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: The Next Challenge for AL, Robotics, and Neuroscience

& How do we learn vision and perception?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

@ How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can
recognize every airplane (even really weird ones) |

Yann LeCun * New York University



_Vision occupies a big chunk of our brains

[ ———————

& 1/3 of the macaque brain
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Yann LeCun [from Van Essen]




Vision is very fast and the visual cortex is hierarchical
[ —— I ——————————— |

& The ventral (recognition) pathway in the visual cortex
Motor command

Categorical judgments, 140-190 ms. P
decision making Simple visual forms
edges corners

/ / .m

30- 50 m

100-130 ms PFC

....... :4, 0 ms
Intermediate visual
orms, feature

groups, eftc.

~High level object

descriptions,
faces, objects

To spinal cord
~———— To finger muscle ——160-220 ms
180-260 ms

Yann LeCun [picture from Simon Thorpe]
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_The Primate's Visual System is Deep (LGN->V1
[ ———— - |

& The recognition of everyday objects is a very fast process.
» The recognition of common objects is essentially “feed forward.”

» But not all of vision is feed forward.
& Much of the visual system (all of it?) is the result of learning
» How much prior structure is there?

& If the visual system is deep (around 10 layers) and learned

& what is the learning algorithm of the visual cortex?

» What learning algorithm can train neural nets as
“deep” as the visual system (10 layers?).

» Unsupervised vs Supervised learning

» What is the loss function?

» What is the organizing principle?

» Broader question (Hinton): what is the learning
algorithm of the neo-cortex?

Yann LeCun * New York University
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The Broader Challenge of Machine Learning and Al

—

& Can we devise learning algorithms to train a ““deep” artificial visual
system, and other artificial perception systems.

& How can we learn the structure of the world?

» How can we build/learn internal representations of the world that
allow us to discover its hidden structure?

» How can we learn internal representations that capture the
relevant information and eliminates irrelevant variabilities?

& How can a human or a machine learn internal representations by just
looking at the world?

& Can we find learning methods that solve really complex problems end-to-
end, such as vision, natural language, speech....?

Yann LeCun

t New York University
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_The Trdtia ‘Shallow”’ Aritecture

Pre-processing / “Simple” Trainable

Feature Extraction Classifier

/

this part 1s mostly hand-crafted

Internal Representation

& The raw input is pre-processed through a hand-crafted feature extractor
@ The features are not learned

& The trainable classifier is often generic (task independent), and *‘simple”’
(linear classifier, kernel machine, nearest neighbor......)

& The most common Machine Learning architecture: the Kernel Machine

Yann LeCun

t New York University
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“Modern’” Object Recognition Architecture in Computer Vision
| — - - - ’

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters...  Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“‘shallow”’ classifier

Yann LeCun

t New York University
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Feature Extraction by Filtering and Pooling
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& Biologically-inspired models of low-level feature extraction
» Inspired by [Hubel and Wiesel 1962]

Yann LeCun

t New York University
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“State of the Art” architecture for object recognition
[ E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A Histogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University
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‘ Gobd Representations are Hierarchical

Trainable Trainable ,
Trainable
Feature |— — — -»| Feature e
Classifier
Extractor Extractor

& In Language: hierarchy in syntax and semantics

» Words->Parts of Speech->Sentences->Text

» Objects,Actions,Attributes...-> Phrases -> Statements ->
Stories

& In Vision: part-whole hierarchy
» Pixels->Edges->Textons->Parts->0bjects->Scenes

Yann LeCun

t New York University
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““Deep”’ Learmng Learnlng Hlerarchlcal Representations

— S S— |

Trainable Trainable ,
Trainable
Feature |— - —»| Feature |- e
Classifier
Extractor Extractor

Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

& Representations are increasingly invariant as we go up the layers

& using multiple stages gets around the specificity/invariance dilemma

Yann LeCun

t New York University



& We can approximate any function as close as we want with shallow
architecture (e.g. a kernel machine). Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa
& Deep learning machines
K K-—1 0
y=FWH FWELF(.FW.X)..)))

& Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less “hardware”

& We need an efficient parameterization of the class of functions that are
useful for “AI” tasks.

Yann LeCun

t New York University
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W hy are Deep Architectures More Efficient?
R —N———————TT

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”’]

& A deep architecture trades space for time (or breadth for depth)

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”N).....

