Can Robots Learn to See?

Yann LeCun

Silver Professor of Computer Science and Neural Science
The Courant Institute of Mathematical Sciences
And Center for Neural Science
New York University

The Next Challenge for AI, Robotics, and Neuroscience

- How do we learn vision and perception?
 - From the image of an airplane, how do we extract a representation that is invariant to pose, illumination, background, clutter, object instance....
 - How can a human (or a machine) learn those representations by just looking at the world?

How can we learn visual categories from just a few examples?

▶ I don't need to see many airplanes before I can recognize every airplane (even really weird ones)

Vision occupies a big chunk of our brains

Vision is very fast and the visual cortex is hierarchical

The ventral (recognition) pathway in the visual cortex

The Primate's Visual System is Deep (LGN->V1->V2->V4->IT)

- The recognition of everyday objects is a very fast process.
 - The recognition of common objects is essentially "feed forward."
 - But not all of vision is feed forward.
- Much of the visual system (all of it?) is the result of learning
 - How much prior structure is there?
- If the visual system is deep (around 10 layers) and learned
- what is the learning algorithm of the visual cortex?
 - What learning algorithm can train neural nets as "deep" as the visual system (10 layers?).
 - Unsupervised vs Supervised learning
 - What is the loss function?
 - What is the organizing principle?
 - Broader question (Hinton): what is the learning algorithm of the neo-cortex?

The Broader Challenge of Machine Learning and AI

- Can we devise learning algorithms to train a "deep" artificial visual system, and other artificial perception systems.
- How can we learn the structure of the world?
 - ▶ How can we build/learn internal representations of the world that allow us to discover its hidden structure?
 - How can we learn internal representations that capture the relevant information and eliminates irrelevant variabilities?
- How can a human or a machine learn internal representations by just looking at the world?
- Can we find learning methods that solve really complex problems end-toend, such as vision, natural language, speech....?

The Traditional "Shallow" Architecture for Recognition

- The raw input is pre-processed through a hand-crafted feature extractor
- The features are not learned
- The trainable classifier is often generic (task independent), and "simple" (linear classifier, kernel machine, nearest neighbor,.....)
- **■** The most common Machine Learning architecture: the Kernel Machine

"Modern" Object Recognition Architecture in Computer Vision

Oriented Edges Sigmoid Averaging

Gabor Wavelets Rectification Max pooling

Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

Example:

- Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
- SIFT + classification
- Fixed Features + "shallow" classifier

Feature Extraction by Filtering and Pooling

- Biologically-inspired models of low-level feature extraction
 - ▶ Inspired by [Hubel and Wiesel 1962]

"State of the Art" architecture for object recognition

Example:

- ▶ SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik et al. 2006]
- Fixed Features + unsupervised features + "shallow" classifier

Good Representations are Hierarchical

- In Language: hierarchy in syntax and semantics
 - Words->Parts of Speech->Sentences->Text
 - Objects, Actions, Attributes...-> Phrases -> Statements -> Stories
- In Vision: part-whole hierarchy
 - Pixels->Edges->Textons->Parts->Objects->Scenes

"Deep" Learning: Learning Hierarchical Representations

- Deep Learning: learning a hierarchy of internal representations
- From low-level features to mid-level invariant representations, to object identities
- Representations are increasingly invariant as we go up the layers
- using multiple stages gets around the specificity/invariance dilemma

Do we really need deep architectures?

■ We can approximate any function as close as we want with shallow architecture (e.g. a kernel machine). Why would we need deep ones?

$$y = \sum_{i=1}^{P} \alpha_i K(X, X^i)$$
 $y = F(W^1.F(W^0.X))$

- kernel machines and 2-layer neural net are "universal".
- Deep learning machines

$$y = F(W^K.F(W^{K-1}.F(....F(W^0.X)...)))$$

- Deep machines are more efficient for representing certain classes of functions, particularly those involved in visual recognition
 - they can represent more complex functions with less "hardware"
- **■** We need an efficient parameterization of the class of functions that are useful for "AI" tasks.

Why are Deep Architectures More Efficient?

[Bengio & LeCun 2007 "Scaling Learning Algorithms Towards AI"]

- A deep architecture trades space for time (or breadth for depth)
 - more layers (more sequential computation),
 - but less hardware (less parallel computation).
 - Depth-Breadth tradoff
- Example1: N-bit parity
 - requires N-1 XOR gates in a tree of depth log(N).
 - requires an exponential number of gates of we restrict ourselves to 2 layers (DNF formula with exponential number of minterms).
- **Example2:** circuit for addition of 2 N-bit binary numbers
 - Requires O(N) gates, and O(N) layers using N one-bit adders with ripple carry propagation.
 - Requires lots of gates (some polynomial in N) if we restrict ourselves to two layers (e.g. Disjunctive Normal Form).
 - Bad news: almost all boolean functions have a DNF formula with an exponential number of minterms O(2^N).....

