm : : ;
60.74% MultiFtr«CSS| .. . . 4OH = = =7790%HOG | .. o
60.10% FPDW 73.42% MultiFtr
59.78% MultiFtr = = = 70.71% Pls
= = = 57.47% ChnFirs 69.59% LatSvm-V2
— 55.18% HoglLbp — 58.81% ConvNet
- = = 54.86% Pls 05 63.03% FPDW
50.89% LatSvm-Vv2 ) = mm = 50.33% ChnFtrs
——50.31% ConvNet : 59.49% MultiFtr+CSS :
1 1 1 1 1 1 1 1 1 1
107° 1072 107" 10° 10 107° 1072 107" 10° 10"

false positives per image

false positives per image



Y LeCun
Unsupervised pre-training with convolutional PSD

& 128 stage-1 filters on Y channel.

& Unsupervised training with convolutional predictive sparse decomposition




Y LeCun
Unsupervised pre-training with convolutional PSD

& Stage 2 filters.

& Unsupervised training with convolutional predictive sparse decomposition



http://www.torch.ch/
http://code.cogbits.com/wiki/doku.php
http://eblearn.sf.net/
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ConvNets for Image Segmentation
=4

# Biological Image Segmentation [Ning et al. IEEE-TIP 2005]

Inputimage Stereo Labels ~ ClassifierOutput
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-CobnvNet in Volumetric I“mage Segmentation
=4 \

& 3D convnet to segment volumetric images [Jain, Turaga, Seung 2007]
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Semantic Segmentation
o

# Labeling each pixel with the category of the object it belongs to

sw'm?c"
.’E .’ m%m ing Hf!" h“'ld' g

'I-ll!- 9 ok " huﬂ:l‘lgﬂﬁh 0

[Farabet et al. ICML 2012]



‘Scene Parsing/Labeli ng: ConvNet ‘réhite'

\

# Each output sees a large input Cntxt:
» 46x46 window at full rez; 92x92 at V2 rez; 184x184 at Vs rez

» [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

» Trained supervised on fully-labeled images

'L‘l‘ :
1
1
: D
|

™ 1

|+ ] 1
[T ¥ 1

1
bl
g 1 |
1

% Categories

Laplacian Level 1 Level 2 Upsampled

Pyramid Features Features Level 2 Features
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. Scene Parsing/Labelina: System Architecture

Dense
Feature Maps

ConvNet -
I XiBD S ¢ K02y (X565

Multi-Scale
Pyramid
(Band-pass Filtered) T~

@ntati on tree
A (1)

Original Image e g e =

e



" Method 1r majority over super=pixel regions

—: E»—E SR Majority
*i,. _3;,, ) Vote
1 1 ‘@Jﬁr?— '
=S R T Over
Superpixels

Superpixel boundaries

sasoyadAy Arepunoq [axid-1adng

Categories aligned

With region
boundaries

Input image

sV lmana

JONAUO)) J[BIS-INIA

“soft” categories scores

JITJISSE[O [BUOIIN[OAUO))

Features from

Convolutional net
(d=768 per pixel)  [Farabet et al. IEEE T. PAMI 2013]



- Method 2: optimal cover of_'pLg'ity___‘ tree”

T,{(/ik,Sk} o .
Distribution of

Categories within
Each Segment

T {Cr}

(o |
panning Tree
S, (G)  Spanning T
@ @ @ @ @ _ Frompixel

W Similarity graph

masking/pooling

FnCrk pooling O«

[Farabet et al. ICML 2012]



Scene Parsmg/Labellng Perfca'mance .

# Stanford Background Dataset [Gould 1009]: 8 categories

Pixel Acc. | Class Acc. | CT (sec.)
Gould ef al, 2009 [17] 76.4% : T0 to 600
Munoz et al. 2010 [37] 76.9% 66.2% 125
Tighe ef al. 2010 [46] 77 5% - 10 to 300s
Socher et al. 2011 [45] 78.1% . ?
Kumar ef al. 2010 [27] 79.4% - < 600s
Lempitzky ef al. 2011 [25] 81.9% 72.4% > 605
singlescale convnet 66.0% | 56.5% 0.35s
multiscale convnet 78.8 % 72.4% 0.68
multiscale net + superpixels 80.4% 74.56% 0.7s
multiscale net + gPb + cover | 80.4% 75.24% 61s
multiscale net + CRF on gPb | 81.4% 76.0% 60.5s

