Convolutional Nets

Yann Le Cun
The Courant Institute of Mathematical Sciences
New York University
http://yann.lecun.com

"Deep" Learning: Learning Hierarchical Representations

- Deep Learning: learning a hierarchy of internal representations
- From low-level features to mid-level invariant representations, to object identities
- Representations are increasingly invariant as we go up the layers
- using multiple stages gets around the specificity/invariance dilemma

Do we really need deep architectures?

■ We can approximate any function as close as we want with shallow architecture. Why would we need deep ones?

$$y = \sum_{i=1}^{P} \alpha_i K(X, X^i)$$
 $y = F(W^1.F(W^0.X))$

- kernel machines and 2-layer neural net are "universal".
- Deep learning machines

$$y = F(W^K.F(W^{K-1}.F(....F(W^0.X)...)))$$

- Deep machines are more efficient for representing certain classes of functions, particularly those involved in visual recognition
 - they can represent more complex functions with less "hardware"
- **■** We need an efficient parameterization of the class of functions that are useful for "AI" tasks.

Why are Deep Architectures More Efficient?

[Bengio & LeCun 2007 "Scaling Learning Algorithms Towards AI"]

- A deep architecture trades space for time (or breadth for depth)
 - more layers (more sequential computation),
 - but less hardware (less parallel computation).
 - Depth-Breadth tradoff
- Example1: N-bit parity
 - requires N-1 XOR gates in a tree of depth log(N).
 - requires an exponential number of gates of we restrict ourselves to 2 layers (DNF formula with exponential number of minterms).
- **Example2:** circuit for addition of 2 N-bit binary numbers
 - Requires O(N) gates, and O(N) layers using N one-bit adders with ripple carry propagation.
 - Requires lots of gates (some polynomial in N) if we restrict ourselves to two layers (e.g. Disjunctive Normal Form).
 - Bad news: almost all boolean functions have a DNF formula with an exponential number of minterms O(2^N).....

Strategies (a parody of [Hinton 2007])

- **Defeatism:** since no good parameterization of the "AI-set" is available, let's parameterize a much smaller set for each specific task through careful engineering (preprocessing, kernel....).
- **Denial:** kernel machines can approximate anything we want, and the VC-bounds guarantee generalization. Why would we need anything else?
 - unfortunately, kernel machines with common kernels can only represent a tiny subset of functions efficiently
- Optimism: Let's look for learning models that can be applied to the largest possible subset of the AI-set, while requiring the smallest amount of task-specific knowledge for each task.
 - There is a parameterization of the AI-set with neurons.
 - Is there an efficient parameterization of the AI-set with computer technology?
- Today, the ML community oscillates between defeatism and denial.

Supervised Deep Learning, The Convolutional Network Architecture

Convolutional Networks:

- [LeCun et al., Neural Computation, 1988]
- [LeCun et al., Proc IEEE 1998] (handwriting recognition)
- Face Detection and pose estimation with convolutional networks:
 - [Vaillant, Monrocq, LeCun, IEE Proc Vision, Image and Signal Processing, 1994]
 - [Osadchy, Miller, LeCun, JMLR vol 8, May 2007]
- Category-level object recognition with invariance to pose and lighting
 - [LeCun, Huang, Bottou, CVPR 2004]
 - [Huang, LeCun, CVPR 2006]
- autonomous robot driving
 - [LeCun et al. NIPS 2005]

Deep Supervised Learning is Hard

- The loss surface is non-convex, ill-conditioned, has saddle points, has flat spots.....
- For large networks, it will be horrible! (not really, actually)
- Back-prop doesn't work well with networks that are tall and skinny.
 - Lots of layers with few hidden units.
- Back-prop works fine with short and fat networks
 - But over-parameterization becomes a problem without regularization
 - Short and fat nets with fixed first layers aren't very different from SVMs.
- For reasons that are not well understood theoretically, back-prop works well when they are highly structured
 - e.g. convolutional networks.

An Old Idea for Local Shift Invariance

- [Hubel & Wiesel 1962]:
 - simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

The Multistage Hubel-Wiesel Architecture

- Building a complete artificial vision system:
 - Stack multiple stages of simple cells / complex cells layers
 - Higher stages compute more global, more invariant features
 - Stick a classification layer on top
 - [Fukushima 1971-1982]
 - neocognitron
 - [LeCun 1988-2007]
 - convolutional net
 - [Poggio 2002-2006]
 - HMAX
 - [Ullman 2002-2006]
 - fragment hierarchy
 - [Lowe 2006]
 - HMAX
- QUESTION: How do we find (or learn) the filters?

