—_ =

Silver Professor of Computer Science and Neural Science
The Courant Institute of Mathematical Sciences
And Center for Neural Science

New York University

Yann LeCun * New York University

: The Next Challenge for AL, Robotics, and Neuroscience

& How do we learn vision and perception?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

@ How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can
recognize every airplane (even really weird ones) |

Yann LeCun * New York University

_Vision occupies a big chunk of our brains

[———————

& 1/3 of the macaque brain

HHHHHH

EEEEEEEE

Yann LeCun [from Van Essen]

Vision is very fast and the visual cortex is hierarchical
[—— I ——————————— |

& The ventral (recognition) pathway in the visual cortex
Motor command

Categorical judgments, 140-190 ms. P
decision making Simple visual forms
edges corners

/ / .m

30- 50 m

100-130 ms PFC

....... :4, 0 ms
Intermediate visual
orms, feature

groups, eftc.

~High level object

descriptions,
faces, objects

To spinal cord
~———— To finger muscle ——160-220 ms
180-260 ms

Yann LeCun [picture from Simon Thorpe]

t New York University

_The Primate's Visual System is Deep (LGN->V1
[———— - |

& The recognition of everyday objects is a very fast process.
» The recognition of common objects is essentially “feed forward.”

» But not all of vision is feed forward.
& Much of the visual system (all of it?) is the result of learning
» How much prior structure is there?

& If the visual system is deep (around 10 layers) and learned

& what is the learning algorithm of the visual cortex?

» What learning algorithm can train neural nets as
“deep” as the visual system (10 layers?).

» Unsupervised vs Supervised learning

» What is the loss function?

» What is the organizing principle?

» Broader question (Hinton): what is the learning
algorithm of the neo-cortex?

Yann LeCun * New York University

m

The Broader Challenge of Machine Learning and Al

—

& Can we devise learning algorithms to train a ““deep” artificial visual
system, and other artificial perception systems.

& How can we learn the structure of the world?

» How can we build/learn internal representations of the world that
allow us to discover its hidden structure?

» How can we learn internal representations that capture the
relevant information and eliminates irrelevant variabilities?

& How can a human or a machine learn internal representations by just
looking at the world?

& Can we find learning methods that solve really complex problems end-to-
end, such as vision, natural language, speech....?

Yann LeCun

t New York University

4

_The Trdtia ‘Shallow”’ Aritecture

Pre-processing / “Simple” Trainable

Feature Extraction Classifier

/

this part 1s mostly hand-crafted

Internal Representation

& The raw input is pre-processed through a hand-crafted feature extractor
@ The features are not learned

& The trainable classifier is often generic (task independent), and *‘simple”’
(linear classifier, kernel machine, nearest neighbor......)

& The most common Machine Learning architecture: the Kernel Machine

Yann LeCun

t New York University

m — —

“Modern’” Object Recognition Architecture in Computer Vision
| — - - - ’

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“‘shallow”’ classifier

Yann LeCun

t New York University

r————————— —_— e e R

Feature Extraction by Filtering and Pooling

bﬁa-a-_“‘i__g4,

\
\

§
s‘

5
\

Filter | ~_= <= | Non- Spatial =
Bank

%
v
Y
\
W

Linearity] |Pooling =

|

%

lw

& Biologically-inspired models of low-level feature extraction
» Inspired by [Hubel and Wiesel 1962]

Yann LeCun

t New York University

m

“State of the Art” architecture for object recognition
[E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A Histogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University

e

B

‘ Gobd Representations are Hierarchical

Trainable Trainable ,
Trainable
Feature |— — — -»| Feature e
Classifier
Extractor Extractor

& In Language: hierarchy in syntax and semantics

» Words->Parts of Speech->Sentences->Text

» Objects,Actions,Attributes...-> Phrases -> Statements ->
Stories

& In Vision: part-whole hierarchy
» Pixels->Edges->Textons->Parts->0bjects->Scenes

Yann LeCun

t New York University

m

““Deep”’ Learmng Learnlng Hlerarchlcal Representations

— S S— |

Trainable Trainable ,
Trainable
Feature |— - —»| Feature |- e
Classifier
Extractor Extractor

Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

& Representations are increasingly invariant as we go up the layers

& using multiple stages gets around the specificity/invariance dilemma

Yann LeCun

t New York University

& We can approximate any function as close as we want with shallow
architecture (e.g. a kernel machine). Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa
& Deep learning machines
K K-—1 0
y=FWH FWELF(.FW.X)..)))

& Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less “hardware”

& We need an efficient parameterization of the class of functions that are
useful for “AI” tasks.

Yann LeCun

t New York University

M

W hy are Deep Architectures More Efficient?
R —N———————TT

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”’]

& A deep architecture trades space for time (or breadth for depth)

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”N).....

Yann LeCun

t New York University

: ep Ssed Learning is Hard

& The loss surface is non-convex, ill-conditioned, has saddle points, has
flat spots.....

& For large networks, it will be horrible! (not really, actually)

& Back-prop doesn't work well with networks that are tall and skinny.
» Lots of layers with few hidden units.

& Back-prop works fine with short and fat networks

» But over-parameterization becomes a problem without
regularization

» Short and fat nets with fixed first layers aren't very different
from SVMs.

& For reasons that are not well understood theoretically, back-prop
works well when they are highly structured

» e.g. convolutional networks.

Yann LeCun

t New York University

P ——————— s e——

Can't we tram multi-stage vision architectures?
[—— ——— |

Filter Non- feature Filter Non- feature o
—> B —> » Classifier

Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.

& Creates a hierarchy of features

Yann LeCun

t New York University

T —
Convolutional Network

m&isfj‘<:: =

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i@ dense features: features detectors applied everywhere (no interest point)
i@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun

t New York University

e —

An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun

t New York University

_The Multistage Hubel-Wiesel Architecture |

[— R ——————— |

m =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers
» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]

L}] q
i

) .
!I-“‘l O

E?ﬂh'

& QUESTION: How do we
find (or learn) the filters?

..

Yann LeCun

t New York University

—

Convolutional Net Architecture

=

mﬁiiiij,, P

L 2 Layer 3 Layer 4 Layer>
input baver | W 12@10x10 Y 100@1x1
1@32x32 6@28x28 6@14x14 12@5x%5

Layer 6: 10
.. 10
2x2 5x5 2x2

/ .
5x5 convolution
i convolution ~
convolution pooling/ pooling/
subsampling subsampling

i@ Convolutional net for handwriting recognition (400,000 synapses)

i@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

i@ Supervised gradient-descent learning using back-propagation

ia@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun

t New York University

Face Detection and Pose Estimation with Convolutional Nets
Ms - IS S — -

& Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness
and contrast.

& 2™ phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
'“:==—--—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling connection
Canvalutions Convolutions

Yann LeCun

t New York University

Face Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 047 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X
Jones & Viola (profile) 70% 83%

Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University

Yann LeCun

t New York University

Face Detection with a ConvNet
ettt | et - B——

face = iacel
facen - i
[. '

& Demo produced with EBLearn open source package

& http://eblearn.sf.net

Yann LeCun

t New York University

http://eblearn.sf.net/

Geneﬂrié‘\()bject Detection and Recognition

with Invarlance to Pose and Illummatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g etgrzjé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

il 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x*%

gl 2 cameras (stereo)

il 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University

-
Convolutlonal Network

L 3
ayet Layer 6
24@18x18 Layer 4
Stereo Layer 1 YA@6x6 Layer 5 Fully
input 8@92x92 Layer 2 100 connected
2@96x96 8@23x23 (500 weights)

/v

6x6
5x5 4x4

- convolution 3x3
convolution subsampling 5 convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

i 90,857 free parameters, 3,901,162 connections.

ial The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun * New York University

Normalized-Uniform Set: Exrror Rates

B

el o’ e =

@ Linear Classifier on raw stereo images: 30.2% error.
@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6% error.
@ Pairwise SVM on 96x96 stereo images: 11.6% error
@ Pairwise SVM on 95 Principal Components: 13.3% error.

@@ Convolutional Net on 96x96 stereo images: 5.8% error.

-k g =g g D
s+ 3 61358 &%
20 eI S S PR
C e COC R PV S

Training instances Test instances

Yann LeCun * New York University

& Jittered-Cluttered Dataset:
i 291,600 tereo pairs for training, 58,320 for testing

i@ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University

Experiment 2: Jittered-Cluttered Dataset

- 291 600 training samples, 58 320 test samples

& SVM with Gaussian kernel

@ Convolutional Net with binocular input:
& Convolutional Net + SVM on top:

@@ Convolutional Net with monocular input:
i@ Smaller mono net (DEMO):

@ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University

Examples (M?i;;i;ﬁ(ﬁ) 7

km

Yann LeCun

t New York University

Examples (Monocular Mode)