[Farabet et al., rejected from CVPR 2012]
[Farabet et al. ICML 2012] [Farabet et al. IEEE T. PAMI 201 3]
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" ScenesParsing/Labeling: Perfcg'mance--*’"*l-- _,

Pixel Acc. | Class Acc,

Ciu e al 2009 7] 775 : 2000
Tighe ef al. 2010 [+] 76.9% 29.4% 833 categories
raw multiscale net* 67.9% 45.9%

multiscale net + supurpixelﬁl 71.9% 50.8%
multiscale net + cover! 72.3% 50.8%
multiscale net + cover 78.5% 29.6%
Pixel Acc. | Class Acc.
Tighe et al. 2010 [*4] 66.9% 7.6%

o Barcelona dataset raw multiscale net! 37.8% 12.1%

8 [Tighe 2010]: multiscale net + superpixclsl 44.1% 12.4%

8 170 categories. multiscale net + cover’ 46.4% 12.5%

multiscale net + cover? 67.8"% 9.5%

[Farabet et al., rejected from CVPR 2012]
[Farabet et al. ICML 2012] [Farabet et al. IEEE T. PAMI 201 3]
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Scene Parsing/Labeling: SIFT Flow dataset (33 €ategories)

# Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 201 2]
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Scene Parsing/Labeling: SIFT Flow dataset (33 €ategories)

[Farabet et al. ICML 201 2]
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Scene Parsihg/Labeling

[Farabet et al. ICML 201 2]
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Scene Parsing/Labeling

[Farabet et al. ICML 201 2]
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Scene Parsing/Labeling

[Farabet et al. 2012]
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Scene Parsing/Labeling

[Farabet et al. 2012]
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Scene Parsing/Labeling

# No post-processing
# Frame-by-frame
# ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
» But communicating the features over ethernet limits system perf.




Temporal Cbnsistencyfi

@ Spatio-Temporal Super-Pixel segmentation
» [Couprie et al ICIP 2013]

» [Couprie et al JMLR under review]

» Majority vote over super-pixels

Temporally consistent segmentations S;(= S7), S2, and Sy
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Scene Parsing/Labeling: TemporaliConsistency

# Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICIP 201 3]
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*"NYU RGB-Depth v2: Indoor Scelies Data,,sfet

@ 407024 RGB-D images of apartments
@ 1449 labeled frames, 894 object categories

[Silberman et al. 2012]




NYU RGB-D Datasets

@ Captured with a Kinect on a steadycam

Laptop

/ﬁ:ﬂ Kinect N
[T

Infra-Red




Results
Class Multiscale MultiScl. Cnet
Occurrences | Convnet Acc. Farabet et al. (2013) | +depth Acc.

bed 4.4% 30.3 38.1
objects 7.1 % 10.9 8.7
chair 3.4% 44.4 34.1
furnit. 12.3% 28.5 42.4
ceiling 1.4% 33.2 62.6
floor 9.9% 68.0 87.3
deco. 3.4% 38.5 40.4
sofa 3.2% 25.8 24.6
table 3.7% 18.0 10.2
wall 24.5% 89.4 86.1
window 5.1% 37.8 15.9
books 2.9% 31.7 13.7
TV 1.0% 18.8 6.0
unkn. 17.8% - -

Avg. Class Acc. - 35.8 36.2
Pixel Accuracy (mean) - 51.0 52.4
Pixel Accuracy (median) : 51.7 52.9
Pixel Accuracy (std. dev.) - 15.2 15.2




@ Depth helps a bit

Results

» Helps a lot for floor and props

» Helps surprisingly little for structures, and hurts for furniture

Ground | Furniture | Props | Structure || Class || Pixel | Comput.