Yann LeCun

t New York University



: ep Ssed Learning is Hard

& The loss surface is non-convex, ill-conditioned, has saddle points, has
flat spots.....

& For large networks, it will be horrible! (not really, actually)

& Back-prop doesn't work well with networks that are tall and skinny.
» Lots of layers with few hidden units.

& Back-prop works fine with short and fat networks

» But over-parameterization becomes a problem without
regularization

» Short and fat nets with fixed first layers aren't very different
from SVMs.

& For reasons that are not well understood theoretically, back-prop
works well when they are highly structured

» e.g. convolutional networks.

Yann LeCun

t New York University
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Can't we tram multi-stage vision architectures?
[ —— ——— |

Filter Non- feature Filter Non- feature o
—> B —> » Classifier

Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.

& Creates a hierarchy of features

Yann LeCun

t New York University
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Convolutional Network

m&isfj‘<:: =

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i@ dense features: features detectors applied everywhere (no interest point)
i@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun

t New York University
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun
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_The Multistage Hubel-Wiesel Architecture |

[ — R ——————— |
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& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers
» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]

L} ] q
i

) .
!I-“‘l O

E?ﬂh'

& QUESTION: How do we
find (or learn) the filters?

..

Yann LeCun

t New York University
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Convolutional Net Architecture

=

mﬁiiiij,, P

L 2 Layer 3 Layer 4 Layer>
input baver | W 12@10x10 Y 100@1x1
1@32x32 6@28x28 6@14x14 12@5x%5

Layer 6: 10
.. 10
2x2 5x5 2x2

/ .
5x5 convolution
i convolution ~
convolution pooling/ pooling/
subsampling subsampling

i@ Convolutional net for handwriting recognition (400,000 synapses)

i@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

i@ Supervised gradient-descent learning using back-propagation

ia@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun

t New York University



Face Detection and Pose Estimation with Convolutional Nets
Ms - IS S — -

& Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness
and contrast.

& 2™ phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
_'“:==—--_—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling  connection
Canvalutions Convolutions

Yann LeCun
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Face Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 047 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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Face Detection with a ConvNet
ettt | et - B——

face = iacel
facen - i
[ . '

& Demo produced with EBLearn open source package

& http://eblearn.sf.net

Yann LeCun

t New York University


http://eblearn.sf.net/

Geneﬂrié‘\()bject Detection and Recognition

with Invarlance to Pose and Illummatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g etgrzjé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

il 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

il 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University
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Convolutlonal Network

L 3
ayet Layer 6
24@18x18 Layer 4
Stereo Layer 1 YA@6x6 Layer 5 Fully
input 8@92x92 Layer 2 100 connected
2@96x96 8@23x23 (500 weights)

/v

6x6
5x5 4x4

- convolution 3x3
convolution subsampling 5 convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

i 90,857 free parameters, 3,901,162 connections.

ial The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun * New York University



Normalized-Uniform Set: Exrror Rates

B

el o’ e =

@ Linear Classifier on raw stereo images: 30.2% error.
@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6% error.
@ Pairwise SVM on 96x96 stereo images: 11.6% error
@ Pairwise SVM on 95 Principal Components: 13.3% error.

@@ Convolutional Net on 96x96 stereo images:  5.8% error.

-k g =g g D
s+ 3 61358 &%
20 eI S S PR
C e COC R PV S

Training instances Test instances

Yann LeCun * New York University




& Jittered-Cluttered Dataset:
i 291,600 tereo pairs for training, 58,320 for testing

i@ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

- 291 600 training samples, 58 320 test samples

& SVM with Gaussian kernel

@ Convolutional Net with binocular input:
& Convolutional Net + SVM on top:

@@ Convolutional Net with monocular input:
i@ Smaller mono net (DEMO):

@ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University



Examples (M?i;;i;ﬁ(ﬁ) 7

km

Yann LeCun

t New York University



Examples (Monocular Mode)

=SS . =

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University



Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance




Convolutional Nets For Brain Imaging and Biology
[ —— S ——

& Brain tissue reconstruction from slice images [Jain,....,Denk, Seung 2007]