=SS . =

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University

Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance

Convolutional Nets For Brain Imaging and Biology
[—— S ——

& Brain tissue reconstruction from slice images [Jain,....,Denk, Seung 2007]

» Sebastian Seung's lab at MIT.
» 3D convolutional net for image segmentation

» ConvNets Outperform MRF, Conditional Random Fields, Mean Shift,
Diffusion,...[ICCV'07]

Yann LeCun

t New York University

m

_Industrial Applications of ConvNets

@ AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& Vidient Inc

» Vidient Inc's "SmartCatch” system deployed in several airports
and facilities around the US for detecting intrusions, tailgating,
and abandoned objects (Vidient is a spin-off of NEC)

& NEC Labs
» Cancer cell detection, automotive applications, kiosks

& Google
» OCR, face and license plate removal from StreetView

& Microsoft
» OCR, handwriting recognition, speech detection

& France Telecom
» Face detection, HCI, cell phone-based applications

& Other projects: HRL (3D vision)....

Yann LeCun

t New York University

e e oo

| FPGA Custom Board: NYU ConvNet Processor

h———ﬁ““_‘l = R ———————— |

m —

@ Xilinx Virtex 4 FPGA, 8x5 ¢cm board [Farabet et al. 2009]
» Dual camera port, Fast dual QDR RAM,

& New version being developed with Eugenio Culurciello (Yale EE)

» Full custom chip
» Version for Virtex 6 FPGA

Yann LeCun

t New York University

—— e e ————— — —_

onVNet/V ision Processor (FPGA and ASIC)

& Reconfigurable Dataflow Architecture
[Farabet et al. 2010]

000 ;
@ E

i @@
PT : PT

000 o009 oo
Goe o606 066

Active Data Lines

Yann LeCun o Configurable Route m Active Route

FGA Performance

m‘“ﬁsw’-,

& Seconds per frame for a robot vision task (log scale) [Farabet et al. 2010]

Time (sec)
' -
- -
—
: —
050 F
i Virtex 4 custom board | == = DuoCore
0.20 = 25ms
e e 400M
010t Nvidia Tesla C1060
005 f 6ms Tesla C1060
Virtex 6 dev board
nmE
o F
| 1] 1 1 | 1 1] 1 | 1 1 1] | [ﬂput 1||"|'|.'iiﬂ'|.
W0 400 5000 B0

Image Size

Yann LeCun * New York University

& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
© [Lazebnik et al. 2006]

to learn in purely supervised mode (or so we thought).
cellphone

minaret

t New York University

— —— ———— e

‘ nsupervised Deep Learning: Leveraging Unlabeled Data

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

& Unlabeled data is usually available in large quantity
& A lot can be learned about the world by just looking at it
& Unsupervised learning captures underlying regularities about the data

& The best way to capture underlying regularities is to learn good
representations of the data

& The main idea of Unsupervised Deep Learning

» Learn each layer one at a time in unsupervised mode
» Stick a supervised classifier on top
» Optionally: refine the entire system in supervised mode

& Unsupervised Learning view as Energy-Based Learning

Yann LeCun

t New York University

—_—— —

- Unsupervised Feature Learning with Sparse Coding

[Olshausen & field 1997]

& Find a dictionary of basis functions such that any input can be
reconstructed of a sparse linear combination of them.

INPUT

@ Energy: E(Yi»Z;Wd)=”Yi_WdZ”2+AZj|zj|
@ Optimal Code Z'= argmin, E(Yi, Z ;Wd)
nilFreeEnergy:F(Yi;Wd)=F<Zi)=I”}1inZE(Yi,Z,'Wd)

Yann LeCun

t New York University

& The learning algorithm minimizes the loss function:

L(W,)=2, F(Y';W,)=2, (min,E(Y',Z:W,))

& The columns of Wd are normalized

& Energy: E(Yi,Z,’Wd)=”Yi—WdZ||2+AZj|zj|

@ Free Energy: F(Yi,' Wd)=F<Zi)=minZE(Yi,Z,'Wd)

Yann LeCun

& Inference: find Z that minimizes the energy for a given Y
E(Y.ZW)=y =W,z +a) ||
Z'=argmin E(Y', z;W)

» For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

» This would be very slow for large scale vision tasks
» Also, the optimal Z are very unstable:

¢ A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University

,/ Solution: Predictive Sparse Decomposition (PSD) -

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=|lY'=W ZI +|Z-g (W, Y +A 2 |z
g (W ,Y')=Dtanh (W, Y)