Getting Inspiration from Biology: Convolutional Network

- Hierarchical/multilayer: features get progressively more global, invariant, and numerous
- **dense features:** features detectors applied everywhere (no interest point)
- **broadly tuned (possibly invariant) features:** sigmoid units are on half the time.
- Global discriminative training: The whole system is trained "end-to-end" with a gradient-based method to minimize a global loss function
- Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Convolutional Net Architecture

- **Convolutional net for handwriting recognition** (400,000 synapses)
- Convolutional layers (simple cells): all units in a feature plane share the same weights
- Pooling/subsampling layers (complex cells): for invariance to small distortions.
- Supervised gradient-descent learning using back-propagation
- The entire network is trained end-to-end. All the layers are trained simultaneously.

MNIST Handwritten Digit Dataset

3	4	8	1	7	9	b	6	4	١
6	7	5	7	8	6	3	4	8	5
2	ſ	7	9	7	1	a	B	4	5
4	g	į	9	0	1	8	8	9	4
7	6	t	8	b	Q	/	5	b	Ò
7	5	9	2	6	5	$\mathcal E$	1	9	7
,1	2	2	2	a	3	4	4	8	0
D	4	3	g	0	7	3	8	5	7
0	1	4	b	4	6	0	2	¥	5
7	7	2	8	1	6	9	8	6	/

0	0	0	0		0	0	O	0	0
3	7))	1	J)))	J
2	a	a	2	2	a	a	2	a	Z
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
2	S	S	S	2	2	S	S	2	S
4	4	6	4	4	4	4	4	6	4
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
G	G	q	Ģ	q	q	q	9	q	9

Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

Results on MNIST Handwritten Digits

CLASSIFIER	DEFORMATION	PREPROCESSING	ERROR (%)	Reference
linear classifier (1-layer NN)		none	12.00	LeCun et al. 1998
linear classifier (1-layer NN)		deskewing	8.40	LeCun et al. 1998
pairwise linear classifier		deskewing	7.60	LeCun et al. 1998
K-nearest-neighbors, (L2)		none	3.09	Kenneth Wilder, U. Chicago
K-nearest-neighbors, (L2)		deskewing	2.40	LeCun et al. 1998
K-nearest-neighbors, (L2)		deskew, clean, blur	1.80	Kenneth Wilder, U. Chicago
K-NN L3, 2 pixel jitter		deskew, clean, blur	1.22	Kenneth Wilder, U. Chicago
K-NN, shape context matching		shape context feature	0.63	Belongie et al. IEEE PAMI 2002
40 PCA + quadratic classifier		none	3.30	LeCun et al. 1998
1000 RBF + linear classifier		none	3.60	LeCun et al. 1998
K-NN, Tangent Distance		subsamp 16x16 pixels	1.10	LeCun et al. 1998
SVM, Gaussian Kernel		none	1.40	
SVM deg 4 polynomial		deskewing	1.10	LeCun et al. 1998
Reduced Set SVM deg 5 poly		deskewing	1.00	LeCun et al. 1998
Virtual SVM deg-9 poly	Affine	none	0.80	LeCun et al. 1998
V-SVM, 2-pixel jittered		none	0.68	DeCoste and Scholkopf, MLJ 2002
V-SVM, 2-pixel jittered		deskewing	0.56	DeCoste and Scholkopf, MLJ 2002
2-layer NN, 300 HU, MSE		none	4.70	LeCun et al. 1998
2-layer NN, 300 HU, MSE,	Affine	none	3.60	LeCun et al. 1998
2-layer NN, 300 HU		deskewing	1.60	LeCun et al. 1998
3-layer NN, 500+150 HU		none	2.95	LeCun et al. 1998
3-layer NN, 500+150 HU	Affine	none	2.45	LeCun et al. 1998
3-layer NN, 500+300 HU, CE, reg		none	1.53	Hinton, unpublished, 2005
2-layer NN, 800 HU, CE		none	1.60	Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE	Affine	none	1.10	Simard et al., ICDAR 2003
2-layer NN, 800 HU, MSE	Elastic	none	0.90	Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE	Elastic	none	0.70	Simard et al., ICDAR 2003
Convolutional net LeNet-1		subsamp 16x16 pixels	1.70	LeCun et al. 1998
Convolutional net LeNet-4		none	1.10	LeCun et al. 1998
Convolutional net LeNet-5,		none	0.95	LeCun et al. 1998
Conv. net LeNet-5,	Affine	none	0.80	LeCun et al. 1998
Boosted LeNet-4	Affine	none	0.70	LeCun et al. 1998
Conv. net, CE	Affine	none	0.60	Simard et al., ICDAR 2003
Comv net, CE	Elastic	none	0.40	Simard et al., ICDAR 2003