» Sebastian Seung's lab at MIT.
» 3D convolutional net for image segmentation

» ConvNets Outperform MRF, Conditional Random Fields, Mean Shift,
Diffusion,...[ICCV'07]

Yann LeCun

t New York University
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_Industrial Applications of ConvNets

@ AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& Vidient Inc

» Vidient Inc's "SmartCatch” system deployed in several airports
and facilities around the US for detecting intrusions, tailgating,
and abandoned objects (Vidient is a spin-off of NEC)

& NEC Labs
» Cancer cell detection, automotive applications, kiosks

& Google
» OCR, face and license plate removal from StreetView

& Microsoft
» OCR, handwriting recognition, speech detection

& France Telecom
» Face detection, HCI, cell phone-based applications

& Other projects: HRL (3D vision)....

Yann LeCun

t New York University
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| FPGA Custom Board: NYU ConvNet Processor

h———ﬁ““_‘l = R ———————— |

m —

@ Xilinx Virtex 4 FPGA, 8x5 ¢cm board [Farabet et al. 2009]
» Dual camera port, Fast dual QDR RAM,

& New version being developed with Eugenio Culurciello (Yale EE)

» Full custom chip
» Version for Virtex 6 FPGA

Yann LeCun

t New York University
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onVNet/V ision Processor (FPGA and ASIC)

& Reconfigurable Dataflow Architecture
[Farabet et al. 2010]

000 ;
@ E

i @@
PT : PT

000 o009 oo
Goe o606 066

Active Data Lines

Yann LeCun o Configurable Route m Active Route




FGA Performance

m‘“ﬁsw’-,

& Seconds per frame for a robot vision task (log scale) [Farabet et al. 2010]

Time (sec)
' -
- -
—
: —
050 F
i Virtex 4 custom board | == = DuoCore
0.20 = 25ms
e e 400M
010t Nvidia Tesla C1060
005 f 6ms Tesla C1060
Virtex 6 dev board
nmE
o F
| 1 ] 1 1 | 1 1 ] 1 | 1 1 1 ] | [ﬂput 1||"|'|.'iiﬂ'|.
W0 400 5000 B0

Image Size

Yann LeCun * New York University




& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
© [Lazebnik et al. 2006]

to learn in purely supervised mode (or so we thought).
cellphone

minaret

t New York University
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‘ nsupervised Deep Learning: Leveraging Unlabeled Data

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

& Unlabeled data is usually available in large quantity
& A lot can be learned about the world by just looking at it
& Unsupervised learning captures underlying regularities about the data

& The best way to capture underlying regularities is to learn good
representations of the data

& The main idea of Unsupervised Deep Learning

» Learn each layer one at a time in unsupervised mode
» Stick a supervised classifier on top
» Optionally: refine the entire system in supervised mode

& Unsupervised Learning view as Energy-Based Learning

Yann LeCun

t New York University
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- Unsupervised Feature Learning with Sparse Coding

[Olshausen & field 1997]

& Find a dictionary of basis functions such that any input can be
reconstructed of a sparse linear combination of them.

INPUT

@ Energy: E(Yi»Z;Wd)=”Yi_WdZ”2+AZj|zj|
@ Optimal Code Z'= argmin, E(Yi, Z ;Wd)
nilFreeEnergy:F(Yi;Wd)=F<Zi)=I”}1inZE(Yi,Z,'Wd)

Yann LeCun

t New York University



& The learning algorithm minimizes the loss function:

L(W,)=2, F(Y';W,)=2, (min,E(Y',Z:W,))

& The columns of Wd are normalized

& Energy: E(Yi,Z,’Wd)=”Yi—WdZ||2+AZj|zj|

@ Free Energy: F(Yi,' Wd)=F<Zi)=minZE(Yi,Z,'Wd)

Yann LeCun




& Inference: find Z that minimizes the energy for a given Y
E(Y.ZW )=y =W,z +a) ||
Z'=argmin E(Y', z;W )

» For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

» This would be very slow for large scale vision tasks
» Also, the optimal Z are very unstable:

¢ A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University



,/ Solution: Predictive Sparse Decomposition (PSD) -

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=|lY'=W ZI +|Z-g (W, Y +A 2 |z
g (W ,Y')=Dtanh (W, Y)