INPUT

Yann LeCun

& Inference by gradient descent starting from the encoder output
E(Y,Z)=[lY'=W,Z|"+|Z g, (W, Y +2 2 |z,

Z'=argmin E(Y', z; W)

Yann LeCun

=

"PS

& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(Wd, We) — Zi F (Yi; Wd’ We)
F(Y;W, W,)=minE(Y',z;W,, W)

Yann LeCun

t New York University

SD: Learning Algorithm

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University

R e e S S MBS T e e e T T TS T TN

Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University

e —————————

PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

& 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun

e e e
e e
A I T e R e TR A T
ﬁ!ﬁﬁﬁﬁﬂﬁﬁﬁﬁiﬁﬁﬁﬁ

G I Sl T LR R 5
e S S SRt
R S R S
e SR DS
gD e DL P

e R R
ﬁﬁ@ﬂﬂﬁmﬁﬁﬁﬂﬁﬁﬁﬁﬁ

gt
Eﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬂlﬂ

iteration no @

T —— —_— —_——

_Learned Features on natural patches: V1-like receptive fields

[S—— IR—|

Yann LeCun

t New York University

—————— — — —

Learned Features: V1-like receptive fields

o 12x12 filters
& 1024 filters

Yann LeCun * New York University

(Classification Error Rate on MNIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder

. 10 3amples 100 Samples 1000 Samples
= (i [T Tewinicrg a5 : : . o :
= tJ1zarg
=== Twining
== "arirg Ape e ok
M a ' '
. gk
By gl
a& - - £ .
- & ' ' &
& " ' : &
I i T & : : T
£ 2 ' £
i ; - - 8o
i1 4 ' j ¢
i
' ' i
. . i Gk
k] i : I
9 Hobhd P48
| ooetE—a-00 4MF ¢ . Z"MA :
o] a kK
Hi [.2 e nk L8 a7 1.0 ne 0 1E e 2.7 iy e L4 0.5 E 07
RNZE ANZE FMZE

Yann LeCun

t New York University

Using PSD to Train a Hierarchy of Features

“——m_im

S —————— |

& Phase 1: train first layer using PSD

FEATURES

Yann LeCun

t New York University

mﬁﬁm\ﬂ—,&r‘m

| Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES

Yann LeCun

t New York University

P ——————— e ———

| Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES

Yann LeCun

t New York University

£S5 = B

’ Using PSD to Train a Hierarchy of Features

[

R ————————— S|

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor
& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2™ feature extractor

FEATURES

Yann LeCun

t New York University

_Using PSD to Train a Hierarchy of Features

BEp—

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

@ Phase 4: use encoder + absolute value as 2™ feature extractor
& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES

Yann LeCun

t New York University

“Deep Learning”
m“aﬁzhf-

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

@ The “deep learning’” method was popularized by Hinton for training
‘“deep belief networks”.

» DBN use a special kind of encoder-decoder architecture
called Restricted Boltzmann Machines (RBM)

& 1. Train each layer in an unsupervised fashion, layer by layer

& 2. Stick a supervised classifier on top, and refine the entire system with
gradient descent (back-prop) on a supervised criterion.

Yann LeCun * New York University

- Unsupervised Learning: Capturing Dependencies Between Variables

& Energy function: viewed as a negative log probability density

& Probabilistic View:
» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

vl |

& Energy-Based View:

» produce an energy function
II:E)(Y,W) s) AE(Y,W)

» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun

t New York University

e a—————

Unsupervised Learning: Capturing Dependencies Between Variables
| ——

& Energy function viewed as a negative log density

» Example: y = x"2

Yann LeCun * New York University

e

Energy <-> Probability

B

E(Y,W) x —log P(Y|W)

=<V

Yann LeCun

mmx“t,\,

Training an Energy-Based Model

m—-—_ﬁ“_;‘

& Make the energy around training samples low

& Make the energy everywhere else higher

AE(Y)

o—BE(Y.W)

fy e—BE(y,W)

P(Y,W) =

Yann LeCun

t New York University

Training an Energy-Based Model to Approximate a Density
S S ENNNN———— |
Maximizing P(YIW) on training samples
make this big
—BE(Y,W) &
PY W) = [e=BEw,W)
y %

make this small

Minimizing -log P(Y,W) on training samples

1
L(Ya W) — E(Y, W) -+ B log/ 6_6E(97W)
Yy

make tgsmall make this big

Yann LeCun

& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) _OE(Y,W) / . (y|W)8E(y, W)

oW oW oW v
& Gradient descent: AE(Y)
OL(Y, W) l
A TS
Pushes down on the Pulls up on the ' Y ' g
energy of the samples energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[n /y (y|W) P

Yann LeCun

. How do we push up on the energy of everything else?

