" YannLeCun

The Courant Institute of Mathematical Sciences

And Center for Neural Science

New York University

Yann LeCun

& The learning algorithm minimizes the loss function:

LW)=2, F(Y' ;W)= (min,E(Y',Z;W,))

& The columns of Wd are normalized

& Energy: E(Yi,Z;Wd):”Yi_WdZHZ_I_AZj|Zj|

@ Free Energy: F(Yi,' Wd):F<Zi):minZE(Yi,Z,'Wd)

Yann LeCun

& Inference: find Z that minimizes the energy for a given Y
E(Y,Z' ;W)=llY'-w,Z|F+a Y |2
Z'=argmin E(Y', z;W)

» For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

» This would be very slow for large scale vision tasks
» Also, the optimal Z are very unstable:

¢ A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University

,/ Solution: Predictive Sparse Decomposition (PSD) -

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=llY'=W ZI+|Z~g (W, Y +A 2 |z
g (W _,Y')=Dtanh (W,Y)

INPUT

Yann LeCun

& Inference by gradient descent starting from the encoder output
E(Y,Z)=[lY'=W,ZI"+|Z g, (W, Y +2 2. |z,

Z'=argmin E(Y', z; W)

Yann LeCun

=

"PS

& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(Wd, We) — Zi F (Yi; Wd’ We)
F(Y;W, W,)=minE(Y',z;W,, W)

Yann LeCun

t New York University

SD: Learning Algorithm

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University

j PSD: Encoder Architectures

& Simple: D.tanh(We.Y)
& Sophisticated Z(t) = shrink(We.Y - S.Z(t-1))
& For a discussion of best encoders, see [Gregor & LeCun, ICML 2010]

Yann LeCun

t New York University

R e e S S MBS T e e e T T TS T TN

Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University

e —————————

PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

& 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun

e e e
e e
A I T e R e TR A T
ﬁ!ﬁﬁﬁﬁﬂﬁﬁﬁﬁiﬁﬁﬁﬁ

G I Sl T LR R 5
e S S SRt
R S R S
e SR DS
gD e DL P

e R R
ﬁﬁ@ﬂﬂﬁmﬁﬁﬁﬂﬁﬁﬁﬁﬁ

gt
Eﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬂlﬂ

iteration no @

T —— —_— —_——

_Learned Features on natural patches: V1-like receptive fields

[S—— IR—|

Yann LeCun

t New York University

—————— — — —

Learned Features: V1-like receptive fields

& 12x12 filters
& 1024 filters

Yann LeCun * New York University

Classification Error Rate on MINIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder

. 10 3amples 100 Samples 1000 Samples
= (i [T Tewinicrg a5 : : . o :
= tJ1zarg
=== Twining
== "arirg Ape e ok
M a ' '
. gk
By gl
a& - - £ .
- & ' ' &
& " ' : &
I i T & : : T
£ 2 ' £
i ; - - 8o
i1 4 ' j ¢
i
' ' i
. . i Gk
k] i : I
9 Hobhd P48
| ooetE—a-00 4MF ¢ . Z"MA :
o] a kK
Hi [.2 e nk L8 a7 1.0 ne 0 1E e 2.7 iy e L4 0.5 E 07
RNZE ANZE FMZE

Yann LeCun

t New York University

Using PSD to Train a Hierarchy of Features

“——m_im

S —————— |

& Phase 1: train first layer using PSD

FEATURES

Yann LeCun

t New York University

| Using PSD to Train a Hierarchy of Features

m—_m“__.

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES

Yann LeCun

t New York University

P ——————— e ———

j Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES

Yann LeCun

t New York University

£S5 = B

’ Using PSD to Train a Hierarchy of Features

[

| ——————————S—S S|

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor
& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2" feature extractor

FEATURES

Yann LeCun

t New York University

_Using PSD to Train a Hierarchy of Features

BEp—

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

@ Phase 4: use encoder + absolute value as 2" feature extractor

& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES

Yann LeCun

t New York University

“Deep Learning”
m“aﬁzhf-

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

@ The “deep learning’” method was popularized by Hinton for training
‘“deep belief networks”’.