INPUT

Yann LeCun




& Inference by gradient descent starting from the encoder output
E(Y,Z)=[lY'=W,Z|"+|Z g, (W, Y +2 2 |z,

Z'=argmin E(Y', z; W)

Yann LeCun
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& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(Wd, We) — Zi F (Yi; Wd’ We)
F(Y;W, W,)=minE(Y',z;W,, W)

Yann LeCun

t New York University



SD: Learning Algorithm

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University
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PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

& 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun
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_Learned Features on natural patches: V1-like receptive fields

[ S—— IR—|

Yann LeCun
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Learned Features: V1-like receptive fields

o 12x12 filters
& 1024 filters

Yann LeCun * New York University



(Classification Error Rate on MNIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder
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Using PSD to Train a Hierarchy of Features

“——m_im
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& Phase 1: train first layer using PSD

FEATURES

Yann LeCun

t New York University
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| Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES

Yann LeCun

t New York University
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| Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES

Yann LeCun

t New York University



£S5 = B

’ Using PSD to Train a Hierarchy of Features

[

R ————————— S|

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor
& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2™ feature extractor

FEATURES

Yann LeCun

t New York University



_Using PSD to Train a Hierarchy of Features

BEp—

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

@ Phase 4: use encoder + absolute value as 2™ feature extractor
& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES

Yann LeCun

t New York University



“Deep Learning”
m“aﬁzhf-

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

@ The “deep learning’” method was popularized by Hinton for training
‘“deep belief networks”.

» DBN use a special kind of encoder-decoder architecture
called Restricted Boltzmann Machines (RBM)

& 1. Train each layer in an unsupervised fashion, layer by layer

& 2. Stick a supervised classifier on top, and refine the entire system with
gradient descent (back-prop) on a supervised criterion.

Yann LeCun * New York University



- Unsupervised Learning: Capturing Dependencies Between Variables

& Energy function: viewed as a negative log probability density

& Probabilistic View:
» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

vl |

& Energy-Based View:

» produce an energy function
II:E)(Y,W) s ) AE(Y,W)

» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun

t New York University
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Unsupervised Learning: Capturing Dependencies Between Variables
| ——

& Energy function viewed as a negative log density

» Example: y = x"2

Yann LeCun * New York University
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Energy <-> Probability

B

E(Y,W) x —log P(Y|W)

=<V

Yann LeCun
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Training an Energy-Based Model

m—-—_ﬁ“_;‘

& Make the energy around training samples low

& Make the energy everywhere else higher

AE(Y)

o—BE(Y.W)

fy e—BE(y,W)

P(Y,W) =

Yann LeCun

t New York University



Training an Energy-Based Model to Approximate a Density
S S ENNNN———— |
Maximizing P(YIW) on training samples
make this big
—BE(Y,W) &
PY W) = [ e=BEw,W)
y %

make this small

Minimizing -log P(Y,W) on training samples

1
L(Ya W) — E(Y, W) -+ B log/ 6_6E(97W)
Yy

make tgsmall make this big

Yann LeCun




& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) _OE(Y,W) / . (y|W)8E(y, W)

oW oW oW v
& Gradient descent: AE(Y)
OL(Y, W) l
A TS
Pushes down on the Pulls up on the ' Y ' g
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P

Yann LeCun




. How do we push up on the energy of everything else?

& Solution 1: contrastive divergence [ Hinton 2000]

» Move away from a training sample a bit
» Push up on that

& Solution 2: score matching
» On the training samples: minimize the gradient of the energy, and
maximize the trace of its Hessian.
& Solution 3: denoising auto-encoder (not really energy-based)
» Train the inference dynamics to map noisy samples to clean
samples
& Solution 4: MAIN INSIGHT! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» Idea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun

t New York University



_Encoder-Decoder with Sparsity (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=|lY'=W ZI +|Z-g (W, Y +A 2 |z
g (W ,Y')=Dtanh (W, Y)

INPUT

Yann LeCun




_The Main Insight [Ranzato et al. AISTATS 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» If few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University
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e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

INPUT SPACE
®
® ® ®
o
®
o ®
® ®

Yann LeCun

'* hy Limit the Information Content of the Code?