Deep Supervised Learning is Hard

- The loss surface is non-convex, ill-conditioned, has saddle points, has flat spots.....
- For large networks, it will be horrible! (not really, actually)
- Back-prop doesn't work well with networks that are tall and skinny.
 - Lots of layers with few hidden units.
- Back-prop works fine with short and fat networks
 - But over-parameterization becomes a problem without regularization
 - Short and fat nets with fixed first layers aren't very different from SVMs.
- For reasons that are not well understood theoretically, back-prop works well when they are highly structured
 - e.g. convolutional networks.

Can't we train multi-stage vision architectures?

- Stacking multiple stages of feature extraction/pooling.
- Creates a hierarchy of features

Convolutional Network

- Hierarchical/multilayer: features get progressively more global, invariant, and numerous
- **dense features:** features detectors applied everywhere (no interest point)
- **broadly tuned (possibly invariant) features:** sigmoid units are on half the time.
- Global discriminative training: The whole system is trained "end-to-end" with a gradient-based method to minimize a global loss function
- Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

An Old Idea for Local Shift Invariance

- [Hubel & Wiesel 1962]:
 - simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

The Multistage Hubel-Wiesel Architecture

- Building a complete artificial vision system:
 - Stack multiple stages of simple cells / complex cells layers
 - Higher stages compute more global, more invariant features
 - Stick a classification layer on top
 - [Fukushima 1971-1982]
 - neocognitron
 - [LeCun 1988-2007]
 - convolutional net
 - [Poggio 2002-2006]
 - HMAX
 - [Ullman 2002-2006]
 - fragment hierarchy
 - [Lowe 2006]
 - HMAX
- QUESTION: How do we find (or learn) the filters?

Convolutional Net Architecture

- **Convolutional net for handwriting recognition** (400,000 synapses)
- Convolutional layers (simple cells): all units in a feature plane share the same weights
- Pooling/subsampling layers (complex cells): for invariance to small distortions.
- Supervised gradient-descent learning using back-propagation
- The entire network is trained end-to-end. All the layers are trained simultaneously.

Face Detection and Pose Estimation with Convolutional Nets

- **Training:** 52,850, 32x32 grey-level images of faces, 52,850 non-faces.
- **Each sample:** used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
- **2rd phase:** half of the initial negative set was replaced by false positives of the initial version of the detector.

Face Detection: Results

Data Set->	TILTED		PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X		70%	83%	X	

Face Detection and Pose Estimation: Results

Face Detection with a Convolutional Net

Face Detection with a ConvNet

- Demo produced with EBLearn open source package
- http://eblearn.sf.net

Generic Object Detection and Recognition with Invariance to Pose and Illumination

- 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
- 10 instance per category: 5 instances used for training, 5 instances for testing
- Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
- For each instance:
- 18 azimuths
 - 0 to 350 degrees every 20 degrees
- 9 elevations
 - 30 to 70 degrees from horizontal every 5 degrees
- **6** illuminations
 - on/off combinations of 4 lights
- **2** cameras (stereo)
 - 7.5 cm apart
 - 40 cm from the object

Training instances

Test instances

Convolutional Network

- 90,857 free parameters, 3,901,162 connections.
- The architecture alternates convolutional layers (feature detectors) and subsampling layers (local feature pooling for invariance to small distortions).
- The entire network is trained end-to-end (all the layers are trained simultaneously).
- A gradient-based algorithm is used to minimize a supervised loss function.

Normalized-Uniform Set: Error Rates

Linear Classifier on raw stereo images: 30.2% error.

K-Nearest-Neighbors on raw stereo images: 18.4% error.

K-Nearest-Neighbors on PCA-95:
16.6% error.

Pairwise SVM on 96x96 stereo images: 11.6% error

Pairwise SVM on 95 Principal Components: 13.3% error.

Convolutional Net on 96x96 stereo images: 5.8% error.

Training instances Test instances

Jittered-Cluttered Dataset

- Jittered-Cluttered Dataset:
- 291,600 tereo pairs for training, 58,320 for testing
- Objects are jittered: position, scale, in-plane rotation, contrast, brightness, backgrounds, distractor objects,...
- Input dimension: 98x98x2 (approx 18,000)

Experiment 2: Jittered-Cluttered Dataset

- **291,600** training samples, **58,320** test samples
- SVM with Gaussian kernel 43.3% error
- Convolutional Net with binocular input:
 7.8% error
- Convolutional Net + SVM on top:
 5.9% error
- Convolutional Net with monocular input: 20.8% error
- Smaller mono net (DEMO): 26.0% error
- Dataset available from http://www.cs.nyu.edu/~yann

Examples (Monocular Mode)

Examples (Monocular Mode)

Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

- Mobile robot with two cameras
- The convolutional net is trained to emulate a human driver from recorded sequences of video + human-provided steering angles.
- The network maps stereo images to steering angles for obstacle avoidance

Convolutional Nets For Brain Imaging and Biology

- Brain tissue reconstruction from slice images [Jain,....,Denk, Seung 2007]
 - Sebastian Seung's lab at MIT.
 - 3D convolutional net for image segmentation
 - ConvNets Outperform MRF, Conditional Random Fields, Mean Shift, Diffusion,...[ICCV'07]

Industrial Applications of ConvNets

AT&T/Lucent/NCR

Check reading, OCR, handwriting recognition (deployed 1996)

Vidient Inc

Vidient Inc's "SmartCatch" system deployed in several airports and facilities around the US for detecting intrusions, tailgating, and abandoned objects (Vidient is a spin-off of NEC)

NEC Labs

Cancer cell detection, automotive applications, kiosks

Google

OCR, face and license plate removal from StreetView

Microsoft

OCR, handwriting recognition, speech detection

France Telecom

Face detection, HCI, cell phone-based applications

Other projects: HRL (3D vision)....