» DBN use a special kind of encoder-decoder architecture
called Restricted Boltzmann Machines (RBM)

& 1. Train each layer in an unsupervised fashion, layer by layer

& 2. Stick a supervised classifier on top, and refine the entire system with
gradient descent (back-prop) on a supervised criterion.

Yann LeCun * New York University

- Unsupervised Learning: Capturing Dependencies Between Variables

& Energy function: viewed as a negative log probability density

& Probabilistic View:
» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

vl |

& Energy-Based View:

» produce an energy function
II:E)(Y,W) s) AE(Y,W)

» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun

t New York University

e a—————

Unsupervised Learning: Capturing Dependencies Between Variables
| ——

& Energy function viewed as a negative log density

» Example: y = x"2

Yann LeCun * New York University

e

Energy <-> Probability

B

E(Y,W) x —log P(Y|W)

=<V

Yann LeCun

mm

Training an Energy-Based Model

M‘_’

& Make the energy around training samples low

& Make the energy everywhere else higher

AE(Y)

o—BE(Y.W)

fy e—BE(y,W)

P(Y,W) =

Yann LeCun

t New York University

Training an Energy-Based Model to Approximate a Density

RN R—————— ——————

make this big A P(Y)

—BE(Y,W) &
PY W) = J, e PRI +¢ : **

make this small

Maximizing P(YIW) on training samples l

Minimizing -log P(Y,W) on training samples

1
L(Y,W)=E(Y,W)+ Blog / —pEww) | A
Y

Yann LeCun

oW oW
& Gradient descent:

OL(Y,W) _OE(Y,W) / PlyIW)

OL(Y, W)
oW

Pushes down on the Pulls up on the T AY
energy of the samples energy of low-energy Y's

I

OE(Y, W)
— W I P(ylW
W [n /y (y|W) P

Yann LeCun

W — W —n

. How do we push up on the energy of everything else?

& Solution 1: contrastive divergence [Hinton 2000]

» Move away from a training sample a bit
» Push up on that

& Solution 2: score matching
» On the training samples: minimize the gradient of the energy, and
maximize the trace of its Hessian.
& Solution 3: denoising auto-encoder (not really energy-based)
» Train the inference dynamics to map noisy samples to clean
samples
& Solution 4: MAIN INSIGHT! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» Idea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun

t New York University

Restricted Boltzmann Machines Decoder
A= Distance ,
(basis fns)
[Hinton & Salakhutdinov 2005]
Encoder
. Distance
(predictor)
& Distance is negative dot product

& Y and Z are binary
E(Y,Z) = Dist|Y,Dec(Z)| + Dist|Z, Enc(Y)]

& Enc and Dec are linear

Enc(Y) = -W.Y Dist(Z,W.Y) = —§ZT.W.Y

1
Dec(Y)=-W?'.Z Dist(Y,E".Z) = ——YT wt.z
EY,Z)=-Z"WY F(Y)= —logz Z5 Wy

Yann LeCun

‘Non-Linear Dimensionality Reduction with Stacked RBMs

m—_m“__._

& [Hinton and Salakhutdinov, Science 2006]

Yann LeCun

- DBGHE‘EI-!
i [30] | g
w i ‘
: Top :
i REM | i
Sgiassm I 1 i 2000 l
[, g Twi-
! W, ! I | | 1000 |
R N TN Y |
|
I T o (B0 Corlu lmpme; |
1 I w’ 5 |
i 2000 | ks .
| | | |
I | I | l
i
i
REM i Encoder = . _E
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

& [Hinton and Salakhutdinov, Science 2006]

Fig. 2. (A) Top to bottom: A N
Random samples of curves from '
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by “logistic PCA” (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

Yann LeCun * New York University

Non-Linear Dimensionality Reduction: MNIST

h——.________,

& [Hinton and Salakhutdinov, Science 2006]

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

o0

Lo B L I T L R i

Yann LeCun

¢ New York University

Non-Linear Dimensionality Reduction: Text Retrieval
—————— F——

& [Hinton and Salakhutdinov, Science 2006]