FEATURE
SPACE




y Limit the Information Content of the Code?

w

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

Training based on minimizing the reconstruction error over

the training set

INPUT SPACE .
o ®
®
° e
® o

Yann LeCun

l""l"lllllllllll“

FEATURE
SPACE

t New York University



‘Why Limit the I

[ R ——

|

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
®
® ®
o
®
° ®
® ®

FEATURE
SPACE

Yann LeCun

t New York University



Why Limit the Information Content of the Code?

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
? SPACE
@ ® () @
o o
(] @
@ ® @ ®
@ @ ([

Yann LeCun




e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

Why Limit the Information Content of the Code?

INPUT SPACE FEATURE
° SPACE
() ® o
P o g —— - o
@ @ @

Yann LeCun

t New York University
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. Why Limit the Information Content of the Code?

[ ——— ——

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
@
o
P "“""""""""""""'"“““““““““““ o
@ @ @

Yann LeCun

t New York University



‘ Sparsity Penalty to Restrict the Code

& We are going to impose a sparsity penalty on the code to restrict its
information content.

& We will allow the code to have higher dimension than the input

& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University
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@ 2 dimensional toy dataset
» Mixture of 3 Cauchy distrib.

0.5

@ Visualizing energy surface
(black = low, white = high)

-0.5

[Ranzato 's PhD thesis 2009]

|
o 0.5

7 "PCA autoencoder sparse coding K-Means

nde uni pde units nde uni

Y —wZ|I Y —wZ|| Y—WZI|F+AlZ

pull-up dimens. part. func. sparsity

decoder
energy

wz
Y —wZ||

1-of-N code




@ 2 dimensional toy dataset
» spiral

; @ Visualizing energy surface
(black = low, white = high)

‘ "PCA ‘autoencoder sparse coding K-Means

nde nni nde uni ) code units ) code uni

cere ywz|

pull-up dimens. dimens. sparsity [-of-N code




Using PSD to learn the features of an object recognition system
[ e i

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

& Learning the filters of a ConvNet-like architecture with PSD
& 1. Train filters on images patches with PSD
& 2. Plug the filters into a ConvNet architecture

& 3. Train a supervised classifier on top

Yann LeCun

t New York University
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“Modern’” Object Recognition Architecture in Computer Vision
| — - - - ’

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters...  Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“‘shallow”’ classifier

Yann LeCun

t New York University
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“State of the Art” architecture for object recognition
[ E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A Histogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University



Can't we get the same results with (deep) learning?

M‘m"l;,

Filter Non- feature Filter Non- feature o
R o o o s R o o . » Classifier
Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.
& Creates a hierarchy of features
& ConvNets and SIFT+PMK-SVM architectures are conceptually similar

& Can deep learning make a ConvNet match the performance of
SIFT+PNK-SVM?

Yann LeCun

t New York University
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: How well do PSD features work on Caltech-101?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (Classifier |—»

Bank Linearity| |Pooling

SVM

[ B .- EEEEE

Yann LeCun

t New York University



“Procedure for a single-stage system

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University
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Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University



Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer



Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pinto, Cox and DiCarlo, PloS 08



Feature Extraction
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

Pooling Down-
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H




Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

¢+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION




Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

* Classifier
@ Multinomial Logistic Regression or Pyramid Match Kernel SVM




64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% |  13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun




Using PSD Features for Recognition
e —— R NNNNNNN——————

& Rectification makes a huge difference:

» 14.5% -> 50.0%, without normalization
» 44.3% -> 54.2% with normalization

& Normalization makes a difference:
» 50.0 » 54.2

& Unsupervised pretraining makes small difference
& PSD works just as well as SIFT

& Random filters work as well as anything!
» If rectification/normalization is present

& PMK_SVM classifier works a lot better than multinomial log_reg on low-
level features

» 52.2% - 65.0%

Yann LeCun * New York University



Comparing Optimal Codes Predicted Codes on Caltech 101
e R RRRRNNNNNNN_——————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

» PSD features are more stable.

