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The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

1=N
Y 3wt Vit o\ o, Y = f(z W;ix;)
i=0
¥
Xoz | —o= With f is the threshold function: f(z) = 1 iff
W Wa, z > 0, f(2) = —1 otherwise. x( is assumed

to be constant equal to 1, and wy is interpreted
as a bias.
In vector form: W = (wq, wy....w,), X =

(1, :cl...:r;n):
y = f(W'X)
The hyperplane W’ X = 0 partitions the space

in two categories. W is orthogonal to the hy-
perplane.
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A Simple Idea for Learning: Error Correction

Hiw SanfLE

We have a training set Sconsisting of P input-output
pairs: S = (X', y'), (X2, 5%),....(X", y").

A very simple algorithm:

- show each sample in sequence repetitively

- if the output is correct: do nothing

- 1f the output 1s -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.

- 1f the output i1s +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.

More formally, for sample p:

wi(t 4+ 1) = w;i(t) + (y — FV' XP))z?

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957)
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Regression, Mean Squared Error

Regression or function approximation is finding a
function that approximates a set of samples as well
as possible.

Classic example: linear regression. We are
given a training set S of input/output pairs & =

(XY yh), (X2, 4%)....(XT yP)}, and we must find
the parameters of a linear function that best predicts
the ¢’s from the X’s in the least square sense. In other
words, we must find the parameter W that minimizes
the quadratic loss function £(W, S):

LW,S) = ZLWy X9

1=1
where the per-sample loss function L (T, y*, X*) is defined as:

) ) 1 7 7
L(W,y", X") = =(y" — W' X")?
2
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Regression: Solution

1 1
B2 aW WX
2
’L=1
1 o~ 1
« : i /32
W* = argminy, L(W) —argmmWPZ—(y - W'X")

2
1 =1

At the solution, W satisfies the extremality condition:

dL(W)

=0
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Regression: Solution

The gradient of L(W) is:
P 1 / P
=(y* — W X)?
= d E y -3 (- W' XX
1=1 =1

The extremality condition becomes:

P
1 . o
5>~y = WX)X" =0

1=1

Which we can rewrite as:
P P /
[Z yX] - [Z XiX ] W =0
i=1 i=1

Y. LeCun: Machine Learning and Pattern Recognition — p. 2




Regression: Direct Solution

P P
d YX - X'XUIW =0
i=1 i=1

Can be written as:

P P
S XKW = Yy
i=1 i=1

This is a linear system that can be solved with a number of traditional numerical
methods (although it may be ill-conditioned or singular).

If the covariance matrix A = Zle XX is non singular, the solution is:

P -1 p
W* — [Z XiXi’] Zini
i=1 i=1
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Regression: Iterative Solution

Gradient-based minimization: W (¢t + 1) = W(t) — U%

where 7 1s a well chosen coefficient (often a scalar, sometimes diagonal matrix with
positive entries, occasionally a full symmetric positive definite matrix).
The k-th component of the gradient of the quadratic loss £(W) is

) X")z)

M*u

&w"“ i=1

If 1 1s a scalar or a diagonal matrix, we can write the udpate equation for a single

component of W: wy,(t + 1) = wi(t) + 131 (v — W(t) Xl
This update rules converges for well-chosen, small-enough values of 17 (more on this
later).
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Regression, Online/Stochastic Gradient

Online gradient descent, aka Stochastic Gradient:

d(W, Y, X?)
dW

Wt+1)=W(t)—n

wy(t+ 1) = wi(t) + n(t)(y' — W(t)' X" )}

No sum! The average gradient is replaced by its instantaneous value.

This is called stochastic gradient descent. In many practical situation it is
enormously faster than batch gradient.

But the convergence analysis of this method is very tricky.

One condition for convergence is that 77(¢) must be decreased according to a schedule
such that , n(t)? converges while >, n(t) diverges.