Fig. 4. (A) The fracton of A .. c
retrieved documents in the i
same class as the query when o4
a query document from the

Autosncoder=100

Eurocpean Community

= 035
test set is used to retrieve other ﬁ 03 Intarbank markels monetaryeconamic
test set documents, averaged 3 o5)]
over all 402,207 possible que- =< o2 - LY
ries. (B) The codes produced r:? A

by two-dimensional LSA. (C) Disasters and

The codes produced by a 2000- 0.06 accidents
500-250-125-2 autoencoder. e R e e g
Number of retriesved documents 2
":-I' o
s o RS-, : 2
E . " TS -"+!.|-r : * - -.n'..:.
o . 5 el e
- | o 4T % ‘ L ¥Ry i
eading economic™ = -5,] YRy Legaljudicial
indicators . _?- B Oy 3 w
) L Y
. LI Lk -
i S Y, e
4 Read e Government
. a7 Mg i
Acoourtet }\:»w:_ﬁ bBorrowings
gamings ':*

Yann LeCun * New York University

Examples of LabelMe retrieval using RBMs
e [Torralba, Fergus, Weiss, CVPR 2008]

e 12 closest neighbors under different distance metrics

Inputimage _ Ground truth neighbors L2—Pixels Gist : 32-RBM

v L

LabelMe Retrieval Comparison of methods

1

g r

aar

o7

0a

(LR o

32—-LSH
32-boosting | |
32—-RBM .
1024—gist/kd| |
4096 —gist/kd
16384—qgist ||

04

03

02

2.1

% of 50 true neighbors in retrieval set

0 2000 10000 ___ 20.0000

Size of retrieval set

_Encoder-Decoder with Sparsity (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=llY'=W ZI+|Z~g (W, Y +A 2 |z
g (W _,Y')=Dtanh (W,Y)

INPUT

Yann LeCun

_The Main Insight [Ranzato et al. AISTATS 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» If few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University

y Limit the Information Content of the Code?
RO

@ Training sample

@ Input vector which is NOT a training sample

® Feature vector

INPUT SPACE L
o o o
° o
o o o
o o

Yann LeCun

EEATURE
PACE
(0] (0]
(0]
(0] (o]
o (0]
(0] (0]

t New York University

Why Limit the Information Content of the Code?

@ Training sample

@ Input vector which is NOT a training sample

@ Feature vector

Training based on minimizing the reconstruction error over

the training set

. 'llll ‘
IIII
"ll
1,
'y, "
ll,,”
iy,

\
(¢ W
W
W
W
W
w
w
W
."""lllllllllllIIlIIl||||||l““‘“““‘“‘ .

Yann LeCun

t New York University

y Limit the Information Content of the Code?

@ Training sample
@ Input vector which is NOT a training sample

@ FKeature vector
BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
(o)
(o) (o)
(o)
(o)
o) (o) o) i """""""mmm..........ﬂ..ml-u'"““““““““““““‘
(o) (o) (o) (¢) (<] (¢)

Yann LeCun

t New York University

y Limit the Information Content of the Code?

@ Training sample
@ Input vector which is NOT a training sample

@ Feature vector

IDEA: reduce number of available codes.

INPUT SPACE EEATURE
°© PACE
(o] ([(o) (0]
(o) ® (o) °
o ® o} ©
(o) (o) (o)

Yann LeCun

t New York University

— —— — — —

y Limit the Information Content of the Code?
RO

@ Training sample
@ Input vector which is NOT a training sample

@ Feature vector

IDEA: reduce number of available codes.

INPUT SPACE EATURE
o
o
o
o o o

Yann LeCun

t New York University

!M@

Why Limit the Information Content of the Code?
AL = * * oS —

@ Training sample
@ Input vector which is NOT a training sample

@ Feature vector

IDEA: reduce number of available codes.

INPUT SPACE
(0]
(<)
(0]
‘ mmummmlllll“‘"'““““““““‘“‘“ .
o © °

Yann LeCun

t New York University

‘ Sparsity Penalty to Restrict the Code

& We are going to impose a sparsity penalty on the code to restrict its
information content.