FPGA Custom Board: NYU ConvNet Processor

Xilinx Virtex 4 FPGA, 8x5 cm board

- [Farabet et al. 2009]
- Dual camera port, Fast dual QDR RAM,
- New version being developed with Eugenio Culurciello (Yale EE)
 - Full custom chip
 - Version for Virtex 6 FPGA

ConvNet/Vision Processor (FPGA and ASIC)

FPGA Performance

Seconds per frame for a robot vision task (log scale) [Farabet et al. 2010]

Problem: supervised ConvNets don't work with few labeled samples

- On recognition tasks with few labeled samples, deep supervised architectures don't do so well
- **Example: Caltech-101 Object Recognition Dataset**
 - ▶ 101 categories of objects (gathered from the web)
 - Only 30 training samples per category!
- Recognition rates (OUCH!):
 - Supervised ConvNet:
 - SIFT features + Pyramid Match Kernel SVM:
 - [Lazebnik et al. 2006]

When learning the features, there are simply too many parameters lotus to learn in purely supervised mode (or so we thought).

dollar

minaret

cellphone

joshua t.

cougar body

29.0%

64.6%

face

beaver

wild cat

ant

background

Unsupervised Deep Learning: Leveraging Unlabeled Data

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

- Unlabeled data is usually available in large quantity
- A lot can be learned about the world by just looking at it
- Unsupervised learning captures underlying regularities about the data
- The best way to capture underlying regularities is to learn good representations of the data
- The main idea of Unsupervised Deep Learning
 - Learn each layer one at a time in unsupervised mode
 - Stick a supervised classifier on top
 - Optionally: refine the entire system in supervised mode
- Unsupervised Learning view as Energy-Based Learning

Unsupervised Feature Learning with Sparse Coding

[Olshausen & field 1997]

Find a dictionary of basis functions such that any input can be reconstructed of a sparse linear combination of them.

- Energy: $E(Y^i, Z; W_d) = ||Y^i W_d Z||^2 + \lambda \sum_{i} |z_i|^2$
- Optimal Code $Z^i = argmin_z E(Y^i, z; W_d)$
- Free Energy: $F(Y^i; W_d) = F(Z^i) = min_z E(Y^i, z; W_d)$

Unsupervised Feature Learning with Sparse Coding

The learning algorithm minimizes the loss function:

$$L(W_d) = \sum_{i} F(Y^i; W_d) = \sum_{i} (min_z E(Y^i, Z; W_d))$$

The columns of Wd are normalized

- Energy: $E(Y^i, Z; W_d) = ||Y^i W_d Z||^2 + \lambda \sum_{j} |z_j|$
- Free Energy: $F(Y^i; W_d) = F(Z^i) = min_z E(Y^i, z; W_d)$

Problem with Sparse Coding: Inference is slow

Inference: find Z that minimizes the energy for a given Y

$$E(Y^{i}, Z^{i}; W_{d}) = ||Y^{i} - W_{d}Z^{i}||^{2} + \lambda \sum_{j} |z_{j}^{i}|$$

$$Z^{i} = argmin_{z} E(Y^{i}, z; W_{d})$$

- ► For each new Y, an optimization algorithm must be run to find the corresponding optimal Z
- ► This would be very slow for large scale vision tasks
- ► Also, the optimal Z are very unstable:
 - A small change in Y can cause a large change in the optimal Z

Solution: Predictive Sparse Decomposition (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

- Prediction the optimal code with a trained encoder
- Energy = reconstruction_error + code_prediction_error + code_sparsity

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + ||Z - g_{e}(W_{e}, Y^{i})||^{2} + \lambda \sum_{j} |z_{j}|$$

$$g_{e}(W_{e}, Y^{i}) = D \tanh(W_{e}Y)$$

PSD: Inference

Inference by gradient descent starting from the encoder output

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + ||Z - g_{e}(W_{e}, Y^{i})||^{2} + \lambda \sum_{j} |z_{j}|$$

$$Z^{i} = argmin_{z}E(Y^{i}, z; W)$$

PSD: Learning [Kavukcuoglu et al. 2009]

- Learning by minimizing the average energy of the training data with respect to Wd and We.
- Loss function: $L(W_d, W_e) = \sum_i F(Y^i; W_d, W_e)$ $F(Y^i; W_d, W_e) = min_z E(Y^i, z; W_d, W_e)$

PSD: Learning Algorithm

- **1. Initialize Z = Encoder(Y)**
- **2.** Find **Z** that minimizes the energy function
- 3. Update the Decoder basis functions to reduce reconstruction error
- 4. Update Encoder parameters to reduce prediction error
- Repeat with next training sample

Decoder Basis Functions on MNIST

- ▶ PSD trained on handwritten digits: decoder filters are "parts" (strokes).
 - Any digit can be reconstructed as a linear combination of a small number of these "parts".