One possible such sequence is 7(t) = 79/t.
We can also use second-order methods, but we will keep that for later.
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Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:
W decisionrule: y = W'X
W loss function: L(W,y*, X*) = é—,{y“— — W'X")?
AL(W,y', x%)’ i - iy i
) = (g - W) X)X
W update rule: W(t 4+ 1) = W(t) 4+ n(t) (v — W ()X X"

W direct solution: solve linear system [Zil XiXir]H'? — Zil ini

“ gradient of loss:

T, LaCun: Machine Leaming and Patlem Hecopnition — p. 2736
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Linear Machines: Perceptron

Perceptron:
W decision rule: y = F(W'X) (¥ is the threshold function)
W loss function: L(W,y' X*) = (F(W'X") —y" )TV X"

. OL(W,y',x")' i ; )y
W gradient of loss: ( aﬁ_,’x ) = —(y' — F(W()X")X
W update rule: W(t +1) = W(¢t) +n(t) (v — F(W() X)) X"

W direct solution: find W such that —y*F(T17'X*) <0 Vi

T, Lalun: Machine Leaming and Patiem Hecognition — p 336
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Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

W decision rule: y = F(TW'X), with F(a) = tanh(a) = i;:iigzg (sigmoid

function).

W loss function: L(TV, ", X“:) = 2log(1 + EKP{—yiH”Xi)]

: LWyt x1)’ i - i
W gradient of loss: ': a,[i"_.. L = — (Y — F(TV IX)}) X

W update rule: W (t+ 1) = W(t) + n(t)(y* — F(W(t)' X)) X*

Y, LaCun: Machine Leaming and Patiem Keoopnition — p 436
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Energy-Based Model for Decision-Mm

=SS . =

Human

Animal ] @ Model: Measures the compatibility
Airplane T | between an observed variable X and
Car NN ] a variable to be predicted Y through
Lcic | M. an energy function E(Y,X).

1‘ E(Y, X)
E Function E(Y, X * :
nergy Function E(Y, X) Y' = argmlnYEyE(Ya X)
T T i@ Inference: Search for the Y that
X Y minimizes the energy within a set y
Observed variables Variables to be If th has | dinali
(input) predicted i@ If the set has low cardinality, we can
(answer) use exhaustive search.
Human
Animal
Airplane
Car
Truck
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Complex Tasks: Inference is non-trivial

S . ==

! T T

B(Y, X) [ B(Y, X) ] [ B(Y, X) laWhe“ the

A A | cardinality or
YT YT dimension of Y
1064 105,62 10862 3425 0370-004) is large,

e exhaustive
search is
impractical.

@) () © il We need to use a
T T T “smart”
E(Y, X) E(Y, X) inference
| ‘ | | procedure: min-
X T YT X T YT sum, Viterbi, .....

! h LS "this" "This is easy"  (pronoun verb adj)

(d) (e) (®)
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What Questions Can a Model Answer?

& 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:
» "Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3. Detection:

» “Is this value of Y compatible with X"?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

& 4. Conditional Density Estimation:
» “What is the conditional distribution P(Y|X)?”
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun * New York University



; Decision-M ling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
e_ﬁE(Y:X)
P(Y|X) =
( ‘ ) f E_ﬁE(y:X) j
Y
Partition function Inverse temperature

Yann LeCun t New York University



_Architecture and Loss Function

& Family of energy functions E — { E(W’ Y, X) - W € W}
@ Training set 8 - {(X?*!Y?*) - l-...P}

@ Loss functional / Loss function  L(FE, S) L(W,S)
» Measures the quality of an energy function

@ Training W* = min L(W,S).
] Wwew
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
£(Ea3) — F L(Y%aE(Wa«ya X%))_I_R(W)
z=1/ \
| Energy surface Regularizer
Per-sample Desired  for a given Xi
loss answer as Y varies

Yann LeCun t New York University



Designing a L.oss Functional
[

Human T |—F Human T ]
Animal BT |3+ After Animal B
Airplane I =%  (raining  Airplane "]

Car ] =* P Car HEEEET |
Truck T 1—F Truck T ]
> >
PV Y v Y\
A A
push down
0 NJ\L After S
%ﬁ i training %:n
= | S
= =
- -~ - - — -
Y* Y* Y* Y*
Answer (V) Answer (V)

@ Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS

Yann LeCun t New York University



Designing a L.oss Functional
[

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

& Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they
are smaller than the correct one

Yann LeCun t New York University



Architecture + Inference Algo + Loss Function = Model

E(W.,Y.X) i@ 1. Design an architecture: a particular form for E(W,Y,X).

* i 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
gradient descent, MCMC, HMC.....

i@ 3. Pick a loss function: in such a way that minimizing it
with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

W%

!

& 4. Pick an optimization method.