& We will allow the code to have higher dimension than the input

& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University

1.5

@ 2 dimensional toy dataset
» Mixture of 3 Cauchy distrib.

0.5

@ Visualizing energy surface
(black = low, white = high)

-0.5

[Ranzato 's PhD thesis 2009]

|
o 0.5

7 "PCA autoencoder sparse coding K-Means

nde uni pde units nde uni

Y —wZ|I Y —wZ|I

pull-up dimens. part. func. sparsity

decoder
energy

w7z
Y—WZ|F+AlZ

wz
Y —wZ||

1-of-N code

@ 2 dimensional toy dataset
» spiral

; @ Visualizing energy surface
(black = low, white = high)

‘ "PCA ‘autoencoder sparse coding K-Means

nde nni nde uni) code units) code uni

energy Y —wz|?

pull-up dimens. dimens. sparsity [-of-N code

Using PSD to learn the features of an object recognition system
[e i

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

& Learning the filters of a ConvNet-like architecture with PSD
& 1. Train filters on images patches with PSD
& 2. Plug the filters into a ConvNet architecture

& 3. Train a supervised classifier on top

Yann LeCun

t New York University

m — —

“Modern’ Object Recognition Architecture in Computer Vision
| —— - - - ’

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“shallow’’ classifier

Yann LeCun

t New York University

m

“State of the Art” architecture for object recognition

[— |
Jfimees Filter Non- feature Filter Non- feature -
A ey g — —> » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A HiStogram K_means Pyramid SVM With
Edges (sum)/ Histogram Histogram
\/ (sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University

Can't we get the same results with (deep) learning?

M‘m"l;,

Filter Non- feature Filter Non- feature o
R o o o s R o < . » Classifier
Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.
& Creates a hierarchy of features
& ConvNets and SIFT+PMK-SVM architectures are conceptually similar

& Can deep learning make a ConvNet match the performance of
SIFT+PNK-SVM?

Yann LeCun

t New York University

—_— — e e e e o]

: How well do PSD features work on Caltech-rl()l?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (Classifier |—»

Bank Linearity| |Pooling

SVM

[B .- EEEEE

Yann LeCun

t New York University

“Procedure for a single-stage system

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University

S e T

Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

—.@

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

—.@

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION

Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

e Classifier

@ Multinomial Logistic Regression 01|r__Pyramid Match Kernel SVM

64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% | 13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun

_Using PSD Features for Recognition
e —— R NNNNNNN——————

& Rectification makes a huge difference:

» 14.5% -> 50.0%, without normalization
»44.3% -> 54.2% with normalization

& Normalization makes a difference:
» 50.0 - 54.2

& Unsupervised pretraining makes small difference
& PSD works just as well as SIFT

& Random filters work as well as anything!
» If rectification/normalization is present

& PMK_SVM classifier works a lot better than multinomial log_reg on low-
level features

» 52.2% - 65.0%

Yann LeCun * New York University

Comparing Optimal Codes Predicted Codes on Caltech 101
R RRRNNNNNNNA————————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

» PSD features are more stable.

53
% 5ol ___ ___ __ i Feature SlgIl (FS)
Y] 5
. ' ' 1S an optimization
9 51 L N] p
o | | methods for
g 50 ESURRRRNRORRRNNY VO AU 4 Computlng
g | sparse codes
%49 —©-PSD Predictor [Lee...Ng 2006]
g | —©—=Regressor
é 48 L _e_ FS

47 ; | —©=PSD Optimal

0 0.05 0.1 0.15 0.2

Sparsity Penalty per Code Unit

Yann recun * New York University

_PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] R— PLI#) 0000 ______________ L P 000f ______________]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University

_PSD features are much cheaper to compute
[— S —————————-..SSSSE |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University

_How Many 9x9 PSD features do we need?
[— -S|

& Accuracy increases slowly past 64 filters.