PSD Training on Natural Image Patches

- Basis functions are like Gabor filters (like receptive fields in V1 neurons)
- 256 filters of size 12x12
- Trained on natural image patches from the Berkeley dataset
- Encoder is linear-tanhdiagonal

Learned Features on natural patches: V1-like receptive fields

Learned Features: V1-like receptive fields

12x12 filters

1024 filters

Classification Error Rate on MNIST

- Supervised Linear Classifier trained on 200 trained sparse features
 - Red: linear-tanh-diagonal encoder; Blue: linear encoder

Phase 1: train first layer using PSD

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD
- **■** Phase 4: use encoder + absolute value as 2^m feature extractor

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD
- **■** Phase 4: use encoder + absolute value as 2^{ml} feature extractor
- Phase 5: train a supervised classifier on top
- Phase 6 (optional): train the entire system with supervised back-propagation

"Deep Learning"

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

- The "deep learning" method was popularized by Hinton for training "deep belief networks".
 - DBN use a special kind of encoder-decoder architecture called Restricted Boltzmann Machines (RBM)
- 1. Train each layer in an unsupervised fashion, layer by layer
- **2.** Stick a supervised classifier on top, and refine the entire system with gradient descent (back-prop) on a supervised criterion.

Unsupervised Learning: Capturing Dependencies Between Variables

Energy function: viewed as a negative log probability density

Probabilistic View:

- Produce a probability density function that:
- has high value in regions of high sample density
- has low value everywhere else (integral = 1).

Energy-Based View:

- produce an energy function E(Y,W) that:
- has low value in regions of high sample density
- has high(er) value everywhere else

Unsupervised Learning: Capturing Dependencies Between Variables

Energy function viewed as a negative log density

Energy <-> Probability

$$P(Y|W) = \frac{e^{-\beta E(Y,W)}}{\int_{y} e^{-\beta E(y,W)}}$$

$$E(Y, W) \propto -\log P(Y|W)$$

Training an Energy-Based Model

- Make the energy around training samples low
- Make the energy everywhere else higher

Training an Energy-Based Model to Approximate a Density

Maximizing P(Y|W) on training samples

make this big

$$P(Y|W) = \frac{e^{-\beta E(Y,W)}}{\int_{y} e^{-\beta E(y,W)}}$$
 make this small

Minimizing -log P(Y,W) on training samples

$$L(Y,W) = E(Y,W) + \frac{1}{\beta}\log\int_y e^{-\beta E(y,W)}$$
 make this small make this big

Training an Energy-Based Model with Gradient Descent

Gradient of the negative log-likelihood loss for one sample Y:

$$\frac{\partial L(Y,W)}{\partial W} = \frac{\partial E(Y,W)}{\partial W} - \int_{y} P(y|W) \frac{\partial E(y,W)}{\partial W}$$

Gradient descent:

$$W \leftarrow W - \eta \frac{\partial L(Y,W)}{\partial W}$$

Pushes down on the energy of the samples

Pulls up on the energy of low-energy Y's

$$W \leftarrow W - \eta \frac{\partial E(Y, W)}{\partial W} + \eta \int_{\mathcal{U}} P(y|W) \frac{\partial E(y, W)}{\partial W}$$

How do we push up on the energy of everything else?

- Solution 1: contrastive divergence [Hinton 2000]
 - Move away from a training sample a bit
 - Push up on that
- Solution 2: score matching
 - On the training samples: minimize the gradient of the energy, and maximize the trace of its Hessian.
- Solution 3: denoising auto-encoder (not really energy-based)
 - Train the inference dynamics to map noisy samples to clean samples
- Solution 4: MAIN INSIGHT! [Ranzato, ..., LeCun AI-Stat 2007]
 - Restrict the information content of the code (features) Z
 - ▶ If the code Z can only take a few different configurations, only a correspondingly small number of Ys can be perfectly reconstructed
 - Idea: impose a sparsity prior on Z
 - This is reminiscent of sparse coding [Olshausen & Field 1997]

Encoder-Decoder with Sparsity (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

- Prediction the optimal code with a trained encoder
- Energy = reconstruction_error + code_prediction_error + code_sparsity

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + ||Z - g_{e}(W_{e}, Y^{i})||^{2} + \lambda \sum_{j} |z_{j}|$$

$$g_{e}(W_{e}, Y^{i}) = D \tanh(W_{e}Y)$$

The Main Insight [Ranzato et al. AISTATS 2007]

- If the information content of the feature vector is limited (e.g. by imposing sparsity constraints), the energy MUST be large in most of the space.
 - pulling down on the energy of the training samples will necessarily make a groove
- **■** The volume of the space over which the energy is low is limited by the entropy of the feature vector
 - Input vectors are reconstructed from feature vectors.
 - ▶ If few feature configurations are possible, few input vectors can be reconstructed properly

- Training sample
- Input vector which is NOT a training sample
- Feature vector

- Training sample
- Input vector which is NOT a training sample
- Feature vector

Training based on minimizing the reconstruction error over the training set

- Training sample
- Input vector which is NOT a training sample
- Feature vector

BAD: machine does not learn structure from training data!! It just copies the data.

