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“Deep”” Learning: L.earning Hierarchical Representations
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Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

& Representations are increasingly invariant as we go up the layers

& using multiple stages gets around the specificity/invariance dilemma

Yann LeCun
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& We can approximate any function as close as we want with shallow
architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa
& Deep learning machines
K K-—1 0
y=FWH FWELF(.FW.X)..)))

& Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less
“hardware”

& We need an efficient parameterization of the class of functions that
are useful for “AI” tasks.

Yann LeCun
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W hy are Deep Architectures More Efficient?
R R ——————TT

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”’]

& A deep architecture trades space for time (or breadth for depth)

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2~N).....

Yann LeCun
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“Strategies (a parody of [Hinton 2007])

& Defeatism: since no good parameterization of the ““Al-set” is available,
let's parameterize a much smaller set for each specific task through
careful engineering (preprocessing, kernel....).

& Denial: kernel machines can approximate anything we want, and the VC-
bounds guarantee generalization. Why would we need anything else?
» unfortunately, kernel machines with common kernels can only
represent a tiny subset of functions efficiently

& Optimism: Let's look for learning models that can be applied to the
largest possible subset of the Al-set, while requiring the smallest amount
of task-specific knowledge for each task.

» There is a parameterization of the Al-set with neurons.

» Is there an efficient parameterization of the Al-set with computer
technology?

& Today, the ML community oscillates between defeatism and denial.

Yann LeCun
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& Convolutional Networks:

» [LeCun et al., Neural Computation, 1988]
» [LeCun et al., Proc IEEE 1998] (handwriting recognition)

& Face Detection and pose estimation with convolutional networks:

» [Vaillant, Monrocq, LeCun, IEE Proc Vision, Image and Signal
Processing, 1994]

» [Osadchy, Miller, LeCun, JMLR vol 8, May 2007]

& Category-level object recognition with invariance to pose and lighting

» [LeCun, Huang, Bottou, CVPR 2004]
» [Huang, LeCun, CVPR 2006]

& autonomous robot driving
» [LeCun et al. NIPS 2005]

Yann LeCun
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: ep Ssed Learning is Hard

& The loss surface is non-convex, ill-conditioned, has saddle points, has
flat spots.....

& For large networks, it will be horrible! (not really, actually)

& Back-prop doesn't work well with networks that are tall and skinny.
» Lots of layers with few hidden units.

& Back-prop works fine with short and fat networks

» But over-parameterization becomes a problem without
regularization

» Short and fat nets with fixed first layers aren't very different
from SVMs.

& For reasons that are not well understood theoretically, back-prop
works well when they are highly structured

» e.g. convolutional networks.

Yann LeCun
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun

t New York University



_The Multistage Hubel-Wiesel Architecture |
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m =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX
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& QUESTION: How do we
find (or learn) the filters?

..
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tion from Biology: Convolutional Networ

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i dense features: features detectors applied everywhere (no interest point)
ia®@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun
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Convolutional Net Architecture
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L 2 Layer 3 Layer 4 Layer >
input Laver | W 12@10x10 Y 100@1x1
1 @32x32 6@28x28 6@14x14 12@5x%5

Layer 6: 10
.. 10
2x2 5x5 2x2

/ .
5x5 convolution
i convolution ~
convolution pooling/ pooling/
subsampling subsampling

il Convolutional net for handwriting recognition (400,000 synapses)

i@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

i@ Supervised gradient-descent learning using back-propagation

ia@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun
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i@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

S
~
O
Q
L
S
8
>



M

Results on MNIST Handwritten Digits
RO

CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU
3-layer NN, 500+150 HU
3-layer NN, 500+150 HU
3-layer NN, 5004300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Conv. net LeNet-5,

Boosted LeNet-4

Conv. net, CE

Comv net, CE

Yann LeCun

DEFORMATION PREPROCESSING

Affine

Affine

Affine

Affine
Elastic
Elastic

Affine
Affine
Affine
Elastic

none
deskewing

deskewing

none

deskewing

deskew, clean, blur
deskew, clean, blur
shape context feature
none

none

subsamp 16x16 pixels
none

deskewing

deskewing

none

none

deskewing

none

none

deskewing

none

none

none

none

none

none

none

subsamp 16x16 pixels
none

none

none

none

none

none

ERROR (%)
12.00
8.40
7.60
3.09
2.40
1.80
1.22
0.63
3.30
3.60
1.10
1.40
1.10
1.00
0.80
0.68
0.56
4.70
3.60
1.60
2.95
2.45
1.53
1.60
1.10
0.90
0.70
1.70
1.10
0.95
0.80
0.70
0.60
0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. IEEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, ML) 2002
DeCoste and Scholkopf, ML) 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
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-Some Results on MNIST (from raw images: no preprocessing)