Some Results on MNIST (from raw images: no preprocessing)

CLASSIFIER	DEFORMATION	ERROR	Reference						
Knowledge-free methods (a fixed permutation of the pixels would make no difference)									
2-layer NN, 800 HU, CE		1.60	Simard et al., ICDAR 2003						
3-layer NN, 500+300 HU, CE, reg		1.53	Hinton, in press, 2005						
SVM, Gaussian Kernel		1.40	Cortes 92 + Many others						
Convolutional nets									
Convolutional net LeNet-5,		0.80	Ranzato et al. NIPS 2006						
Convolutional net LeNet-6,		0.70	Ranzato et al. NIPS 2006						
Training set augmented with Affine	Distortions								
2-layer NN, 800 HU, CE	Affine	1.10	Simard et al., ICDAR 2003						
Virtual SVM deg-9 poly	Affine	0.80	Scholkopf						
Convolutional net, CE	Affine	0.60	Simard et al., ICDAR 2003						
Training et augmented with Elastic I	Distortions								
2-layer NN, 800 HU, CE	Elastic	0.70	Simard et al., ICDAR 2003						
Convolutional net, CE	Elastic	0.40	Simard et al., ICDAR 2003						

Note: some groups have obtained good results with various amounts of preprocessing such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf]) hand-designed feature representations (e.g. 0.63% with "shape context" and nearest neighbor [Belongie]

Invariance and Robustness to Noise

Recognizing Multiple Characters with Replicated Nets

Recognizing Multiple Characters with Replicated Nets

Handwriting Recognition

Face Detection and Pose Estimation with Convolutional Nets

- **Training:** 52,850, 32x32 grey-level images of faces, 52,850 non-faces.
- **Each sample:** used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
- **2nd phase:** half of the initial negative set was replaced by false positives of the initial version of the detector.

Face Detection: Results

Data Set->	TIL	ГED	PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X	<u> </u>	70% 83%		X	

Face Detection and Pose Estimation: Results

Face Detection with a Convolutional Net

Applying a ConvNet on Sliding Windows is Very Cheap!

- Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.
- Convolutional nets can replicated over large images very cheaply.
- The network is applied to multiple scales spaced by 1.5.

Building a Detector/Recognizer: Replicated Convolutional Nets

- Computational cost for replicated convolutional net:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 8.3 million multiply-accumulate operations
 - 240x240 -> 47.5 million multiply-accumulate operations
 - 480x480 -> 232 million multiply-accumulate operations
- Computational cost for a non-convolutional detector of the same size, applied every 12 pixels:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 42.0 million multiply-accumulate operations
 - 240x240 -> 788.0 million multiply-accumulate operations
 - 480x480 -> 5,083 million multiply-accumulate operations

Generic Object Detection and Recognition with Invariance to Pose and Illumination

- 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
- 10 instance per category: 5 instances used for training, 5 instances for testing
- Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
- For each instance:
- 18 azimuths
 - 0 to 350 degrees every 20 degrees
- 9 elevations
 - 30 to 70 degrees from horizontal every 5 degrees
- **6** illuminations
 - on/off combinations of 4 lights
- **2** cameras (stereo)
 - 7.5 cm apart
 - 40 cm from the object

Training instances

Test instances

Data Collection, Sample Generation

Image capture setup

Objects are painted green so that:

- all features other than shape are removed
- objects can be segmented, transformed, and composited onto various backgrounds

Original image

Object mask

Shadow factor

Composite image

Textured and Cluttered Datasets

Experiment 1: Normalized-Uniform Set: Representations

- 1 Raw Stereo Input: 2 images 96x96 pixels input dim. = 18432
- **2 Raw Monocular Input:**1 image, 96x96 pixels input dim. = 9216
- **3 Subsampled Mono Input:** 1 image, 32x32 pixels **input dim = 1024**
- 4 PCA-95 (EigenToys): First 95 Principal Components input dim. = 95

irst 60 eigenvectors (EigenToys)

Yann LeC....