=~ —P

& PROBLEM: What loss functions will make the machine approach
the desired behavior?

Yann LeCun t New York University



Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

& Both surfaces compute Y=X"2
& MINy E(Y,X) = X/2

& Minimume-energy inference gives us the same answer

Yann LeCun t New York University



D(Gw(X),Y) ] [ -Y Gy (X) ] -
. n v $ ¢ !
f f !
go g1 g2 |
Gw(X) ] [ Gw(X) ] [ Gw (X) ] I
|
A A A |
|
X Y X Y X Y
@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),

Yann LeCun t New York University



E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

& The Implicit Regression architecture
» allows multiple answers to have low [IIG’1W (X) — Gan, (Y)Hl]
energy. i -

» Encodes a constraint between X and 1‘ T
Y rather than an explicit functional ( 1l
relationship Gy, (X) Gy, (Y)

» This is useful for many applications

» Example: sentence completion: “The 1u 1;
cat ate the | |
{mouse,bird,homework,...}"” P o

» [Bengio et al. 2003]

» But, inference may be difficult.

Yann LeCun * New York University



Examples of Loss Functions: Energy Loss
I ————

@ Energy Loss  Lepergy (Y, E(W, Y, X")) = E(W,Y", X").

» Simply pushes down on the energy of the correct answer
S

[| Net(X) - Net(Y) ||L1

%

ergy
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A
A * \ \
( input X X output Y )
Neural Net
1-29-1 b) N
(20 hidd
uni:s)en ( \\.o
param W %o
: ¥
] ]
C input X X output Y ) \})v
(a) QQ
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer

» Pulls up on the energy of the machine's answer

» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun t New York University
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y, X)=-YGw(X),

@ Inference: Y™ = argminy ;4 13 — YGw (X) = sign(Gw (X)).

P
1 . i 7 )
@ Loss: L"perceptron(vva S) — F Z (Slgn(GW (X )) -Y ) Gw (X )
i=1
. : L O0Gw (X!
& Learning Rule: W —W+n (Y@ _ sign(GW(X“)) gvg/ ) :
@ If Gw(X) is linear in W:  E(W. VY, X) = _yw?T (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)

Yann LeCun



Linear Machines: Perceptron

Perceptron:
W decision rule: y = F(W'X) (¥ is the threshold function)
W loss function: L(W,y' X*) = (F(W'X") —y" )TV X"

. OL(W,y',x")' i ; )y
W gradient of loss: ( aﬁ_,’x ) = —(y' — F(W()X")X
W update rule: W(t +1) = W(¢t) +n(t) (v — F(W() X)) X"

W direct solution: find W such that —y*F(T17'X*) <0 Vi

T, Lalun: Machine Leaming and Patiem Hecognition — p 336
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i Examples of Loss Functions: Generalized Margin Losses
[ —

& First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

& Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)

Yann LeCun

t New York University



Examples of Loss Functions: Generalized Margin Losses

M

Linargin(W, Y, X") = Qm (E(W, YY", X"), EOW,Y", X")) .

& Generalized Margin Loss

0 Ec+m=F, » Qm increases with the
0.8 HP A energy of the correct
.| Tessshould-be answer

Ui osl  small here R » Qm decreases with the

> sl _ energy of the most

L% o Ss should bé& = E, | offending incorrect

o large here | answer——
| » whenever it is less

HP,| 7~ than the energy of the
o : correct answer plus a
m$ 0 margin m.

0.2

1 | 1 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy: E_

Yann LeCun
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Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Vapnik 1972][Altun et al. 2003], [Taska
et al. 2003]

» With the linearly-parameterized binary
classifier architecture, we get linear SVM: =% ="
E correct - E_1incorrect

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

o

—
% 1.5
o
—

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

E correct - E_incorrect

Yann LeCun

t New York University



Examples of Margin Losses: Square-Square Loss
I ———— _—

Leq—sq(W, Y%, X%) = EOW,Y?, X1)? + (max(0,m — E(W,Y", X%)))"
& Square-Square Loss SS———

» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

Learning Y = X2
[| Net(X) - Net(Y) ||L1
S
Neural Net Neural Net
1-6-6 1-6-6
A [
\ \
( input X X output Y )
(b)

Yann LeCun t New York University



Other Margin-Like Losses

maﬁ&;» —

& L.VQ2 Loss [Kohonen, Oja], [Driancourt-Bottou 1991] <- speech recognition

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

& Minimum Classification Error Loss [Juang, Chou, Lee 1997] <- speech .
Linee(W,Y", X") = 0 (E(W,Y", X") — E(W,Y", X)),
o(x) = (1+e %) !