& Solution 1: contrastive divergence [Hinton 2000]

» Move away from a training sample a bit
» Push up on that

& Solution 2: score matching
» On the training samples: minimize the gradient of the energy, and
maximize the trace of its Hessian.
& Solution 3: denoising auto-encoder (not really energy-based)
» Train the inference dynamics to map noisy samples to clean
samples
& Solution 4: MAIN INSIGHT! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» Idea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun

t New York University

_Encoder-Decoder with Sparsity (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=|lY'=W ZI +|Z-g (W, Y +A 2 |z
g (W ,Y')=Dtanh (W, Y)

INPUT

Yann LeCun

_The Main Insight [Ranzato et al. AISTATS 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» If few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University

N —

e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

INPUT SPACE
®
® ® ®
o
®
o ®
® ®

Yann LeCun

'* hy Limit the Information Content of the Code?

FEATURE
SPACE

y Limit the Information Content of the Code?

w

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

Training based on minimizing the reconstruction error over

the training set

INPUT SPACE .
o ®
®
° e
® o

Yann LeCun

l""l"lllllllllll“

FEATURE
SPACE

t New York University

‘Why Limit the I

[R ——

|

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
®
® ®
o
®
° ®
® ®

FEATURE
SPACE

Yann LeCun

t New York University

Why Limit the Information Content of the Code?

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
? SPACE
@ ® () @
o o
(] @
@ ® @ ®
@ @ ([

Yann LeCun

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

Why Limit the Information Content of the Code?

INPUT SPACE FEATURE
° SPACE
() ® o
P o g —— - o
@ @ @

Yann LeCun

t New York University

g_

. Why Limit the Information Content of the Code?

[——— ——

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
@
o
P "“""""""""""""'"“““““““““““ o
@ @ @

Yann LeCun

t New York University

‘ Sparsity Penalty to Restrict the Code

& We are going to impose a sparsity penalty on the code to restrict its
information content.

& We will allow the code to have higher dimension than the input

& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University

1.5

@ 2 dimensional toy dataset
» Mixture of 3 Cauchy distrib.

0.5

@ Visualizing energy surface
(black = low, white = high)

-0.5

[Ranzato 's PhD thesis 2009]

|
o 0.5

7 "PCA autoencoder sparse coding K-Means

nde uni pde units nde uni

Y —wZ|I Y —wZ|| Y—WZI|F+AlZ

pull-up dimens. part. func. sparsity

decoder
energy

wz
Y —wZ||

1-of-N code

@ 2 dimensional toy dataset
» spiral

; @ Visualizing energy surface
(black = low, white = high)

‘ "PCA ‘autoencoder sparse coding K-Means

nde nni nde uni) code units) code uni

cere ywz|

pull-up dimens. dimens. sparsity [-of-N code

Using PSD to learn the features of an object recognition system
[e i

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

& Learning the filters of a ConvNet-like architecture with PSD
& 1. Train filters on images patches with PSD
& 2. Plug the filters into a ConvNet architecture

& 3. Train a supervised classifier on top

Yann LeCun

t New York University

m — —

“Modern’” Object Recognition Architecture in Computer Vision
| — - - - ’

Filter Non- Spatial o
—>> —>> -+»| C(lassifier |—»

Bank Linearity] |Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“‘shallow”’ classifier

Yann LeCun

t New York University

m

“State of the Art” architecture for object recognition
[E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A Histogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University

Can't we get the same results with (deep) learning?

M‘m"l;,

Filter Non- feature Filter Non- feature o
R o o o s R o o . » Classifier
Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.
& Creates a hierarchy of features
& ConvNets and SIFT+PMK-SVM architectures are conceptually similar

& Can deep learning make a ConvNet match the performance of
SIFT+PNK-SVM?