New York University

Convolutional Network

- 90,857 free parameters, 3,901,162 connections.
- The architecture alternates convolutional layers (feature detectors) and subsampling layers (local feature pooling for invariance to small distortions).
- The entire network is trained end-to-end (all the layers are trained simultaneously).
- A gradient-based algorithm is used to minimize a supervised loss function.

Alternated Convolutions and Subsampling

- Local features are extracted everywhere.
- averaging/subsampling layer builds robustness to variations in feature locations.
- Hubel/Wiesel'62, Fukushima'71, LeCun'89, Riesenhuber & Poggio'02, Ullman'02,....

Normalized-Uniform Set: Error Rates

Linear Classifier on raw stereo images: 30.2% error.

K-Nearest-Neighbors on raw stereo images: 18.4% error.

K-Nearest-Neighbors on PCA-95: 16.6% error.

Pairwise SVM on 96x96 stereo images: 11.6% error

Pairwise SVM on 95 Principal Components: 13.3% error.

Convolutional Net on 96x96 stereo images: 5.8% error.

Training instances Test instances

Normalized-Uniform Set: Learning Times

	SVM		SVM/Conv			
test error	11.6%	10.4%	6.2%	5.8%	6.2%	5.9%
train time (min*GHz)	480	64	384	640	3,200	50+
test time per sample (sec*GHz)	0.95	0.03				0.04+
#SV	28%					28%
	$\sigma = 2,000$					dim=80
parameters	C = 40					$\sigma=5$
						C=0.01

SVM: using a parallel implementation by Graf, Durdanovic, and Cosatto (NEC Labs)

Chop off the last layer of the convolutional net and train an SVM on it

Jittered-Cluttered Dataset

- Jittered-Cluttered Dataset:
- **291,600** tereo pairs for training, **58,320** for testing
- Objects are jittered: position, scale, in-plane rotation, contrast, brightness, backgrounds, distractor objects,...
- Input dimension: 98x98x2 (approx 18,000)

Experiment 2: Jittered-Cluttered Dataset

- **291,600** training samples, **58,320** test samples
- SVM with Gaussian kernel
 43.3% error
- Convolutional Net with binocular input:
 7.8% error
- Convolutional Net + SVM on top:
 5.9% error
- Convolutional Net with monocular input: 20.8% error
- Smaller mono net (DEMO):
 26.0% error
- Dataset available from http://www.cs.nyu.edu/~yann

Jittered-Cluttered Dataset

	SVM	С	SVM/Conv		
test error	43.3%	16.38%	7.5%	7.2%	5.9%
train time (min*GHz)	10,944	420	2,100	5,880	330+
test time per sample (sec*GHz)	2.2		0.06+		
#SV	5%				2%
parameters	$\sigma=10^4$ $C=40$				$\begin{array}{c} \text{dim=}100 \\ \sigma = 5 \\ C = 1 \end{array}$

OUCH!

The convex loss, VC bounds and representers theorems don't seem to help

Chop off the last layer, and train an SVM on it it works!

What's wrong with K-NN and SVMs?

- K-NN and SVM with Gaussian kernels are based on matching global templates
- 🥶 Both are "shallow" architectures
- There is now way to learn invariant recognition tasks with such naïve architectures (unless we use an impractically large number of templates).
 - The number of necessary templates grows exponentially with the number of dimensions of variations.
 - Global templates are in trouble when the variations include: category, instance shape, configuration (for articulated object), position, azimuth, elevation, scale, illumination, texture, albedo, in-plane rotation, background luminance, background texture, background clutter,

Output

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template

Input

Learned Features

Layer 3

Layer 1

Input

Natural Images (Monocular Mode)

Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

- Mobile robot with two cameras
- The convolutional net is trained to emulate a human driver from recorded sequences of video + human-provided steering angles.
- The network maps stereo images to steering angles for obstacle avoidance

Convolutional Nets for Counting/Classifying Zebra Fish

Head – Straight Tail – Curved Tail

C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments

C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments

C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments

Convolutional Nets For Brain Imaging and Biology

- Brain tissue reconstruction from slice images [Jain,....,Denk, Seung 2007]
 - Sebastian Seung's lab at MIT.
 - 3D convolutional net for image segmentation
 - ConvNets Outperform MRF, Conditional Random Fields, Mean Shift, Diffusion,...[ICCV'07]

Convolutional Nets for Image Region Labeling

- Long-range obstacle labeling for vision-based mobile robot navigation
 - ▶ (more on this later....)

