Learning Deep Hierarchies of Visual Features

Yann LeCun

The Courant Institute of Mathematical Sciences

New York University

collaborators:

Y-Lan Boureau, Clément Farabet,
Rob Fergus, Karol Gregor, Kevin Jarrett,
Koray Kavukcuoglu, Marc'Aurelio Ranzato

The Challenge of Computer Vision and Machine Learning

- Given features, we know how to train good classifiers
- Our next challenge is to learn the features.

- How do we learn internal representations of the visual world?
- How do we leverage unlabeled data?

The Next Challenge of ML, Vision (and Neuroscience)

- How do we learn invariant representations?
 - From the image of an airplane, how do we extract a representation that is invariant to pose, illumination, background, clutter, object instance....
 - How can a human (or a machine) learn those representations by just looking at the world?

How can we learn visual categories from just a few examples?

▶ I don't need to see many airplanes before I can recognize every airplane (even really weird ones)

"Modern" Object Recognition Architecture in Computer Vision

Oriented Edges Sigmoid Averaging

Gabor Wavelets Rectification Max pooling

Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

Example:

- Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
- SIFT + classification
- Fixed Features + "shallow" classifier

"State of the Art" architecture for object recognition

Example:

- ► SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik et al. 2006]
- **■** Fixed Features + unsupervised features + "shallow" classifier

Good Representations are Hierarchical

- In Language: hierarchy in syntax and semantics
 - Words->Parts of Speech->Sentences->Text
 - Objects, Actions, Attributes...-> Phrases -> Statements -> Stories
- In Vision: part-whole hierarchy
 - Pixels->Edges->Textons->Parts->Objects->Scenes

"Deep" Learning: Learning Hierarchical Representations

- Deep Learning: learning a hierarchy of internal representations
- From low-level features to mid-level invariant representations, to object identities
- Representations are increasingly invariant as we go up the layers
- using multiple stages gets around the specificity/invariance dilemma

Can't we train multi-stage vision architectures?

- Stacking multiple stages of feature extraction/pooling.
- Creates a hierarchy of features

Supervised Convolutional Networks

- Hierarchical/multilayer: features get progressively more global, invariant, and numerous
- **dense features:** features detectors applied everywhere (no interest point)
- **broadly tuned (possibly invariant) features:** sigmoid units are on half the time.
- Global discriminative training: The whole system is trained "end-to-end" with a gradient-based method to minimize a global loss function
- Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

An Old Idea for Local Shift Invariance

- [Hubel & Wiesel 1962]:
 - simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

Convolutional Network Architecture

Parzen Windows Classifier

CLASSIFIER

contrast-normalized

(raw:

91×91)

Input

high-pass

filtered

The Multistage Hubel-Wiesel Architecture

- Building a complete artificial vision system:
 - Stack multiple stages of simple cells / complex cells layers
 - Higher stages compute more global, more invariant features
 - Stick a classification layer on top
 - [Fukushima 1971-1982]
 - neocognitron
 - [LeCun 1988-now]
 - convolutional net
 - [Poggio, Serre 2002-now]
 - HMAX
 - [Ullman 2002-now]
 - fragment hierarchy
 - [Lowe 2006]
 - HMAX

Face Detection and Pose Estimation with a ConvNet

Face Detection and Pose Estimation with a ConvNet

Face Detection with a ConvNet

- Demo produced with EBLearn open source package
- http://eblearn.sf.net

Category-Level Object Recognition

- 5 categories: humans, animals, airplanes, cars, trucks
- Only 5 training instances per class
- Lots of pose and lighting variations

Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

- Mobile robot with two cameras
- The convolutional net is trained to emulate a human driver from recorded sequences of video + human-provided steering angles.
- The network maps stereo images to steering angles for obstacle avoidance

Convolutional Nets For Brain Imaging and Biology

- Brain tissue reconstruction from slice images [Jain,...,Denk, Seung 2007]
 - Sebastian Seung's lab at MIT.
 - 3D convolutional net for image segmentation
 - ConvNets Outperform MRF, Conditional Random Fields, Mean Shift, Diffusion,...[ICCV'07]

Industrial Applications of ConvNets

AT&T/Lucent/NCR

Check reading, OCR, handwriting recognition (deployed 1996)

Vidient Inc

Vidient Inc's "SmartCatch" system deployed in several airports and facilities around the US for detecting intrusions, tailgating, and abandoned objects (Vidient is a spin-off of NEC)

NEC Labs

Cancer cell detection, automotive applications, kiosks

Google

OCR, face and license plate removal from StreetView

Microsoft

OCR, handwriting recognition, speech detection

France Telecom

Face detection, HCI, cell phone-based applications

Other projects: HRL (3D vision)....