Yann LeCun

t New York University

—_— e

: How well do PSD features work on Caltech-101?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (Classifier |—»

Bank Linearity| |Pooling

SVM

[B .- EEEEE

Yann LeCun

t New York University

“Procedure for a single-stage system

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University

S e T

Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

¢+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION

Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

* Classifier
@ Multinomial Logistic Regression or Pyramid Match Kernel SVM

64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% | 13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun

Using PSD Features for Recognition
e —— R NNNNNNN——————

& Rectification makes a huge difference:

» 14.5% -> 50.0%, without normalization
» 44.3% -> 54.2% with normalization

& Normalization makes a difference:
» 50.0 » 54.2

& Unsupervised pretraining makes small difference
& PSD works just as well as SIFT

& Random filters work as well as anything!
» If rectification/normalization is present

& PMK_SVM classifier works a lot better than multinomial log_reg on low-
level features

» 52.2% - 65.0%

Yann LeCun * New York University

Comparing Optimal Codes Predicted Codes on Caltech 101
e R RRRRNNNNNNN_——————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

» PSD features are more stable.

53
% 5ol ___ ___ __ i Feature Slgn (FS)
Y] 5 . .o .
. ' ' 1S an optimization
9 51 L N] p
o | | methods for
g 50 ESSUUURURUNRIOO DY SV 4 Computlng
g | sparse codes
%49 —©-PSD Predictor [Lee...Ng 2006]
g | —©—=Regressor
é 48 L _e_ FS

47 ; | —©=PSD Optimal

0 0.05 0.1 0.15 0.2

Sparsity Penalty per Code Unit

Yann recvun * New York University

. PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] R— PLI#) 0000 ______________ L P 000f ______________]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University

_PSD features are much cheaper to compute
[— S-S |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University

_How Many 9x9 PSD features do we need?
e — -S|

& Accuracy increases slowly past 64 filters.

55

o
-

B~
(#2)

B~
o

Recognition Accuracy

D
on

(o)
o

0 20 40 60 80
Number of Basis Functions

Yann LeCun

Tralnlng a Multi-Stage Hubel Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun * New York University

\ .__.. Ly By Wy Wy Ny

ﬂ W ,r. N N

f”'__,:_ﬂp’ u'a '_,. '_,ig'

cfg:ﬂ'y&w';e'ﬂsw;cs 7

Hr a! 5“ ,_: ' _b _5@
;;_ﬂﬂ;. W _\‘:z !

CONVOLUTIONS Amwv.nmwv

,y,,,,% W

w.
B
—
o
o
=
=
-]
-4
=
o
2
i
L
Z
=

64@5x5

64@25x25

\

J

32@33x33

MAX/SUBSAMPLING (4x4)

\

W

CONVOLUTIONS (9%x9)

1)

32@132x132

_Multistage Hubel-Wiesel Architecture on Caltech-101

e

INPUT 3@140x140

Y (luminance)

Yann LeCun

‘ Multistage Hubel-Wiesel Architecture

& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University

ltebl iesel Architecture o

n ate-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P>*%| — [256.F J5&

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University

m

Two-Stage Result Analysis
[— —

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refirnement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun * New York University

e

T e P T T T E T E T T

Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University

CLASSIFIER

Parzen Windows Classifier

w.
-
()
o
o
=
=
-]
-4
=
o
2
-
L
Z
-

256 features 1x1
4x4 subsampling

6x6 pooling

>_om + no:ﬂ.mwn Zo_,:: + _uoo__:@ + Uoé:mm::_u__:@

AR ﬂ.w \ J._.@w_ ;
.:ﬁmﬁm_:
ga???mﬂ_ﬂﬂgli

Abs + Contrast Norm + _uoo__:@ s Downsampling

\
N

Filter Bank + Tanh + Gain

|

64 features 75x75

64 filters
9x9 kernels
STAGE 1

Input

high-pass filtered
contrast-normalized
83x83 (raw: 91x91)

S |
D
© pum|
S
-
=
2
=
S
>
p—(
2]
=
72!
© puy
>
o
Q
=y
=
© |
=
—
S
D
—
)
L
~—
—
S
<>
S
.mO.
e :
=

Yann LeCun

MNIST dataset

@ 10 classes and up to 60,000 training samples per class

ARNSMNO R~

A NN SR LOXQ

=M IO
ST N N A 3 e TR RN
TN D (N0~ (DT
QYHUORXWORWND
e X ©

MNIST dataset

@ Architecture

@ U'U™: 0.53% error (this is a record on the undistorted MNIST!)
I
& Comparison:RR Versus- and RW

Classification error on the MNIST dataset

12_ ...
11__ ...
oL N e Supervised taining ofthe whole network |
] #\ ... —4&— Unsupervised training of the feature extractory.
T R N e e e — <+ — Random feature extractors

6

5

4

w

% Classification error

0.6

05 | | |
300 1000 2000 5000 10000 20000 40000 60000

Size of labelled training set

Why Random Filters Work?