Industrial Applications of ConvNets

AT&T/Lucent/NCR

Check reading, OCR, handwriting recognition (deployed 1996)

Vidient Inc

Vidient Inc's "SmartCatch" system deployed in several airports and facilities around the US for detecting intrusions, tailgating, and abandoned objects (Vidient is a spin-off of NEC)

NEC Labs

Cancer cell detection, automotive applications, kiosks

Google

OCR, face and license plate removal from StreetView

Microsoft

OCR, handwriting recognition, speech detection

France Telecom

Face detection, HCI, cell phone-based applications

Other projects: HRL (3D vision)....

FPGA Custom Board: NYU ConvNet Processor

Xilinx Virtex 4 FPGA, 8x5 cm board

- [Farabet et al. 2009]
- Dual camera port, Fast dual QDR RAM,
- New version being developed with Eugenio Culurciello (Yale EE)
 - Full custom chip
 - Version for Virtex 6 FPGA

ConvNet/Vision Processor (FPGA and ASIC)

Models Similar to ConvNets

HMAX

- [Poggio & Riesenhuber 2003]
- [Serre et al. 2007]
- [Mutch and Low CVPR 2006]
- Difference?
 - the features are not learned
- HMAX is very similar to Fukushima's Neocognitron

[from Serre et al. 2007]

Problem: supervised ConvNets don't work with few labeled samples

- On recognition tasks with few labeled samples, deep supervised architectures don't do so well
- **Example:** Caltech-101 Object Recognition Dataset
 - ▶ 101 categories of objects (gathered from the web)
 - Only 30 training samples per category!
- Recognition rates (OUCH!):
 - Supervised ConvNet:
 - SIFT features + Pyramid Match Kernel SVM:
 - [Lazebnik et al. 2006]
- What can we change in the architecture to improve the result?

dollar minaret cellphone

29.0%

64.6%

lotus

face

beaver

wild cat

ant

background

New York University

metronome metronome

ar boay backg

Multistage Hubel-Wiesel Architecture on Caltech-101

Convolutional Net: Funtional Diagram

- What non-linearity should we use?
- What type of pooling should we use?
- Standard ConvNets use tanh for the non-linearity
- We are going to add three additional components
 - Absolute value (rectification)
 - Subtractive normalization
 - Divisive Normalization (contrast normalization)

One Stage

- C Convolution + sigmoid
- **♦ Abs** Absolute Value Rectification
- ◆ N Subtractive and Divisive Local Normalization
- **♦ P** Pooling down-sampling layer: average or max?

Multistage Hubel-Wiesel Architecture

Image Preprocessing:

High-pass filter, local contrast normalization (divisive)

First Stage:

- Filters: 64 9x9 kernels producing 64 feature maps
- Pooling: 10x10 averaging with 5x5 subsampling

Second Stage:

- Filters: 4096 9x9 kernels producing 256 feature maps
- Pooling: 6x6 averaging with 3x3 subsampling
- Features: 256 feature maps of size 4x4 (4096 features)

Classifier Stage:

- Multinomial logistic regression
- Number of parameters:
 - Roughly 750,000

Multistage Hubel-Wiesel Architecture on Caltech-101

Single Stage System: $[64.F_{CSG}^{9\times9}-R/N/P^{5\times5}]$ - log_reg								
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N - P_{M}$	$N - P_A$	$P_{\mathbf{A}}$			
U^+	54.2%	50.0%	44.3%	18.5%	14.5%			
\mathbf{R}^{+}	54.8%	47.0%	38.0%	16.3%	14.3%			
U	52.2%	$43.3\%(\pm 1.6)$	44.0%	17.2%	13.4%			
R	53.3%	31.7%	32.1%	15.3%	$12.1\%(\pm 2.2)$			
G	52.3%							
Two Stage System: $[64.F_{CSG}^{9\times9} - R/N/P^{5\times5}] - [256.F_{CSG}^{9\times9} - R/N/P^{4\times4}]$ - \log_{reg}								
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N-P_{M}$	$N - P_A$	$P_{\mathbf{A}}$			
U^+U^+	65.5%	60.5%	61.0%	34.0%	32.0%			
R^+R^+	64.7%	59.5%	60.0%	31.0%	29.7%			
UU	63.7%	46.7%	56.0%	23.1%	9.1%			
RR	62.9%	$33.7\%(\pm 1.5)$	$37.6\%(\pm 1.9)$	19.6%	8.8%			
GT	55.8% ←	like HMAX model						
Single Stage: $[64.F_{CSG}^{9\times9}-R/N/P^{5\times5}]$ - PMK-SVM								
U	64.0%							
Two Stages: $[64.F_{CSG}^{9\times9} - R/N/P^{5\times5}] - [256.F_{CSG}^{9\times9} - R/N]$ - PMK-SVM								
UU	52.8%							