53
% 5ol ___________________________________________ _________________________________________ ____________________________________________ i Feature Slgn (FS)
Y] 5 . .o .
. ' ' 1S an optimization
9 51 L N ] p
o | | methods for
g 50 ESSUUURURUNRIOO DY SV .............................................. .............................................. ............................................ 4 Computlng
g | sparse codes
%49 —©-PSD Predictor [Lee...Ng 2006]
g | —©—=Regressor
é 48 L _e_ FS

47 ; | —©=PSD Optimal

0 0.05 0.1 0.15 0.2

Sparsity Penalty per Code Unit

Yann recvun * New York University




. PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [ e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] ............... ............... R— PLI#) 0000 ............... ______________ L P 000f ............... ______________ ]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University



_PSD features are much cheaper to compute
[ — S-S |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University



_How Many 9x9 PSD features do we need?
e — -S|

& Accuracy increases slowly past 64 filters.

55

o
-

B~
(#2)

B~
o

Recognition Accuracy

D
on

(o)
o

0 20 40 60 80
Number of Basis Functions

Yann LeCun




Tralnlng a Multi-Stage Hubel Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun * New York University
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‘ Multistage Hubel-Wiesel Architecture

& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University



ltebl iesel Architecture o

n ate-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P>*%| — [256.F J5&

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University
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Two-Stage Result Analysis
[ — —

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refirnement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun * New York University
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Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University



CLASSIFIER

Parzen Windows Classifier
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MNIST dataset

@ 10 classes and up to 60,000 training samples per class
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MNIST dataset

@ Architecture

@ U'U™: 0.53% error (this is a record on the undistorted MNIST!)
_I_
& Comparison:RR Versus- and RW

Classification error on the MNIST dataset

12_ ...........................................................................................................................................
11__ ...........................................................................................................................................
oL N e Supervised taining ofthe whole network |
] #\ ........................................................... —4&— Unsupervised training of the feature extractory.
T R N e e e — <+ — Random feature extractors

6

5

4

w

% Classification error

0.6

05 | | |
300 1000 2000 5000 10000 20000 40000 60000

Size of labelled training set



Why Random Filters Work?
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"The Competition: SIFT + Spa

& Replacing K-means with Sparse Coding
» [Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

rse-Coding + PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14  70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80  81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60  66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 6419 £0.84 80.89 +£0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[ x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088  — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool + kernel SVM 62.85 £1.22 7027129 83.15x0.35
SP + sparse codes + max pool + kernel SVM 64.62 054  T1.81=0.96  84.25+0.35
SP + sparse codes + max pool + linear 64.71 £ 1.05 T71.52=x1.13 83.78 £0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM  69.03=1.17  7572x1.06  84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 08.78 £ 1.09  7h14x 086 84411026

Yann LeCun

t New York University



Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g




—
NORB Generlc ObJect Recognltlon Dataset

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:
gl 18 azimuths

i O to 350 degrees every 20 ) | = 2
detgrees : ’ 3.,— “3: 1 »& /ﬁ % ﬁj @ g "E

gl 9 elevations

il 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

il 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University




& Two-stage system: error rate versus number of labeled tralnlng samples

50, 5
40F NG ____________________________________________________ -O-Fose. PA (R R )
'fl ‘ ........... .................................................. i i i
a0k .*""“.* _____ ® | 0 -“-FCSG Rabs N PA (UU) i
i : + L+
OGN ‘\* ............................................ -.—FCSG_RabS_N_PA (R R )_
20 '
@
<15
S
D
10
9
8
7
G

50 100 200 500 1000 2000 4860
number of training samples per class
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(o

Yann LeCun
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[Kavukcuoglu et al. CVPR 2008]

Yann LeCun
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Learning Invariant Features [Kavukcuoglu et al. CYPR 2009]
[T TTTRRANNI——————————e

M

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

FEATURES

Yann LeCun

t New York University



. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)

» 1. Apply filters on a patch (with suitable non-linearity)

» 2. Arrange filter outputs on a 2D plane

» 3. square filter outputs

» 4. minimize sqrt of sum of blocks of sauared filter outnuts

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

N\

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
= ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z  Define pools and enforce sparsity across
pools

Yann LeCun

t New York University
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Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input

» For some it's translations, IH
for others rotations, or a
other transformations. .