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simardetal., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 040  Simard et al., ICDAR 2003

Note: some groups have obtained good results with various amounts of preprocessing
such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf])

hand-designed feature representations (e.g. 0.63% with “shape context” and nearest neighbor [Belongie]

Yann LeCun * New York University
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‘ Recognizing Multiple Characters with Replicated Nets
|
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Recognizing Multiple Characters with Replicated Nets
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Handwriting Recognition

540 1114
1 1 1 441

5 4 0

SEfOgon  APARIRERE

Il"'!l [

b’ "r{. ; '”"l
- 3514 |

gl?tr:)rdt_"s 71 88 3 55 114
f i EESsailile

Yann LeCun



Face Detection and Pose Estimation with Convolutional N ets
Ms - IS S — -

& Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness
and contrast.

& 2" phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
_'“:==—--_—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling  connection
Canvalutions Convolutions

Yann LeCun
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Face Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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plying a ConVNet;1\Sliding Winfd;\—vsis Very Cheap! .
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output: 3x3

96x96

input: 120x120

@ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

i@ Convolutional nets can replicated over large images very
cheaply.

@ The network is applied to multiple scales spaced by 1.5.

Yann LeCun

t New York University



Replicated Convolutional Nets

SS==——==—=————

i Computational cost for replicated convolutional net:
il 96x96 -> 4.6 million multiply-accumulate operations
il 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
i 480x480 -> 232 million multiply-accumulate operations

i@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

il 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
il 480x480 -> 5,083 million multiply-accumulate operations

<— 96x96 window
< ]2 pixel shift

84x84 overlap




Geneﬂric"\()bject Detection and Recognition

with Invarlance to Pose and Illumlnatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g et;rzeSé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University
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Data Collection, Sample Generation
| SN

Image capture setup

Objects are painted green so that:
- all features other than shape are removed
- objects can be segmented, transformed,

and composited onto various backgrounds

Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University



‘ extured and Cluttered Datasets
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New York University

First 60 eigenvectors (EigenToys)E

10NS
9216
= 1024
=95

Representat
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| VAS

Normal

-

Experimen

i@ 1 - Raw Stereo Input: 2 images 96x96 pixels input dim. = 18432
i@ 4 - PCA-95 (EigenToys): First 95 Principal Components input dim.

i@ 2 - Raw Monocular Input:1 image, 96x96 pixels input dim.
i@ 3 — Subsampled Mono Input: 1 image, 32x32 pixels input dim
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Convolutlonal Network

L 3
et Layer 6
24@18x18 Layer 4
Stereo Layer 1 YA @6x6 Layer 5 Fully
input 8@92x92 Layer 2 100 connected
2@96x96 8@23x23 (500 weights)

/v

6x6
5x5 4x4

. subsampling convolution 3x3 .
convolution convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

i 90,857 free parameters, 3,901,162 connections.

ial The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun * New York University
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Alternated Convolutions and Subsampling s T [P
e ——— e e— A i == -
L I -
g 1 =K
“Simple cells” b L g -.g.““‘
“Complex cells” E ;E
o iy
LA,

Averaging
Multiple subsampling
convolutions

1 & :
P i = 2
il & y

O NErE oo

i@ Local features are extracted
everywhere.

= 1 &
| \

ML
e

Foom= 0.6, Thres=-1.0, f on , 05=40, mv

=
r

=

H
T

i@ averaging/subsampling layer
builds robustness to variations in
feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun



Normalized-Uniform Set: Error Rates

B
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@@ Linear Classifier on raw stereo images: 30.2% error.
@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@ K-Nearest-Neighbors on PCA-95: 16.6% error.
@ Pairwise SVM on 96x96 stereo images: 11.6% error
@ Pairwise SVM on 95 Principal Components: 13.3% error.

@@ Convolutional Net on 96x96 stereo images:  5.8% error.