R R BN
ER O EE R T

e SR e
e e o G
T i S B e

HEREEREE ey
NS EERE Aaar
EETENERERN o
EEENIEET a7
R EDMNENE febELE
SEREEENE Bk
HERRENES el
RSEEEEES e

[

m‘&;;

"The Competition: SIFT + Spa

& Replacing K-means with Sparse Coding
» [Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

rse-Coding + PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14 70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80 81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60 66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 6419 £0.84 80.89 +£0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088 — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool + kernel SVM 62.85 £1.22 7027129 83.15x0.35
SP + sparse codes + max pool + kernel SVM 64.62 054 T1.81=0.96 84.25+0.35
SP + sparse codes + max pool + linear 64.71 £ 1.05 T71.52=x1.13 83.78 £0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM 69.03=1.17 7572x1.06 84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 08.78 £ 1.09 7h14x 086 84411026

Yann LeCun

t New York University

Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g

—
NORB Generlc ObJect Recognltlon Dataset

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:
gl 18 azimuths

i O to 350 degrees every 20) | = 2
detgrees : ’ 3.,— “3: 1 »& /ﬁ % ﬁj @ g "E

gl 9 elevations

il 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x*%

gl 2 cameras (stereo)

il 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University

& Two-stage system: error rate versus number of labeled tralnlng samples

50, 5
40F NG __ -O-Fose. PA (R R)
'fl ‘ i i i
a0k .*""“.* _____ ® | 0 -“-FCSG Rabs N PA (UU) i
i : + L+
OGN ‘* .. -.—FCSG_RabS_N_PA (R R)_
20 '
@
<15
S
D
10
9
8
7
G

50 100 200 500 1000 2000 4860
number of training samples per class

po
(o

Yann LeCun

t New York University

[Kavukcuoglu et al. CVPR 2008]

Yann LeCun

%

Learning Invariant Features [Kavukcuoglu et al. CYPR 2009]
[T TTTRRANNI——————————e

M

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

FEATURES

Yann LeCun

t New York University

. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)

» 1. Apply filters on a patch (with suitable non-linearity)

» 2. Arrange filter outputs on a 2D plane

» 3. square filter outputs

» 4. minimize sqrt of sum of blocks of sauared filter outnuts

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

N\

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
= ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z Define pools and enforce sparsity across
pools

Yann LeCun

t New York University

2

Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input

» For some it's translations, IH
for others rotations, or a
other transformations. .

S

Yann LeCun * New York University

—— |

Pinwheels?
| —

Yann LeCun

t New York University

.Invariance Properties Compared to SIFT

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images
» Left: normalized distance as a function of translation
» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT

rotation 0 degrees rotation 25 degrees

.-'{J' TR R R} }

EAAY
e
B
%

0.a

g

o
a4
12

=

=
= =
o

Normalized MSE
Normalized MSE

I
=
T
=4
r.anln

- %= 8IFT non rot. inv,
- SIFT

~<1- Qur alg. non inv.

—+— Qur alg. inv.

o

o
o
.

o
%)

o
ha

I I L _ I I L 1 I
o 12 14 16 4] 2 4 a 12 14 16

Yann LeCun

t New York University

& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqgr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1

o
;unnuul. W

Pl N

W [nh ==
T

4

n
u‘!

“n [T

7

1

unsupervised invariant feature extractor

Maps of
Features
o
Object
: | f‘ Category
o=
supervised
classifier

t New York University

Reognitio ucy
R R EEEEE———

» A/B Comparison with SIFT (128x34x34 descriptors)
» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling
» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Reallltina featiire mang are enatiallv amannthed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vam | IPSD (120x120) 65.5 T,

e

Recognition Ac
mﬁ R ——

curacy on Tiny Images & MNIST

» A/B Comparison with SIFT (128x5x5 descriptors)
» 32x16 topographic map with 16x16 filters.

Yann LeCun

Performance on Tiny Images Dataset

Method Accuracy (%)
I[PSD (5x5) 54
SIFT (5x5) (non rot. inv.) 33

Performance on MNIST Dataset

Method Error Rate (%)
I[PSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5

Learning fields of

Convolutional Filters

Yann LeCun

Convolutional Training
[

& Problem:
» With patch-level training, the learning algorithm must
reconstruct the entire patch with a single feature vector

» But when the filters are used convolutionally, neighboring
feature vectors will be highly redundant

welghts (-0,2828 - 00,3043

Yann LeCun

. Convolutional Training

& Problem with patch-based training: high correlation between outputs of
filters from overlapping receptive fields.