S

Yann LeCun * New York University
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Pinwheels?
| —

Yann LeCun
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.Invariance Properties Compared to SIFT

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images
» Left: normalized distance as a function of translation
» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT

rotation 0 degrees rotation 25 degrees
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& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqgr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1

o
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n
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1

unsupervised invariant feature extractor

Maps of
Features
o
Object
: | f‘ Category
o=
supervised
classifier

t New York University
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» A/B Comparison with SIFT (128x34x34 descriptors)
» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling
» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Reallltina featiire mang are enatiallv amannthed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vam | IPSD (120x120) 65.5 T,




e

Recognition Ac
mﬁ R ——

curacy on Tiny Images & MNIST

» A/B Comparison with SIFT (128x5x5 descriptors)
» 32x16 topographic map with 16x16 filters.

Yann LeCun

Performance on Tiny Images Dataset

Method Accuracy (%)
I[PSD (5x5) 54
SIFT (5x5) (non rot. inv.) 33

Performance on MNIST Dataset

Method Error Rate (%)
I[PSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5




Learning fields of

Convolutional Filters

Yann LeCun




Convolutional Training
[

& Problem:
» With patch-level training, the learning algorithm must
reconstruct the entire patch with a single feature vector

» But when the filters are used convolutionally, neighboring
feature vectors will be highly redundant

welghts (-0,2828 - 00,3043

Yann LeCun




. Convolutional Training

& Problem with patch-based training: high correlation between outputs of
filters from overlapping receptive fields.

IR == T ST N
A= - '“-"'-1"'""1.1"-"4 II|."l.
| | |.. Wil A= ==

2 " SR Oy

Yann LeCun

nversity



Convolutional Training
S -

Yann LeCun

t New York University



[Gregor and LeCun, 2010]

Yann LeCun




Praining Simple Cells with Local Receptive Fields

_over Large Input Images

& Training on 115x115 images. Kernels are 15x15

Yann LeCun * New York University




Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels
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K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)

119x119 Image Input
100x100 Code
20x20 Receptive field size

sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)



- Same Method, withTraining at the Image Level (vs patch)

& Color indicates orientation (by fitting Gabors)

Yann LeCun * New York University
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DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

i@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i@ Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun

t New York University
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Camera iage ” Detected obstacles (red)

Yann LeCun * New York University
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Navigating to a goal is hard...

h—-___*

stereo perspective human perspective

PEEmETTTTTTTT T

especially in a snowstorm.

Yann LeCun * New York University
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| Self-Supervised Learning

& Stereo vision tells us what nearby obstacles look like

& Use the labels (obstacle/traversible) produced by stereo vision to train a
monocular neural network

& Self-supervised ‘‘near to far”’ learning

Yann LeCun

t New York University



Long Range Vision: Distance Normalization

e Ground plane estimation

* Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 139

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> S classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net(>)SCALE Page 140

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

o M e
il P e o e e s

20@30x125

e s o g
MAX SUBSAMPLING (1x4)

L T T
L e

20@30x484

3@36x484

YUYV input

net(®)SCALE o " page 141

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 142

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. E!I!.‘Eli!
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 143 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision Results
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“Inputimage &

net(>)SCALE bage 144

Technologies, Inc.
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Long Range Vision Results

Classifie
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Long Range Vision Results

Stereo Labels Classifier Output

inputimage. - ~ Stereolabels - -  ClassifierOutput

net(SCALE
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» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

NEW YORK UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

“ NEW YORK
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Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY
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+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm
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FarOD Stereo: Input labels to Neural Network
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Feature Learning for traversability prediction (LAGR)

[ —
Comparing
- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binary labe |
Comparison of Feature Extractors on Groundtruth Data

mrof
gsupervised
gautoencoder
gautoenc + sup
gPrLM

25
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n
o

Gl
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o5 No learning
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. Collaborators |

& Current PhD students:
» Y-Lan Boureau, Koray Kavukcuoglu, Pierre Sermanet

@ Former PhD students:
» Raia Hadsell, Fu-Jie Huang, Marc'Aurelio Ranzato

& Postdocs and Research Scientists
» Clément Farabet, Karol Gregor, Marco Scoffier

& Senior Collaborators

» Rob Fergus (NYU): invariant feature learning
» Eugenio Culurciello (Yale): FPGA/ASIC design
» Yoshua Bengio (U. Montreal): deep learning
» Leon Bottou (NEC Labs): handwriting recognition

» Jean Ponce (ENS/INRIA), Francis Bach (ENS/INRIA): sparse
coding.

Yann LeCun * New York University
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