55

o
-

B~
(#2)

B~
o

Recognition Accuracy

D
on

(o)
o

0 20 40 60 80
Number of Basis Functions

Yann LeCun

Tralnlng a Multi-Stage Hubel ‘Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun * New York University

\ .__.. Ly By Wy Wy Ny

ﬂ W ,r. N N

f”'__,:_ﬂp’ u'a '_,. '_,ig'

cfg:ﬂ'y&w';e'ﬂsw;cs 7

Hr a! 5“ ,_: ' _b _5@
;;_ﬂﬂ;. W _\‘:z !

CONVOLUTIONS Amwv.nmwv

,y,,,,% W

w.
B
—
o
o
=
=
-]
-4
=
o
2
i
L
Z
=

64@5x5

64@25x25

\

J

32@33x33

MAX/SUBSAMPLING (4x4)

\

W

CONVOLUTIONS (9%x9)

1)

32@132x132

_Multistage Hubel-Wiesel Architecture on Caltech-101

e

INPUT 3@140x140

Y (luminance)

Yann LeCun

‘ Multistage Hubel-Wiesel Architecture

& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University

ltebl iesel Architecture o

n ateh-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P>*%| — [256.F J5&

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University

m

Two-Stage Result Analysis
[—

& Latest result: 69.7% correct

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refinement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun * New York University

e

T e P T T T E T E T T

Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University

CLASSIFIER

Parzen Windows Classifier

w.
-
()
o
o
=
=
-]
-4
=
o
2
-
L
Z
-

256 features 1x1
4x4 subsampling

6x6 pooling

>_om + no:ﬂ.mwn Zo_,:: + _uoo__:@ + Uoé:mm::_u__:@

AR ﬂ.w \ J._.@w_ ;
.:ﬁmﬁm_:
ga???mﬂ_ﬂﬂgli

Abs + Contrast Norm + _uoo__:@ s Downsampling

\
N

Filter Bank + Tanh + Gain

|

64 features 75x75

64 filters
9x9 kernels
STAGE 1

Input

high-pass filtered
contrast-normalized
83x83 (raw: 91x91)

S |
)
© pum|
S
-
=
)
~
S
>
—
)
=
70!
© |
>
o
Q
=
=
© pum(
=
S
S
=
—
v
£
~
—
S
>
S
.mO.
e :
=

Yann LeCun

MNIST dataset

@ 10 classes and up to 60,000 training samples per class

ARNSMNO R~

A NN SR LOXQ

=M IO
ST N N A 3 e TR RN
TN D (N0~ (DT
QYHUORXWORWND
e X ©

MNIST dataset

@ Architecture

@ U'U™: 0.53% error (this is a record on the undistorted MNIST!)
I
& Comparison:RR Versus- and RW

Classification error on the MNIST dataset

12_ ...
11__ ...
oL N e Supervised taining ofthe whole network |
] #\ ... —4&— Unsupervised training of the feature extractory.
T R N e e e — <+ — Random feature extractors

6

5

4

w

% Classification error

0.6

05 | | |
300 1000 2000 5000 10000 20000 40000 60000

Size of labelled training set

Why Random Filters Work?

R R BN
ER O EE R T

e SR e
e e o G
T i S B e

HEREEREE ey
NS EERE Aaar
EETENERERN o
EEENIEET a7
R EDMNENE febELE
SEREEENE Bk
HERRENES el
RSEEEEES e

[

m‘&;;

"The Competition: SIFT + Spa

& Replacing K-means with Sparse Coding
» [Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

rse-Coding + PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14 70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80 81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60 66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 6419 £0.84 80.89 +£0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088 — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool + kernel SVM 62.85 £1.22 7027129 83.15x0.35
SP + sparse codes + max pool + kernel SVM 64.62 054 T1.81=0.96 84.25+0.35
SP + sparse codes + max pool + linear 64.71 £ 1.05 T71.52=x1.13 83.78 £0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM ~ 69.03=1.17 7572=1.06 84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 08.78 £ 1.09 7h14x 086 84411026