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.

Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.

Sparsity Penalty to Restrict the Code

- We are going to impose a sparsity penalty on the code to restrict its information content.
- We will allow the code to have higher dimension than the input
- Categories are more easily separable in high-dim sparse feature spaces
 - ▶ This is a trick that SVM use: they have one dimension per sample
- Sparse features are optimal when an active feature costs more than an inactive one (zero).
 - e.g. neurons that spike consume more energy
 - The brain is about 2% active on average.

- 2 dimensional toy dataset
 - Mixture of 3 Cauchy distrib.
- Visualizing energy surface(black = low, white = high)

[Ranzato 's PhD thesis 2009]

-15				
-1.5 -1.5	\mathbf{PCA}^{0}	autoencoder	sparse coding	K-Means
	(1 code unit)	(3 code units)	(3 code units)	(3 code units)
encoder	$W^{*}Y$	$\sigma(W_e Y)$	<u></u>	<u>-</u>
decoder	WZ	$W_d Z$	WZ	WZ
energy	$ Y - WZ ^2$	$ Y - WZ ^2$	$ Y - WZ ^2 + \lambda Z $	$ Y - WZ ^2$
loss	F(Y)	$F(Y) + \log \Gamma$	F(Y)	F(Y)
pull-up	dimens.	part. func.	sparsity	1-of-N code

- 2 dimensional toy dataset
 - spiral
- Visualizing energy surface(black = low, white = high)

Using PSD to learn the features of an object recognition system

- Learning the filters of a ConvNet-like architecture with PSD
- 1. Train filters on images patches with PSD
- **2.** Plug the filters into a ConvNet architecture
- 3. Train a supervised classifier on top

"Modern" Object Recognition Architecture in Computer Vision

Oriented Edges Sigmoid Averaging

Gabor Wavelets Rectification Max pooling

Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

Example:

- Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
- SIFT + classification
- Fixed Features + "shallow" classifier

"State of the Art" architecture for object recognition

Example:

- ▶ SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik et al. 2006]
- Fixed Features + unsupervised features + "shallow" classifier

Can't we get the same results with (deep) learning?

- Stacking multiple stages of feature extraction/pooling.
- Creates a hierarchy of features
- ConvNets and SIFT+PMK-SVM architectures are conceptually similar
- Can deep learning make a ConvNet match the performance of SIFT+PNK-SVM?

How well do PSD features work on Caltech-101?

Recognition Architecture

Procedure for a single-stage system

- 1. Pre-process images
 - remove mean, high-pass filter, normalize contrast
- **2.** Train encoder-decoder on 9x9 image patches
- 3. use the filters in a recognition architecture
 - Apply the filters to the whole image
 - Apply the tanh and D scaling
 - Add more non-linearities (rectification, normalization)
 - Add a spatial pooling layer
- 4. Train a supervised classifier on top
 - Multinomial Logistic Regression or Pyramid Match Kernel SVM

Using PSD Features for Recognition

- 64 filters on 9x9 patches trained with PSD
 - with Linear-Sigmoid-Diagonal Encoder

weights :-0.2828 - 0.3043

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

- Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08

LAYER

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?

Normalization Layer

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?

Normalization Layer

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?
- **♦ P** Pooling down-sampling layer: average or max?

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?
- **♦ P** Pooling down-sampling layer: average or max?

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?
- **♦ P** Pooling down-sampling layer: average or max?

Training Protocol

Training

- Logistic Regression on Random Features:
- Logistic Regression on PSD features:
- ightharpoonup Refinement of whole net from random with backprop: R^+
- ullet Refinement of whole net starting from PSD filters:

Classifier

Multinomial Logistic Regression or Pyramid Match Kernel SVM

Using PSD Features for Recognition

$[\mathbf{64.F_{CSG}^{9 imes9}-R/N/P^{5 imes5}}]$ - $\mathbf{log_reg}$								
R/N/P	$ hooknote{ holdsymbol{ holds$	$ m R_{abs}-P_A$	$\mathbf{N} - \mathbf{P_M}$	$N-P_A$	P_{A}			
\mathbf{U}^+	54.2%	50.0%	44.3%	18.5%	14.5%			
\mathbf{R}^{+}	54.8%	47.0%	38.0%	16.3%	14.3%			
U	52.2%	$43.3(\pm 1.6)\%$	44.0%	17.2%	13.4%			
\mathbf{R}	53.3%	31.7%	32.1%	15.3%	$12.1(\pm 2.2)\%$			
$[64.\mathrm{F}_{\mathbf{CSG}}^{9 imes9}-\mathrm{R/N/P^{5 imes5}}]$ - PMK								
U	65.0%							
$[96.\mathrm{F_{CSG}^{9 imes9}}-\mathrm{R/N/P^{5 imes5}}]$ - PCA - $\mathrm{lin_svm}$								
U	58.0%							
96.Gabors - PCA - lin_svm (Pinto and DiCarlo 2006)								
Gabors	59.0%							
SIFT - PMK (Lazebnik et al. CVPR 2006)								
Gabors	64.6%							

Using PSD Features for Recognition

- Rectification makes a huge difference:
 - ▶ 14.5% -> 50.0%, without normalization
 - ▶ 44.3% -> 54.2% with normalization
- Normalization makes a difference:
 - **>** 50.0 → 54.2
- Unsupervised pretraining makes small difference
- PSD works just as well as SIFT
- Random filters work as well as anything!
 - If rectification/normalization is present
- PMK_SVM classifier works a lot better than multinomial log_reg on low-level features
 - 52.2% → 65.0%

Comparing Optimal Codes Predicted Codes on Caltech 101

- Approximated Sparse Features Predicted by PSD give better recognition results than Optimal Sparse Features computed with Feature Sign!
 - PSD features are more stable.