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004] <- face detection

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’

Yann LeCun t New York University



Examples of Loss: Margin Loss

Margin Loss: for discrete output set {Y }:

Linargin(W, Y", X*) = Qm (E(W, VLX) - min E(W,Y, X*’))

where (), (e) is any function that is monotonically increasing for e > —m, where m is
a constant called the margin.

Q"' (C) Adjust W so that E(W,Y"' X*) gets smaller,
while all E(W,Y, X") for which E(W)Y, X") —
E(W,Y* X*) < m get bigger. This guarantees that
e the energy of the desired Y will be smaller than all
other energies by at least m.

Y. LeCun: Machine Leaming and Pattern Recognition — p. 122
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Linear Model + Margin Loss + Regularization = SVM

| —

& Minimize the hinge loss: make the energy of all the
“good” answers smaller that the energy of any ‘“bad”
answer by at least m (the margin).

& Minimize the Regularization term: Make W as short
as possible.

& This is equivalent to keeping [IWIl constant, while
maximizing m.

Yann LeCun t New York University



’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

=1 1=1

. e_JBE(W:IY:Xz)
& Gibbs distribution: P(Y|XZ , W) —

—BE(W,y,X%) "
fyeye BE(W,y )

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

& We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity

Yann LeCun t New York University



Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

. ) 1 i
( (W, Y%, X% + = log / e PEWy, X >).
B ye)y

8Lnu(W, Y“',Xi) 8E(W, Y%',X“') / aE(W, Y, Xi)
Yey

M:

Lon(W,S)

?,=1

P(Y|X", W),

oW B oW oW

Yann LeCun t New York University



Negatlve Log-leellhood Loss Blnary Cla551ficat10n

S ————————.—SS |

& Binary Classifier Architecture:
P

Lon(W,8) = 5> [—Y@GW(X“) +log (&1Ew XD 4 YWD
1=1

'CHH(W S — Zlog (1 4 G_QY GW(X ))

?,_1

& Linear Binary Classifier Architecture'

Lan(W, ) Z log (1 -+ =2 W20,

1_1
& Learning Rule in the linear case: logistic regression

& NLL is used by lots of speech recognition systems (they call it Maximum
Mutual Information), lots of handwriting recognition systems (e.g.
Bengio, LeCun 94] [LeCun et al. 98]), CRF [Lafferty et al 2001]

Yann LeCun t New York University



Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

W decision rule: y = F(TW'X), with F(a) = tanh(a) = i;:iigzg (sigmoid

function).

W loss function: L(TV, ", X“:) = 2log(1 + EKP{—yiH”Xi)]

: LWyt x1)’ i - i
W gradient of loss: ': a,[i"_.. L = — (Y — F(TV IX)}) X

W update rule: W (t+ 1) = W(t) + n(t)(y* — F(W(t)' X)) X*

Y, LaCun: Machine Leaming and Patiem Keoopnition — p 436
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[

T ———— . — R ———

Negative Log-Likelihood Loss

& Negative Log Likelihood Loss has been used for a long time in many
communities for discriminative learning with structured outputs
» Speech recognition: many papers going back to the early 90's

[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001]

» Lots more......

» In all the above cases, it was used with non-linearly
parameterized energies.

Yann LeCun t New York University



o0 EC + M = EI ,\» s
o ke A
(Loss Function m— os  [HP,
i 0.7} R //‘,
|-_|J__ 0.6} ,\/‘,
& Good loss functions make the & .} o7 E _E
. D P c
machine produce the correct G o4 -
answer | |
i o2 7 HP
» Avoid collapses and flat Pt 2
energy surfaces m$ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy: E_.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

LW, Y" X") = Qg (EOW, Y, X"), E(W,Y", X")).