Yann LeCun

t New York University

Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g

—
NORB Generlc ObJect Recognltlon Dataset

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:
gl 18 azimuths

i O to 350 degrees every 20) | = 2
detgrees : ’ 3.,— “3: 1 »& /ﬁ % ﬁj @ g "E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University

: : : : : : —e—FCSG'P ':R R
anf NG e T

.+ No normallzatlon L —>»—Frg- -P, Uy
35<k& """""" “o e R - P |:|:§+ R+:I M
A

. g : : - —=—Fesa”
RN R andom'ﬁlt‘ers """ | e Fess

S DA “*& """"""" R R R T Frss ™ Pans

ahs
al:-s_
-P, (RR)]
- P, (Ut Uy |

abhs

/

2
VIS VY Ry
= =2 = =

/
3

20 AN R e ----- Sup fllters -------- R =
Y-S A Unsup+Sup filters
15_ :.. —..__.__6_--_.--—-

error rate

o~ o m 4O
I
)
|

20 a0 100 200 a0o 1000 2000 4860
number of training samples per class

Yann LeCun

t New York University

/Learning To Approximate

Sparse Coding

Karol Gregor, Yann LeCun

Sparse Coding with ISTA (Iterative Shrinkage and Thresholding Algorithm)

T — [E———————-GS

& ISTA/FISTA: converges to optimal sparse code

x > We w(—l-\ > nl >Z

N
A

Yann LeCun

t New York University

e

Time unrolling of ISTA

& ISTA/FISTA: converges to optimal sparse code

X = We T / /

A

Yann LeCun

m@m

LISTA vs ISTA/FISTA
m—ﬁnﬁ.“_‘,; =
CITOT
X X x
X 9 P <
10 + 8 X
1
: @ o ®
2 . ° o
@
I - %< FISTA (4x) ®
X FISTA (1x) ®
0.5 ®
® LISTA (4x)
® LISTA (1x)
0 1 2 3 5 7 ter

Yann LeCun

t New York University

LISTAwith partial mutual inhibition matrix

m““_‘_,“; R ———
error
.]
L ®
4 |
35+ ®
[
@
3 m
o B ® —
@ @
25 F B ®
®
] . |
2 -|m dim reduction (4x) ®
® elements removal (4x) ® -
% dim reduction (1x) o 4 7
1.5 -|® elements removal (1x) e
| | | | | | | Cf
0.01 0.02 0.05 0.1 0.2 0.5 1

Yann LeCun * New York University

m‘%" ",;—,ﬁm

LcoD (iteration = number of updated components)
| —— N

R ———— |
error
< X CoD (4x)
X CoD (1x)
50| X @O LCoD (4x)
00 LCoD (1x)
X X
X X
10 |- X X
X X
5: ° X
® X
2 - ® ® X
o
1 ® Q -
0.5 F o ° O
@) o
0.2 X
O
| | | | | | | | iter
0 1 2 5 10 20 50 100 200

Yann LeCun

t New York University

[Kavukcuoglu et al. CVPR 2008]

Yann LeCun

%

Learning Invariant Features [Kavukcuoglu et al. CYPR 2009]
|TTTTTTTTTTTTTTRRSANNNI——_—_—_—_—_—_—_—a——s—mss—ssS,S

M

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

FEATURES

Yann LeCun

t New York University

. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)

» 1. Apply filters on a patch (with suitable non-linearity)

» 2. Arrange filter outputs on a 2D plane

» 3. square filter outputs

» 4. minimize sqrt of sum of blocks of sauared filter outnuts

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

N\

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
= ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z Define pools and enforce sparsity across
pools

Yann LeCun

t New York University

2

Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input IH

» For some it's translations,
for others rotations, or
other transformations.

Yann LeCun * New York University

—— |

Pinwheels?
| —

Yann LeCun

t New York University

~Invariance Properties Compared to SIFT

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images

» Left: normalized distance as a function of translation

» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT

rotation 0 degrees rotation 25 degrees

.-'{J' TR R R} }

EAAY
N
B
%

0.a

=

o
o
12

o
=

o o

2

Normalized MSE
Normalized MSE

o
=
T
=4
r.anln

- %= 8IFT non rot. inv,
- SIFT

~<1- Qur alg. non inv.