Feature Sign (FS) is an optimization methods for computing sparse codes [Lee...Ng 2006]

PSD Features are more stable

- Approximated Sparse Features Predicted by PSD give better recognition results than Optimal Sparse Features computed with Feature Sign!
- Because PSD features are more stable. Feature obtained through sparse optimization can change a lot with small changes of the input.

How many features change sign in patches from successive video frames (a,b), versus patches from random frame pairs (c)

PSD features are much cheaper to compute

Computing PSD features is hundreds of times cheaper than Feature Sign.

How Many 9x9 PSD features do we need?

Accuracy increases slowly past 64 filters.

Training a Multi-Stage Hubel-Wiesel Architecture with PSD

- 1. Train stage-1 filters with PSD on patches from natural images
- 2. Compute stage-1 features on training set
- 3. Train state-2 filters with PSD on stage-1 feature patches
- 4. Compute stage-2 features on training set
- 5. Train linear classifier on stage-2 features
- 6. Refine entire network with supervised gradient descent
- What are the effects of the non-linearities and unsupervised pretraining?

Multistage Hubel-Wiesel Architecture on Caltech-101

Multistage Hubel-Wiesel Architecture

Image Preprocessing:

High-pass filter, local contrast normalization (divisive)

First Stage:

- Filters: 64 9x9 kernels producing 64 feature maps
- Pooling: 10x10 averaging with 5x5 subsampling

Second Stage:

- Filters: 4096 9x9 kernels producing 256 feature maps
- Pooling: 6x6 averaging with 3x3 subsampling
- Features: 256 feature maps of size 4x4 (4096 features)

Classifier Stage:

- Multinomial logistic regression
- Number of parameters:
 - Roughly 750,000

Multistage Hubel-Wiesel Architecture on Caltech-101

Single Stage System: $[64.\mathrm{F_{CSG}^{9\times9}-R/N/P^{5\times5}}]$ - \log _reg							
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N - P_M$	$N - P_A$	$P_{\mathbf{A}}$		
U^{+}	54.2%	50.0%	44.3%	18.5%	14.5%		
\mathbf{R}^{+}	54.8%	47.0%	38.0%	16.3%	14.3%		
U	52.2%	$43.3\%(\pm 1.6)$	44.0%	17.2%	13.4%		
R	53.3%	31.7%	32.1%	15.3%	$12.1\%(\pm 2.2)$		
G	52.3%						
Two Stage System: $[64.F_{CSG}^{9\times9} - R/N/P^{5\times5}] - [256.F_{CSG}^{9\times9} - R/N/P^{4\times4}]$ - \log_{-R}							
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N - P_{M}$	$N - P_A$	$P_{\mathbf{A}}$		
U^+U^+	65.5%	60.5%	61.0%	34.0%	32.0%		
R^+R^+	64.7%	59.5%	60.0%	31.0%	29.7%		
UU	63.7%	46.7%	56.0%	23.1%	9.1%		
RR	62.9%	$33.7\%(\pm 1.5)$	$37.6\%(\pm 1.9)$	19.6%	8.8%		
GT	55.8% ←	like HMAX model					
Single Stage: $[64.\mathrm{F_{CSG}^{9\times9}-R/N/P^{5\times5}}]$ - PMK-SVM							
U	64.0%						
Two Stages: $[64.F_{CSG}^{9\times9} - R/N/P^{5\times5}] - [256.F_{CSG}^{9\times9} - R/N]$ - PMK-SVM							
UU	52.8%						

Two-Stage Result Analysis

- Second Stage + logistic regression = PMK_SVM
- Unsupervised pre-training doesn't help much :-(
- Random filters work amazingly well with normalization
- Supervised global refirnement helps a bit
- The best system is really cheap
- Either use rectification and average pooling or no rectification and max pooling.

Multistage Hubel-Wiesel Architecture: Filters

After PSD

After supervised refinement

Stage2

Demo: real-time learning of visual categories

Parzen Windows Classifier

CLASSIFIER

contrast-normalized

(raw:

91×91)

Input

high-pass

filtered

MNIST dataset

● 10 classes and up to 60,000 training samples per class

5 C) H	/	9	a	ţ	3	ļ	4
3 5		_						
40	9	/	1	2	4	3	3	7
38	6	9	0	5	6	Ó	7	6
_	1							
3 C								
44								
)							
80								
67		O	ď	U	1	ď	C	/

Architecture

MNIST dataset

- U'U': 0.53% error (this is a record on the undistorted MNIST!)
- Comparison: RR versus UU and RR

Why Random Filters Work?