-k g =g g D
s+ 3 61358 &%
20 eI S S PR
C e COC R PV S

Training instances Test instances

Yann LeCun * New York University




_Ndrmalized-Uniform Set: Learning Times

wjlil; NE—
SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
i 291,600 tereo pairs for training, 58,320 for testing

@ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

- 291 600 training samples, 58 320 test samples

& SVM with Gaussian kernel

@ Convolutional Net with binocular input:
& Convolutional Net + SVM on top:

@@ Convolutional Net with monocular input:
@@ Smaller mono net (DEMO):

@ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University



\J ittered-Cluttered Dataset

e ==

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
C'=40 C=1
OU CH!/ The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

don't seem to help it works!

Yann LeCun




What's h K-NN and SVMs?

m&‘xii, e,

g Both are “shallow” architectures

@ K-NN and SVM with Gaussian kernels are based on matching global templates

i@ There is now way to learn invariant recognition tasks with such naive architectures
(unless we use an impractically large number of templates).

i@ The number of necessary templates grows
exponentially with the number of dimensions
of variations.

i@ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background
texture, background clutter, .....

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




Examples (Monocular Mode)
\77 S N

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal
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Learned Features
m‘ e e
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xamples (Monocular Mode)
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Examples (Monocular Mode)
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Examples (Monocular Mode)

S . = —=

Yann LeCun

t New York University



Examples (Monocular Mode)
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Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University
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Examples (Monocular Mode)
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Foom= 0.7, Threshold= -1.8, filter on

Yann LeCun * New York University
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Thrs= 0.5, f on , 05=40, nwin=23616

animal
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Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance
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Zebra Fish

: Convolutional Nets for Counting/Classifying

10 head, & straight, 8 curwved 6 head, 4 straight, 5 curved & hesad, 1 sztraight, & curved

F g

(A @%_'

-
R 1 &
.

.
4 =g

Head — Straight Tail — Curved Talil
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C. Elegans Embryo PHenotyping
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&P Analyzing results for Gene Knock-Out Experiments




'C. Elegans Embryo Phenotyping
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C. Elegans Embryo Phenotyping

|

&P Analyzing results for Gene Knock-Out Experiments
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Convolutional Nets For Brain Imaging and Biology
[ ——— —_—

& Brain tissue reconstruction from slice images [Jain......Denk, Seung 2007]

» Sebastian Seung's lab at MIT.
» 3D convolutional net for image segmentation

» ConvNets Outperform MRF, Conditional Random Fields, Mean Shift,
Diffusion,...[ICCV'07]

Yann LeCun

t New York University
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_Convolutional Nets for Image Region Labeling
| S—— — .

& Long-range obstacle labeling for vision-based mobile robot navigation
» (more on this later....)
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_Industrial Applications of ConvNets

@ AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& Vidient Inc

» Vidient Inc's "SmartCatch” system deployed in several airports
and facilities around the US for detecting intrusions, tailgating,
and abandoned objects (Vidient is a spin-off of NEC)

& NEC Labs
» Cancer cell detection, automotive applications, kiosks

& Google
» OCR, face and license plate removal from StreetView

& Microsoft
» OCR, handwriting recognition, speech detection

& France Telecom
» Face detection, HCI, cell phone-based applications

& Other projects: HRL (3D vision)....

Yann LeCun

t New York University



e e oo

| FPGA Custom Board: NYU ConvNet Processor

h———ﬁ““_‘l = R ———————— |

m —

& Xilinx Virtex 4 FPGA, 8x5 cm board [Farabet et al. 2009]
» Dual camera port, Fast dual QDR RAM,

& New version being developed with Eugenio Culurciello (Yale EE)

» Full custom chip
» Version for Virtex 6 FPGA

Yann LeCun

t New York University
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OIIVN et/Vision Processor (FPGA and ASIC)

& Reconfigurable Dataflow Architecture
[Farabet et al. 2010]
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VMOdels Similar to ConvNets

m‘z;—h

& HMAX

» [Poggio &
Riesenhuber
2003]

» [Serre et al.
2007]

» [Mutch and Low
CVPR 2006]

& Difference?
» the features are

small Scale

Large Scale
not learned
. Input Image 51 (o 52 c2
' HMAX 1S Very gray-value Apply battery of Gabor Lacal maximum over Filter (L2 RBF) with N previously The C2 values
filters. Here we see position and scale. seen patches {Pi | i=1.NL These are computed by
° ° filtration at 8 scales and patches are in C1 format. Each taking a max
Slmllal' tO 4 arientations (c olor orientation in the patch is matched | overall 52
. , indicates arientation), to the corresponding arientation in | associated with
m The full model uses 16 C1. The result is one image per C1 | a given patch.
FUkuShl a S scales, band per patch. Thus, the C2
° response has
Neocognitron A s |enain

[from Serre et al. 2007]

Yann LeCun * New York University




& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset
» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
© [Lazebnik et al. 2006]

& What can we change in the architecture to improve the result?

cellphone

minaret

background

—

t New York University
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Convolutional Net: Funtional Diagram
[ ——

Filter] | Non- | |Spatial Fllte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& What non-linearity should we use?