Yann LeCun

t New York University



| What Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun

t New York University



( Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

& Losses with a log partition function in the contrastive term pull up all
the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well
use a loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the
full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for
a given amount of computation?
» The theory for this is does not exist. It needs to be developed

Yann LeCun * New York University



iable Models

; Latent Var

& The energy includes ‘“hidden’ variables Z whose value is never
given to us

» We can minimize the energy over those latent variables

» We can also "marginalize” the energy over the latent
variables

Minimization over latent variables:

B0Y ) = piy (2 Y. )

Marginalization over latent variables:

1 Z
E(X,Y)=—=log e PEEY.X)
/6 z€Z

X Y
Estimation this integral may require some approximations

(sampling, variational methods,....)

Yann LeCun

t New York University



& The energy includes ‘‘hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y

Yann LeCun t New York University



. What can the latent variables represent?

& Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

& In general, we will search for the value of the latent variable that
allows us to get an answer (Y) of smallest energy.

Yann LeCun * New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = Jzez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined
energy function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

& Reduces to minimization when Beta->infinity

Yann LeCun t New York University



; Efficient In gy-Based Factor Graphs

R RO

& Graphical models have given us efficient inference algorithms, such as
belief propagation and its numerous variations.

& Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models from the
probabilistic view (think ‘“Bayesian networks”).

& Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

& An EBFG is an energy function that can be written as a sum of “‘factor”
functions that take different subsets of variables as inputs.

& Basically, most algorithms for probabilistic factor graphs (such as belief
prop) have a counterpart for EBFG:

» Operations are performed in the log domain
» The normalization steps are left out.

Yann LeCun

t New York University



Energy-Based Factor Graphs

m:ﬂﬂ&r

& When the energy is a sum of partial energy functions (or when the

probability is a product of factors):

» An EBM can be seen as an unnormalized factor graph in the log
domain

» Our favorite efficient inference algorithms can be used for inference
(without the normalization step).

» Min-sum algorithm (instead of max-product), Viterbi for chain
graphs

» (Log/sum/exp)-sum algorithm (instead of sum-product), Forward
algorithm in the log domain for chain graphs

EIX.2D) | [E2z1.22)| |E3Z2.23)| |E4(Z3.Y)

/N NV NV

X Z1 /72

Yann LeCun t New York University



; EBEG for S puts: Sequences, Graphs, Images

M

& Structured outputs

» When Y is a complex object with components that must satisfy
certain constraints.

& Typically, structured outputs are sequences of symbols that must satisfy
‘“srammatical’ constraints
» spoken/handwritten word recognition
» spoken/written sentence recognition
» DNA sequence analysis
» Parts of Speech tagging
» Automatic Machine Translation

& In General, structured outputs are collections of variables in which
subsets of variables must satisfy constraints

» Pixels in an image for image restoration
» Labels of regions for image segmentations

& We represent the constraints using an Energy-Based Factor Graph.

Yann LeCun

t New York University



; Energy-Based Factor Graphs: Three Inference Problems
N EE————————— — — -

& X: input, Y: output, Z: latent variables, Energy: E(Z,Y,X)

& Minimization over Y and Z
» B(Y,X)=minE(Z,Y,X). Y"=argminycyE(Y, X).
& Min over Y, marginalization over Z (E(X,Y) is a ‘““free energy”)

> E(X,Y) = —llog e PEEY.X) Y™ = argminy .y E(Y, X).

& Marginal Distribution ov;é%
5 o—BE(Y,X)

> P(Y|X) =

E_QE(yzx) j

fyey

E1(X,Z1) | |E2(Z1,22)| |E3(Z2,Z3)| |E4(Z3.Y)
/ AV AV AV N
71 72 73

X Y

Yann LeCun




Energy-Based Factor Graphs: simple graphs
A —————————————

& Sequence Labeling V¥

» Qutput is a sequence
Y1,Y2,Y3,Y4......

» NLP parsing, MT,
speech/handwriting
recognition, biological
sequence analysis

» The factors ensure
grammatical consistency

» They give low energy to
consistent sub-
sequences of output Yl
symbols

» The graph is generally
simple (chain or tree)/ X

» Inference is easy
(dynamic programming)

= argminycy zezE(Z,Y, X).

@\

Y4

Yann LeCun t New York University



m’

_Energy-Based Factor Graphs: complex/loopy graphs

Mﬂml‘

@ Image restoration Y™ = argminy cyE(Y, X).
» The factors ensure
local consistency on
small overlapping
patches

» They give low energ
to “clean” patches,
given the noisy
versions

» The graph is loopy
when the patches
overlap. .