Acc. | Acc. | time (s)

silberman et al, (2012) | 68 0 | 42 | 39 |56 86| >3
Cadena and Kosecka (2013) | 87.9 | 641 | 310 | 778 | 652669 | 17
Multiscale convnet 68.1 | oLl [ 299 | 8.8 | 292 | 630 | 07
Multiscaletdepth convnet | 87.3 | 453 | 355 | 861 | 63.5 || 645 | 0.7

[C. Cadena, J. Kosecka “Semantic Parsing for Priming Object Detection in RGB-D Scenes”
Semantic Perception Mapping and Exploration (SPME), Karlsruhe 201 3]
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Architecture for indoor RGB-D Semanf&ic Segmeéntation

@ Similar to outdoors semantic segmentation method
» Convnet with 4 input channels

» Vote over superpixels

Input depth image

commnel

h-f.r\.‘ NI
it Rt imoge svEmeRiatin
I

labelmg
L(F, Ay
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Scene Parsing/Labelington RGB+Dgpth Images

Our results

mm wall mm books mm chair mm furniture mm sofa mm object mmTV
B bed mm ceiling mm floor pict./deco mw table ~~  mmwindow @ uknw

[Couprie, Farabet, Najman, LeCun ICLR 201 3]
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on RGB+Dgpth Iméages

Scene Parsing/Labeling

mm wall mm books mm chair mm furniture mm sofa mm object mm TV
mm bed wm ceiling mm floor pict./deco mm table mm window mm uknw
SR —.

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013]
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Labeling Videos

@ Temporal consistency

(a) Output of the Multiscale convnet trained using depth information - frame by frame

- 4 ' ' ‘ '

(h) Results smoothed temporally using Couprie et al. (2013a)

Couprie, Farabet, Najman, LeCun ICLR 201 3]
Couprie, Farabet, Najman, LeCun ICIP 2013]
Couprie, Farabet, Najman, LeCun submitted to JMLR]
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Semantic Segmentation on RGB+D In‘-_ﬁages andWideos

[Couprie, Farabet, Najman, LeCun ICIP 201 3]



Backprop in Practiceia

#l Use RelLU non-linearities (tanh and logistic are falling out of favor)

@ Use cross-entropy loss for classification

8@ Use Stochastic Gradient Descent on minibatches

@ Shuffle the training samples

@l Normalize the input variables (zero mean, unit variance)

@ Schedule to decrease the learning rate

#l Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

@ Use “dropout” for regularization
» Hinton et al 2012 http://arxiv.org/abs/1207.0580

# Lots more in [LeCun et al. “Efficient Backprop” 1998]

# Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miiller (Springer)
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Future Challenges

# Integrated feed-forward and feedback
» Deep Boltzmann machine do this, but there are issues of scalability.

# Integrating supervised and unsupervised learning in a single algorithm
» Again, deep Boltzmann machines do this, but....

# Integrating deep learning and structured prediction (“reasoning”)
» This has been around since the 1990's but needs to be revived

# Learning representations for complex reasoning
» “recursive” networks that operate on vector space representations of
knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng 2011]
# Representation learning in natural language processing
» [Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

# Better theoretical understanding of deep learning and convolutional nets

» e.g. Stephane Mallat's “scattering transform”, work on the sparse
representations from the applied math community....



*." Integrating Feed-Forward and ﬁeedbackf.

# Marrying feed-forward convolutional nets with
generative “deconvolutional nets”

» Deconvolutional networks
@ [Zeiler-Graham-Fergus ICCV 2011]

# Feed-forward/Feedback networks allow
reconstruction, multimodal prediction, restoration,
etc...

» Deep Boltzmann machines can do this, but there
are scalability issues with training

I

Trainable Feature
Transform

I

Trainable Feature
Transform

I

Trainable Feature
Transform

I

Trainable Feature
Transform

]
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Integrating Deep Learning and Str_uct}lre_d Prediction

Loes Function

# Integrating deep learning and structured

prediction is a very old idea L
» In fact, it predates structured prediction *”””<f

# Globally-trained convolutional-net + o Imﬁmf;‘::”* 63[°-‘1‘-"~E*[Ufli-"-t’-‘ 3
graphical models . 6\1;?55'?;7 N N

» trained discriminatively at the word level

"34" —ut Path Selector |

» Loss identical to CRF and structured Rrever intgpretaton
perceptron Gint
» Compositional movable parts model
. . . : f': Fecognitia
# A system like this was reading 10 to 20% w 11 H 1 Tamom
of all the checks in the US around 1998 eviter | Ll LS Trec
l Seg_l_pe-nmtion
[LeCun, Bottou, Bengio, Haffner “Gradient-Based Gaeg

Learning Applied to Document Recognition” [ Segmenier ]
Proceedings of the IEEE, 1998] | .-y_l
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