—+— Qur alg. inv.

=

o
=
.

o
%)

=]
ha

I I L _ I I L 1 I
o 12 14 16 4] 2 4 a 12 14 16

Yann LeCun

t New York University

& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqgr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1

o
;unnuul. W

Pl N

W [nh ==
T

4

n
u‘!

“n [T

7

1

unsupervised invariant feature extractor

Maps of
Features
o
Object
: | f‘ Category
o=
supervised
classifier

t New York University

Reognitio ucy
R R EEEEEE———

» A/B Comparison with SIFT (128x34x34 descriptors)
» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling
» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Reallltina featiire mang are enatiallv amnnthed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vam | IPSD (120x120) 65.5 T,

e

Recognition Ac
mﬁ R ——

curacy on Tiny Images & MNIST

» A/B Comparison with SIFT (128x5x5 descriptors)
» 32x16 topographic map with 16x16 filters.

Yann LeCun

Performance on Tiny Images Dataset

Method Accuracy (%)
I[PSD (5x5) 54
SIFT (5x5) (non rot. inv.) 33

Performance on MNIST Dataset

Method Error Rate (%)
I[PSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5

Learning fields of

Convolutional Filters

Yann LeCun

Convolutional Training
[

& Problem:
» With patch-level training, the learning algorithm must
reconstruct the entire patch with a single feature vector

» But when the filters are used convolutionally, neighboring
feature vectors will be highly redundant

welghts (-0,2828 - 00,3043

Yann LeCun

m%

_Convolutional Sparse Coding
| ——

& Replace the dot products with dictionary element by convolutions.

» Input Y is a full image
» Each code component Zk is a feature map (an image)
» Each dictionary element is a convolution kernel

@ Regular sparse coding F(Y,7Z) = ||Y — Z Wi Zi||* + « Z | Z}|
k k

@ Convolutional S.C. E(Y,Z) = [|[Y =Y Wi * Zi||* +) |Zi]
k k

k Wk I

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Yann LeCun

t New York University

. Convolutional Training

& Problem with patch-based training: high correlation between outputs of
filters from overlapping receptive fields.

IR == T ST N
A= - '“-"'-1"'""1.1"-"4 II|."l.
| | |.. Wil A= ==

2 " SR Oy

Yann LeCun

nversity

Convolutional Training
S -

Yann LeCun

t New York University

m T ———— _

Conyvolutional Training

& Filters and Basis Functions obtained with 16, 32, and 64 filters.

» Smooth shrinkage encoder, coordinate gradient descent
inference

Yann LeCun

t New York University

m&

_Preliminary Results on C-101
| —

& C-101, 30 training samples/category

& Single Stage: 64 filters, 9x9 — tanh or shrinkage — abs — local contrast
normalization — 10x10 pooling — 5x5 subsampling — multinomial logistic

regression
& With patch-level unsupervised training (tanh):
& With convolutional unsupervised training (tanh):
& With patch-level unsupervised training (shrinkage):
& With convolutional unsupervised training (shrinkage):
& Two Stages:
& With patch-level unsupervised training (tanh):

& With convolutional unsupervised training (tanh):

Yann LeCun

52.2%
56.0%
53.0%
57.0%

65.5%
69.7 %

t New York University

[Gregor and LeCun, arXiv.org 2010]

Yann LeCun

“Training Slgi;:i\ex‘a:ﬁsk‘v_vrtﬁocal Rexcgi)t;;:‘?Tjjs

_over Large Input Images

& Training on 115x115 images. Kernels are 15x15

Yann LeCun * New York University

Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels

h____;

F o

»
N
5
\
k.
iy
k
s
4
¥
/
/
Iy
i
-
il

Yann LeCun . * New York University

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)

119x119 Image Input
100x100 Code
20x20 Receptive field size

sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology
Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

- Same Method, withTraining at the Image Level (vs patch)

& Color indicates orientation (by fitting Gabors)

Yann LeCun * New York University

Yann LeCun

DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

i@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun

t New York University

—1—“‘#.-

e —— o

Camera image ” Detected obstacles (red)

Yann LeCun * New York University

s — — — == == > rrrrees=e————

Navigating to a goal is hard...

h—-___*

stereo perspective human perspective

PEEmETTTTTTTT T

especially in a showstorm.