& What type of pooling should we use?
& Standard ConvNets use tanh for the non-linearity

& We are going to add three additional components

» Absolute value (rectification)
» Subtractive normalization
» Divisive Normalization (contrast normalization)

Yann LeCun * New York University




One Stage

+ C Convolution + sigmoid

¥ Abs Absolute Value Rectification

+ N Subtractive and Divisive Local Normalization
+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION




‘ Multistage Hubel-Wiesel Architecture

& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University



ltebl iesel Architecture o

n ateh-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
UTuT 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

—R/N/P55] —[256.F 252, — R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University
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“Modern’ Object Recognition Architecture in Computer Vision
| —— - - - ’

Filter Non- Spatial o
—»> . . ™ Classifier |—»
Bank Linearity|] | Pooling

-SVM

- Multinomial

Oriented Edges  Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters...  Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

Logistic regression
- neural net

- nearest neighbor
& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“shallow’’ classifier

Yann LeCun

t New York University



- Hand-Crafted Low-Level Image Features

& SIFT, HOG, Shape Context

 Shape context
*SIFT [D. Lowe, ICCV 1999] [Belongie, Malik, Puzicha, NIPS 2000]

Count the number of points

P [T S inside each bin, e.g.:
V. 1
AR Vv N . ; N
= f T PR = '.
RN b

e L el 4 = s — Count =4

- o N =L = —r

1%

e A TR RN ' f
\ R P / A /l\ . b ; PR Count =10

N e A
"\.,________,f

Image gradients Keypoint descriptor — il = Compact representation
3 A of distribution of points
relative to each point

*HOG [Dalal & Trigs, 2006]

Orientation Voting

~=——Overlapping Blocks

= = %
S
. :.. ? ""\.

n\‘ ot

Input Image Gradient Image

Local Normalization

weighted weighted
pos wts neg wts

= input image

Yann LeCun * New York University




“ Triggs's HOG Descriptor

=

& Histogram of Oriented Gradients

HOG descriptor weighted by
descriptor +ve SVM -ve SVM
weights

Yann LeCun * New York University
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“State of the Art” architecture for object recognition
[ E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A HiStogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University



sing tor Quantization (K-Means) to Sparsify —

mﬁéz“(—i

& Pooling feature vectors over spatial neighborhoods to build invariance

& ‘“‘dense” feature vectors are not additive but sparse vectors are additive

Edge Norma- Average >
Filters lization pooling
Image Edge features Normalized Edge Edge histograms
(sparse) (sparse) (dense)
Dot argmax
products over
— to features Aver.age
prototypes (winner pooling
filteri . takes all ] .
Edge (enne) | Mid-level A Mid-level Mid-level
histograms Features Features Feature histograms
(dense) (dense) (very sparse)

Vector quantization
Yann LeCun

t New York University



& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
© [Lazebnik et al. 2006]

to learn in purely supervised mode (or so we thought).
cellphone

minaret

t New York University
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Mﬁug

& Mid-level feature learned with K-means [Lazebik 2006] or with Sparse
Coding [Yang 2008] [Boureau, Bach, LeCun, Ponce CVPR 2010]

SIFT + {K-means or Sparse-Coding} + PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14  70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80  81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60  66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 | 6419 £0.84 80.89 +0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[ x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088  — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool +kernel SVM 6285 x1.22 | 70.2T £ 1.29| 83.15 = 0.35
SP + sparse codes + max pool + kernel SVM 64620094  T1.81£096  84.25 +0.35
SP + sparse codes + max pool + linear 64.71+1.06 T71.52x1.13 83.78 =0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM ~ 69.03=1.17  7572=1.06  84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 08.78 £ 1.09  7h14x 086 84411026

& KFrom [Boureau, Bach, LeCun, Ponce CVPR 2010]

Yann LeCun

t New York University
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