The Competition: SIFT + Sparse-Coding + PMK-SVM

Replacing K-means with Sparse Coding

[Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

	Method	Caltech 15	Caltech 30	Scenes
Boiman et al. [1]	Nearest neighbor + spatial correspondence	65.00 ± 1.14	70.40	-
Jain et al. [8]	Fast image search for learned metrics	61.00	69.60	-
Lazebnik et al. [12]	Spatial Pyramid + hard quantization + kernel SVM	f 56.40	64.40 ± 0.80	81.40 ± 0.50
van Gemert et al. [24]	Spatial Pyramid + soft quantization + kernel SVM	_	64.14 ± 1.18	76.67 ± 0.39
Yang et al. [26]	SP + sparse codes + max pooling + linear	67.00 ± 0.45	73.2 ± 0.54	80.28 ± 0.93
Zhang et al. [27]	kNN-SVM	59.10 ± 0.60	66.20 ± 0.50	-
Zhou et al. [29]	SP + Gaussian mixture	_	_	84.1 ± 0.5
Baseline:	SP + hard quantization + avg pool + kernel SVM	56.74 ± 1.31	64.19 ± 0.94	80.89 ± 0.21
Unsupervised coding	SP + soft quantization + avg pool + kernel SVM	59.12 ± 1.51	66.42 ± 1.26	81.52 ± 0.54
1×1 features	SP + soft quantization + max pool + kernel SVM	63.61 ± 0.88	_	83.41 ± 0.57
8 pixel grid resolution	SP + sparse codes + avg pool + kernel SVM	62.85 ± 1.22	70.27 ± 1.29	83.15 ± 0.35
	SP + sparse codes + max pool + kernel SVM	64.62 ± 0.94	71.81 ± 0.96	84.25 ± 0.35
	SP + sparse codes + max pool + linear	64.71 ± 1.05	71.52 ± 1.13	83.78 ± 0.53
Macrofeatures +	SP + sparse codes + max pool + kernel SVM	69.03±1.17	75.72±1.06	84.60 ± 0.38
Finer grid resolution	SP + sparse codes + max pool + linear	68.78 ± 1.09	75.14 ± 0.86	84.41 ± 0.26

Small NORB dataset

5 classes and up to 24,300 training samples per class

NORB Generic Object Recognition Dataset

- **50** toys belonging to 5 categories: animal, human figure, airplane, truck, car
- 10 instance per category: 5 instances used for training, 5 instances for testing
- Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
- For each instance:
- 18 azimuths
 - 0 to 350 degrees every 20 degrees
- **9** elevations
 - 30 to 70 degrees from horizontal every 5 degrees
- **6** illuminations
 - on/off combinations of 4 lights
- 2 cameras (stereo)
 - 7.5 cm apart
 - 40 cm from the object

Training instances

Test instances

Small NORB dataset

Two-stage system: error rate versus number of labeled training samples

Learning Complex Cells with Invariance Properties

[Kavukcuoglu et al. CVPR 2008]

Learning Invariant Features [Kavukcuoglu et al. CVPR 2009]

- Unsupervised PSD ignores the spatial pooling step.
- Could we devise a similar method that learns the pooling layer as well?
- Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
 - Minimum number of pools must be non-zero
 - Number of features that are on within a pool doesn't matter
 - Polls tend to regroup similar features

Learning the filters and the pools

- Using an idea from Hyvarinen: topographic square pooling (subspace ICA)
 - ▶ 1. Apply filters on a patch (with suitable non-linearity)
 - 2. Arrange filter outputs on a 2D plane
 - 3. square filter outputs

Yann LeCun

4. minimize sqrt of sum of blocks of squared filter outputs

Units in the code Z

Define pools and enforce sparsity across pools

Learning the filters and the pools

- The filters arrange themselves spontaneously so that similar filters enter the same pool.
- The pooling units can be seen as complex cells
- They are invariant to local transformations of the input
 - For some it's translations, for others rotations, or other transformations.

Pinwheels?

Invariance Properties Compared to SIFT

- Measure distance between feature vectors (128 dimensions) of 16x16 patches from natural images
 - Left: normalized distance as a function of translation
 - Right: normalized distance as a function of translation when one patch is rotated 25 degrees.
- Topographic PSD features are more invariant than SIFT

Learning Invariant Features

- Recognition Architecture
 - ->HPF/LCN->filters->tanh->sqr->pooling->sqrt->Classifier
 - Block pooling plays the same role as rectification

Recognition Accuracy on Caltech 101

- A/B Comparison with SIFT (128x34x34 descriptors)
- ▶ 32x16 topographic map with 16x16 filters
- Pooling performed over 6x6 with 2x2 subsampling
- ▶ 128 dimensional feature vector per 16x16 patch
- Feature vector computed every 4x4 pixels (128x34x34 feature maps)

A -----(O1)

Resulting feature mans are snatially smoothed

Method	Av. Accuracy/Class (%)		
$local norm_{5\times5} + boxcar_{5\times5} + PCA_{3060} + linear SVM$			
IPSD (24x24)	50.9		
SIFT (24x24) (non rot. inv.)	51.2		
SIFT (24x24) (rot. inv.)	45.2		
Serre et al. features [25]	47.1		
local norm _{9×9} + Spatial Pyramid Match Kernel SVM			
SIFT [11]	64.6		
IPSD (34x34)	59.6		
IPSD (56x56)	62.6		
IPSD (120x120)	65.5		

Recognition Accuracy on Tiny Images & MNIST

- ► A/B Comparison with SIFT (128x5x5 descriptors)
- ▶ 32x16 topographic map with 16x16 filters.