"Modern" Object Recognition Architecture in Computer Vision

Example:

- Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
- SIFT + classification
- Fixed Features + "shallow" classifier

Hand-Crafted Low-Level Image Features

SIFT, HOG, Shape Context

· SIFT [D. Lowe, ICCV 1999]

· Shape context [Belongie, Malik, Puzicha, NIPS 2000]

HOG [Dalal & Trigs, 2006]

Dalal and Triggs's HOG Descriptor

Histogram of Oriented Gradients

"State of the Art" architecture for object recognition

Example:

- ► SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik et al. 2006]
- **■** Fixed Features + unsupervised features + "shallow" classifier

Using Vector Quantization (K-Means) to Sparsify

- Pooling feature vectors over spatial neighborhoods to build invariance
- "dense" feature vectors are not additive but sparse vectors are additive

Vector quantization

Problem: supervised ConvNets don't work with few labeled samples

- On recognition tasks with few labeled samples, deep supervised architectures don't do so well
- **Example: Caltech-101 Object Recognition Dataset**
 - ▶ 101 categories of objects (gathered from the web)
 - Only 30 training samples per category!
- Recognition rates (OUCH!):
 - Supervised ConvNet:
 - SIFT features + Pyramid Match Kernel SVM:
 - [Lazebnik et al. 2006]
- When learning the features, there are simply too many parameters lotus to learn in purely supervised mode (or so we thought).

w. chair

minaret

cellphone

joshua t.

29.0%

64.6%

face

beaver

wild cat

ant

background

SIFT + {K-means or Sparse-Coding} + PMK-SVM

■ Mid-level feature learned with K-means [Lazebik 2006] or with Sparse Coding [Yang 2008] [Boureau, Bach, LeCun, Ponce CVPR 2010]

	Method	Caltech 15	Caltech 30	Scenes
Boiman et al. [1]	Nearest neighbor + spatial correspondence	65.00 ± 1.14	70.40	-
Jain et al. [8]	Fast image search for learned metrics	61.00	69.60	-
Lazebnik et al. [12]	Spatial Pyramid + hard quantization + kernel SVN	f 56.40	64.40 ± 0.80	81.40 ± 0.50
van Gemert et al. [24]	Spatial Pyramid + soft quantization + kernel SVM	_	64.14 ± 1.18	76.67 ± 0.39
Yang et al. [26]	SP + sparse codes + max pooling + linear	67.00 ± 0.45	73.2 ± 0.54	80.28 ± 0.93
Zhang et al. [27]	kNN-SVM	59.10 ± 0.60	66.20 ± 0.50	-
Zhou et al. [29]	SP + Gaussian mixture	_	_	84.1 ± 0.5
Baseline:	SP + hard quantization + avg pool + kernel SVM	56.74 ± 1.31	64.19 ± 0.94	80.89 ± 0.21
Unsupervised coding	SP + soft quantization + avg pool + kernel SVM	59.12 ± 1.51	66.42 ± 1.26	81.52 ± 0.54
1×1 features	SP + soft quantization + max pool + kernel SVM	63.61 ± 0.88	_	83.41 ± 0.57
8 pixel grid resolution	SP + sparse codes + avg pool + kernel SVM	62.85 ± 1.22	70.27 ± 1.29	83.15 ± 0.35
	SP + sparse codes + max pool + kernel SVM	64.62 ± 0.94	71.81 ± 0.96	84.25 ± 0.35
	SP + sparse codes + max pool + linear	64.71 ± 1.05	71.52 ± 1.13	83.78 ± 0.53
Macrofeatures +	SP + sparse codes + max pool + kernel SVM	69.03±1.17	75.72±1.06	84.60 ± 0.38
Finer grid resolution	SP + sparse codes + max pool + linear	68.78 ± 1.09	75.14 ± 0.86	84.41 ± 0.26

From [Boureau, Bach, LeCun, Ponce CVPR 2010]