FPGA Custom Board: NYU ConvNet Processor

Xilinx Virtex 4 FPGA, 8x5 cm board

- [Farabet et al. 2009]
- Dual camera port, Fast dual QDR RAM,
- New version being developed with Eugenio Culurciello (Yale EE)
 - Full custom chip (ASIC)
 - Version for Virtex 6 FPGA

FPGA Performance

Seconds per frame for a robot vision task (log scale) [Farabet et al. 2010]

Yann LeCun

Problem: supervised ConvNets don't work with few labeled samples

- On recognition tasks with few labeled samples, deep supervised architectures don't do so well
- **Example: Caltech-101 Object Recognition Dataset**
 - ▶ 101 categories of objects (gathered from the web)
 - Only 30 training samples per category!
- Recognition rates (OUCH!):
 - Supervised ConvNet:
 - SIFT features + Pyramid Match Kernel SVM:
 - [Lazebnik et al. 2006]
- When learning the features, there are simply too many parameters lotus to learn in purely supervised mode (or so we thought).

w. chair

minaret

cellphone

joshua t.

29.0%

64.6%

face

beaver

wild cat

ant

background

Fast Sparse Coding: Predictive Sparse Decomposition (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

- Prediction the optimal code with a trained encoder
- Energy = reconstruction_error + code_prediction_error + code_sparsity

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + ||Z - g_{e}(W_{e}, Y^{i})||^{2} + \lambda \sum_{j} |z_{j}|$$

$$g_{e}(W_{e}, Y^{i}) = D \tanh(W_{e}Y)$$

PSD: Learning Algorithm

- 1. Initialize Z = Encoder(Y)
- 2. Find Z that minimizes the energy function
- 3. Update the Decoder basis functions to reduce reconstruction error
- 4. Update Encoder parameters to reduce prediction error
- Repeat with next training sample

Decoder Basis Functions on MNIST

- ▶ PSD trained on handwritten digits: decoder filters are "parts" (strokes).
 - Any digit can be reconstructed as a linear combination of a small number of these "parts".

PSD Training on Natural Image Patches

- Basis functions are like Gabor filters (like receptive fields in V1 neurons)
- 256 filters of size 12x12
- Trained on natural image patches from the Berkeley dataset
- Encoder is linear-tanhdiagonal

Learned Features on natural patches: V1-like receptive fields

Phase 1: train first layer using PSD

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD
- **■** Phase 4: use encoder + absolute value as 2nd feature extractor

- Phase 1: train first layer using PSD
- Phase 2: use encoder + absolute value as feature extractor
- Phase 3: train the second layer using PSD
- Phase 4: use encoder + absolute value as 2nd feature extractor
- Phase 5: train a supervised classifier on top
- Phase 6 (optional): train the entire system with supervised back-propagation

Using PSD to learn the features of an object recognition system

- Learning the filters of a ConvNet-like architecture with PSD
- 1. Train filters on images patches with PSD
- **2.** Plug the filters into a ConvNet architecture
- 3. Train a supervised classifier on top

"Modern" Object Recognition Architecture in Computer Vision

Oriented Edges Sigmoid Averaging

Gabor Wavelets Rectification Max pooling

Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

Example:

- Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
- SIFT + classification
- Fixed Features + "shallow" classifier

"State of the Art" architecture for object recognition

Example:

- ► SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik et al. 2006]
- **■** Fixed Features + unsupervised features + "shallow" classifier

Can't we get the same results with (deep) learning?

- Stacking multiple stages of feature extraction/pooling.
- Creates a hierarchy of features
- ConvNets and SIFT+PMK-SVM architectures are conceptually similar
- **■** Can deep learning make a ConvNet match the performance of SIFT+PNK-SVM?

How well do PSD feature learning work on Caltech-101?

Recognition Architecture

Procedure for a single-stage system

- 1. Pre-process images
 - remove mean, high-pass filter, normalize contrast
- 2. Train encoder-decoder on 9x9 image patches
- 3. use the filters in a recognition architecture
 - Apply the filters to the whole image
 - Apply the tanh and D scaling
 - Add more non-linearities (rectification, normalization)
 - Add a spatial pooling layer
- 4. Train a supervised classifier on top
 - Multinomial Logistic Regression or Pyramid Match Kernel SVM

Using PSD Features for Recognition

- 64 filters on 9x9 patches trained with PSD
 - with Linear-Sigmoid-Diagonal Encoder

weights :-0.2828 - 0.3043

Feature Extraction

- C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
- **♦ Abs** Rectification layer: needed?
- **♦** N Normalization layer: needed?
- **♦ P** Pooling down-sampling layer: average or max?