IR == T ST N
A= - '“-"'-1"'""1.1"-"4 II|."l.
| | |.. Wil A= ==

2 " SR Oy

Yann LeCun

nversity

Convolutional Training
S -

Yann LeCun

t New York University

[Gregor and LeCun, 2010]

Yann LeCun

Praining Simple Cells with Local Receptive Fields

_over Large Input Images

& Training on 115x115 images. Kernels are 15x15

Yann LeCun * New York University

Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels

h____;

F o

»
N
5
\
k.
iy
k
s
4
¥
/
/
Iy
i
-
il

Yann LeCun . * New York University

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)

119x119 Image Input
100x100 Code
20x20 Receptive field size

sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

- Same Method, withTraining at the Image Level (vs patch)

& Color indicates orientation (by fitting Gabors)

Yann LeCun * New York University

Yann LeCun

DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

i@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i@ Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun

t New York University

—1—“‘#.-

e —— o

Camera iage ” Detected obstacles (red)

Yann LeCun * New York University

s — — — == == > rrrrees=e————

Navigating to a goal is hard...

h—-___*

stereo perspective human perspective

PEEmETTTTTTTT T

especially in a snowstorm.

Yann LeCun * New York University

m =

| Self-Supervised Learning

& Stereo vision tells us what nearby obstacles look like

& Use the labels (obstacle/traversible) produced by stereo vision to train a
monocular neural network

& Self-supervised ‘‘near to far”’ learning

Yann LeCun

t New York University

Long Range Vision: Distance Normalization

e Ground plane estimation

* Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
m 4,1m to 11,3m, scalet &,7

net@SCALE Page 139

Technologies, Inc.

NEW YORK UNIVERSITY

Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> S classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net(>)SCALE Page 140

Technologies, Inc.

NEW YORK UNIVERSITY

Convolutional
Net Architecture

100@25x121

o M e
il P e o e e s

20@30x125

e s o g
MAX SUBSAMPLING (1x4)

L T T
L e

20@30x484

3@36x484

YUYV input

net(®)SCALE o " page 141

Technologies, Inc.

NEW YORK UNIVERSITY

Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 142

Technologies, Inc.

NEW YORK UNIVERSITY

Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. E!I!.‘Eli!
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 143 NEW YORK UNIVERSITY

oooooooo gies, Inc.

Long Range Vision Results

' - 3 =

“Inputimage &

net(>)SCALE bage 144

Technologies, Inc.

NEW YORK UNIVERSITY

Long Range Vision Results

Classifie

N d = * "*’ s .#"‘L

Ciaséifier O

e
S

o+

5 t L

tereo Label

: ‘“‘3}%

s - -

net(SCALE

Long Range Vision Results

Stereo Labels Classifier Output

inputimage. - ~ Stereolabels - - ClassifierOutput

net(SCALE

net(3>)SCALE

Technologies, Inc.

» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

NEW YORK UNIVERSITY

Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

“ NEW YORK

UNIVERSITY

Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network

+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY

Technologies, Inc

+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

1 e mg 8
. B e k" sl

FarOD Stereo: Input labels to Neural Network

i

E —

T

Technologies, Inc

.. NEW YORK UNIVERSITY

mm

Feature Learning for traversability prediction (LAGR)

[—
Comparing
- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binary labe |
Comparison of Feature Extractors on Groundtruth Data

mrof
gsupervised
gautoencoder
gautoenc + sup
gPrLM

25

22.5 i

n
o

Gl

> mDrLIM + sup

o5 No learning

)

©

S

L12'5 | -
o —

S

LE 10 | L

N
4

(9]

[
o

o

belvoir SWIi forest trails dry woods coastal NJ openlawn man- made VERAGE

. Collaborators |

& Current PhD students:
» Y-Lan Boureau, Koray Kavukcuoglu, Pierre Sermanet

@ Former PhD students:
» Raia Hadsell, Fu-Jie Huang, Marc'Aurelio Ranzato

& Postdocs and Research Scientists
» Clément Farabet, Karol Gregor, Marco Scoffier

& Senior Collaborators

» Rob Fergus (NYU): invariant feature learning
» Eugenio Culurciello (Yale): FPGA/ASIC design
» Yoshua Bengio (U. Montreal): deep learning
» Leon Bottou (NEC Labs): handwriting recognition

» Jean Ponce (ENS/INRIA), Francis Bach (ENS/INRIA): sparse
coding.

Yann LeCun * New York University

. The En

—

Yann LeCun

t New York University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155