Yann LeCun * New York University

m =

| Self-Supervised Learning

& Stereo vision tells us what nearby obstacles look like

& Use the labels (obstacle/traversible) produced by stereo vision to train a
monocular neural network

& Self-supervised ‘‘near to far”’ learning

Yann LeCun

t New York University

Long Range Vision: Distance Normalization

: Pre-processing (125 ms)

e Ground plane estimation
e Horizon leveling

e Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized 1image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
m 4,1m to 11,3m, scalet &,7

net@SCALE Page 116

Technologies, Inc.

NEW YORK UNIVERSITY

Convolutional Net Archltecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> S classes
100 features per

3x12x25 input window J

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,
36-500 pixels wide

W‘E‘LSCALE Page 117

Technologies, Inc.

NEW YORK UNIVERSITY

Convolutional
Net Architecture

100@25x121

20@30x125

MAX SUBSAMPLING (1x4)

F= PR ~E =
O it 2N

20@30x484
i [e Pl s e e
3@36x484
YUYV input

net(®SCALE T i

Technologies, Inc.

NEW YORK UNIVERSITY

Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 119

Technologies, Inc.

NEW YORK UNIVERSITY

Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. E!I!.‘Eli!
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 120 NEW YORK UNIVERSITY

oooooooo gies, Inc.

Long Range Vision Results

' - 3 =

“Inputimage &

net@SCALE Page 121

Technologies, Inc.

NEW YORK UNIVERSITY

Long Range Vision Results

Classifie

“ : .‘. ?“‘; : | & .‘ ;’ : 3 - \.#d‘- : : ‘
s ot AR T i &# ’ e gt &
o Labels: *.. -~ Classifier Output
G . '-. . “:-.-"._‘ - ‘%‘ . ‘_:/ 2 v .-. 4 ‘ b -~y

»” .i N

-

net(SCALE
Technologies, Inc.

Long Range Vision Results

Stereo Labels Classifier Output

inputimage. - ~ Stereolabels - - Classifier Output

net(SCALE

net(3>)SCALE

Technologies, Inc.

» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

Fage 7252 E— N Bl NEW YORK UNIVERSITY

Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

“ NEW YORK

UNIVERSITY

Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network

+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY

Technologies, Inc

+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

1 e mg 8
. B e k" sl

FarOD Stereo: Input labels to Neural Network

i

E —

T

Technologies, Inc

.. NEW YORK UNIVERSITY

Error rate (%) <

[
w

o

Comparing
- purely supervised

- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binar labels

_Feature Learning for traversability prediction (LAGR)

Comparison of Feature Extractors on Groundtruth Data

belvoir

sSwri

.bf
.supervised
utoencoder

utoenc + sup
rLIM

gPrLIM + sup
[No learning

orest trails 'dry woods coastal NJ

open lawn ‘man-made AVERAGE

. Collaborators |

@ Current PhD students:
» Y-Lan Boureau, Koray Kavukcuoglu, Pierre Sermanet

@ Former PhD students:
» Raia Hadsell, Fu-Jie Huang, Marc'Aurelio Ranzato

& Postdocs and Research Scientists
» Clément Farabet, Karol Gregor, Marco Scoffier

& Senior Collaborators

» Rob Fergus (NYU): invariant feature learning
» Eugenio Culurciello (Yale): FPGA/ASIC design
» Yoshua Bengio (U. Montreal): deep learning
» Leon Bottou (NEC Labs): handwriting recognition

» Jean Ponce (ENS/INRIA), Francis Bach (ENS/INRIA): sparse
coding.

Yann LeCun * New York University

. The En

—

Yann LeCun

t New York University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Examples of LabelMe retrieval using RBMs
	LabelMe Retrieval Comparison of methods
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132