Performance on Tiny Images Dataset		
Method	Accuracy (%)	
IPSD (5x5)	54	
SIFT (5x5) (non rot. inv.)	53	

Performance on MNIST Dataset		
Method	Error Rate (%)	
IPSD (5x5)	1.0	
SIFT (5x5) (non rot. inv.)	1.5	

Learning fields of Convolutional Filters

Convolutional Training

Problem:

- With patch-level training, the learning algorithm must reconstruct the entire patch with a single feature vector
- But when the filters are used convolutionally, neighboring feature vectors will be highly redundant

weights :-0.2828 - 0.3043

Convolutional Training

Problem with patch-based training: high correlation between outputs of filters from overlapping receptive fields.

Convolutional Training

■ Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Learning fields of Simple Cells and Complex Cells

[Gregor and LeCun, 2010]

Training Simple Cells with Local Receptive Fields over Large Input Images

■ Training on 115x115 images. Kernels are 15x15

Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels

■ Training on 115x115 images. Kernels are 15x15

119x119 Image Input 100x100 Code 20x20 Receptive field size sigma=5

K Obermayer and GG Blasdel, Journal of Neuroscience, Vol 13, 4114-4129 (**Monkey**)

Michael C. Crair, et. al. The Journal of Neurophysiology Vol. 77 No. 6 June 1997, pp. 3381-3385 (**Cat**)

Same Method, with Training at the Image Level (vs patch)

Color indicates orientation (by fitting Gabors)

Deep Learning for Mobile Robot Vision

DARPA/LAGR: Learning Applied to Ground Robotics

- Getting a robot to drive autonomously in unknown terrain solely from vision (camera input).
- Our team (NYU/Net-Scale Technologies Inc.) was one of 8 participants funded by DARPA
- All teams received identical robots and can only modify the software (not the hardware)
- The robot is given the GPS coordinates of a goal, and must drive to the goal as fast as possible. The terrain is unknown in advance. The robot is run 3 times through the same course.
- Long-Range Obstacle Detection with online, self-trained ConvNet
- Uses temporal consistency!

Obstacle Detection

Obstacles overlaid with camera image

Camera image

Detected obstacles (red)

Navigating to a goal is hard...

stereo perspective

human perspective

especially in a snowstorm.

Self-Supervised Learning

- Stereo vision tells us what nearby obstacles look like
- Use the labels (obstacle/traversible) produced by stereo vision to train a monocular neural network
- Self-supervised "near to far" learning

Long Range Vision: Distance Normalization

Pre-processing (125 ms)

- Ground plane estimation
- Horizon leveling
- Conversion to YUV + local contrast normalization
- Scale invariant pyramid of distance-normalized image "bands"

Convolutional Net Architecture

Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes 100 features per 100x1x1 input window 3x12x25 input window Convolutions with 6x5 kernels 20x6x5 input window Pooling/subsampling with 1x4 kernels 20x6x20 input window Convolutions with 7x6 kernels **YUV** image band 3x12x25 input window 20-36 pixels tall,

36-500 pixels wide

Convolutional Net Architecture

100@25x121

20@30x125

20@30x484

3@36x484

YUV input

Long Range Vision: 5 categories

Online Learning (52 ms)

• Label windows using stereo information – 5 classes

Trainable Feature Extraction

- "Deep belief net" approach to unsupervised feature learning
- Two stages are trained in sequence
 - each stage has a layer of convolutional filters and a layer of horizontal feature pooling.
 - Naturally shift invariant in the horizontal direction
- Filters of the convolutional net are trained so that the input can be reconstructed from the features
 - 20 filters at the first stage (layers 1 and 2)
 - 300 filters at the second stage (layers 3 and 4)
- Scale invariance comes from pyramid.
 - for near-to-far generalization

Long Range Vision Results

Long Range Vision Results

Long Range Vision Results

Feature Learning for traversability prediction (LAGR)

Comparing

- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames – binary labels

Comparison of Feature Extractors on Groundtruth Data

Collaborators

- Current PhD students:
 - Y-Lan Boureau, Koray Kavukcuoglu, Pierre Sermanet
- Former PhD students:
 - Raia Hadsell, Fu-Jie Huang, Marc'Aurelio Ranzato
- Postdocs and Research Scientists
 - Clément Farabet, Karol Gregor, Marco Scoffier
- Senior Collaborators
 - Rob Fergus (NYU): invariant feature learning
 - Eugenio Culurciello (Yale): FPGA/ASIC design
 - Yoshua Bengio (U. Montreal): deep learning
 - Leon Bottou (NEC Labs): handwriting recognition
 - Jean Ponce (ENS/INRIA), Francis Bach (ENS/INRIA): sparse coding.