» Inference is difficult, |
particularly when the
patches are
large,and when the —
number of greyscale X Y
values is large

Yann LeCun t New York University




Efficient Inference in simple EBFG

& The energy is a sum of “factor” functions, the graph is a chain

& Example:
»Z1, 72, Y1 are binary 28GR
» Z2 is ternary @

» A naive exhaustive
inference would require

2X2X2X3 energy [ E.(X,Z) [Eb(X AP Zg)] [ E.(Z3,Y1) ] { E;(Y1,Y?) ]
evaluations (= 96 factor N NN
evaluations) XA Zl/ \22/ \yl/ \Y2

» BUT: Ea only has 2 possible
input configurations, Eb
and Ec have 4, and Ed 6.

» Hence, we can precompute
the 16 factor values, and ¢
put them on the arcs i
graph.

» A path in the graph is a
config of variable

Yann Ldrifhe cost of the path is the * New York University




[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

Y* = argminYEy?ZEZE(Zj Yj X)

Yann LeCun * New York University



nergy-Based Belief Prop:

. Minimization over Latent Variables

& The previous picture shows a chain graph of factors with 2 inputs.

& The extension of this procedure to trees, with factors that can have
more than 2 inputs is the “min-sum” algorithm (a non-probabilistic
form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-ring
algebra (min instead of sum, sum instead of product), without the
normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun t New York University



[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

1
Y* — argminYey — E log/ G_BE(Z,Y,X)- 5
zEZ

log/sum/exp-SUM Alg., Forward Algorithm S

Yann LeCun * New York University



nergy-Based Belief Pr

_Marginalization over Latent Variables

& The previous picture shows a chain graph of factors with 2
inputs.
» Going along a path: add up the energles
» When several paths meet: compute  —— logz —PE;

& The extension of this procedure to trees, with factors that can
have more than 2 inputs is the *“‘[log/sum/exp]-sum” algorithm
(a non-probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (log/sum/exp instead of sum, sum instead of
product), and without the normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun

t New York University



& Linearly Parameterized Factors

EW,Y,X)= > W'f(X,Yn,Yo). -

(m,n)eF / Iy \

Yann LeCun



E(W,Y, X)

/

1=

@ Linearly Parameterized Factors + NLL loss = CRF Y Y Yy
» [Lafferty, McCallum, Pereira, 2001]

& Non-linear factors = Graph Transformer Networks

» [LeCun, Bottou, Bengio, Haffner, 1998]
P
1

. . 1 T i
ﬁnu(W) = F Z WTF(X?', Y?’) + E log Z 6_’8W F(X ;.'y).
=1 yey
@ﬁn
Il ZF XY =Y F(X'y) Py X', W),
ye.‘y stmplest/best learning

' e~ AW F(Xy) procedure:

(] .
Py| X", W) =

_3BWT i : . .
nyeye BWTEF(X*Y')  gtochastic gradient

Yann LeCun t New York University



% Y; Ys Y,
& Linearly Parameterized Factors + Perceptron loss

» [Collins 2000, Collins 2001] X

& Non-linear factors + perceptron loss
» [LeCun, Bottou, Bengio, Haffner 1998]

P
1 : : : :
Lperceptron(W) = — ST EW, Y X - BV, Y, XY,
1=1
1 P
Loorceptron(W) = > ZWT (F(X"Y") - F(X",Y")).
1=1

W W —n(F(X,Y") - F(X",Y")).

Yann LeCun t New York University



EW,Y, X)

Llnearly Parameterized Factors + _—%
Hinge Loss = -
-\ ax M /I:ginMaI'kOV Net J(X, Y1, Y2) [f(X,Y%Yi%)] [f (X,Yg,n)]

Yi Ys Ys Y,
& Linearly Parameterized Factor + Hinge loss
» [Altun et a. 2003, Taskar et al. 2003] X

P
1 S o
Liinge (W) = 35 Y max(0,m + B(W,Y", X') = B(OW, ¥, X)) 4|72
=1

P
1 .
Liinge(W) = 2 Zmax (O,m—l— WTAF(X%,YE)) + ’}f||W||2,

1=1

AF(X'Y") =F(X"Y") — F(X',Y?)

Simple gradient descent rule:

It AF(Xi, Y?") > —m then W «— W — nAF(Xi, Yi) — 27W
Can be performed in the dual (like an SVM)

Yann LeCun
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