Training Protocol

Training

- Logistic Regression on Random Features:
- Logistic Regression on PSD features:
- \bullet Refinement of whole net from random with backprop: R^+
- Refinement of whole net starting from PSD filters:

Classifier

Multinomial Logistic Regression or Pyramid Match Kernel SVM

Using PSD Features for Recognition

$[\mathbf{64.F_{CSG}^{9 imes9}-R/N/P^{5 imes5}}]$ - $\mathbf{log_reg}$					
R/N/P	$ hooknote{ holdsymbol{ holds$	$ m R_{abs}-P_A$	$\mathbf{N} - \mathbf{P_M}$	$N-P_A$	P_{A}
\mathbf{U}^+	54.2%	50.0%	44.3%	18.5%	14.5%
\mathbf{R}^{+}	54.8%	47.0%	38.0%	16.3%	14.3%
U	52.2%	$43.3(\pm 1.6)\%$	44.0%	17.2%	13.4%
\mathbf{R}	53.3%	31.7%	32.1%	15.3%	$12.1(\pm 2.2)\%$
$[64.\mathrm{F}_{\mathbf{CSG}}^{9 imes9}-\mathrm{R/N/P^{5 imes5}}]$ - PMK					
U	65.0%				
$[96.\mathrm{F_{CSG}^{9 imes9}}-\mathrm{R/N/P^{5 imes5}}]$ - PCA - $\mathrm{lin_svm}$					
U	58.0%				
96.Gabors - PCA - lin_svm (Pinto and DiCarlo 2006)					
Gabors	59.0%				
SIFT - PMK (Lazebnik et al. CVPR 2006)					
Gabors	64.6%				

Training a Multi-Stage Hubel-Wiesel Architecture with PSD

- 1. Train stage-1 filters with PSD on patches from natural images
- 2. Compute stage-1 features on training set
- 3. Train state-2 filters with PSD on stage-1 feature patches
- 4. Compute stage-2 features on training set
- 5. Train linear classifier on stage-2 features
- 6. Refine entire network with supervised gradient descent
- What are the effects of the non-linearities and unsupervised pretraining?

Multistage Hubel-Wiesel Architecture on Caltech-101

Multistage Hubel-Wiesel Architecture on Caltech-101

Single Stage System: $[64.\mathrm{F_{CSG}^{9 imes9}-R/N/P^{5 imes5}}]$ - \log_{reg}					
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N - P_{M}$	$N - P_A$	$P_{\mathbf{A}}$
U^+	54.2%	50.0%	44.3%	18.5%	14.5%
\mathbb{R}^+	54.8%	47.0%	38.0%	16.3%	14.3%
U	52.2%	$43.3\%(\pm 1.6)$	44.0%	17.2%	13.4%
R	53.3%	31.7%	32.1%	15.3%	$12.1\%(\pm 2.2)$
G	52.3%				
Two Stage System: $[64.F_{CSG}^{9\times9} - R/N/P^{5\times5}] - [256.F_{CSG}^{9\times9} - R/N/P^{4\times4}]$ - \log_{reg}				P ^{4×4}] - log_reg	
R/N/P	$ m R_{abs} - N - P_A$	$ m R_{abs} - P_A$	$N - P_{M}$	$N - P_A$	$P_{\mathbf{A}}$
U^+U^+	65.5%	60.5%	61.0%	34.0%	32.0%
R^+R^+	64.7%	59.5%	60.0%	31.0%	29.7%
UU	63.7%	46.7%	56.0%	23.1%	9.1%
RR	62.9%	$33.7\%(\pm 1.5)$	$37.6\%(\pm 1.9)$	19.6%	8.8%
GT	55.8% ←	– like HMAX mod	lel		'
Single Stage: $[64.F_{CSG}^{9\times9}-R/N/P^{5\times5}]$ - PMK-SVM					
U	64.0%				
Two Stages: $[64.F_{\mathrm{CSG}}^{9\times9} - \mathrm{R/N/P^{5\times5}}] - [256.F_{\mathrm{CSG}}^{9\times9} - \mathrm{R/N}]$ - PMK-SVM					
UU	52.8%				

Two-Stage Result Analysis

- Second Stage + logistic regression = PMK_SVM
- Unsupervised pre-training doesn't help much :-(
- Random filters work amazingly well with normalization
- Supervised global refirnement helps a bit
- The best system is really cheap
- Either use rectification and average pooling or no rectification and max pooling.

Multistage Hubel-Wiesel Architecture: Filters

After PSD

After supervised refinement

Stage 1

Stage2

weights :-0.2232 - 0.2075

weights :-0.0778 - 0.064

weights :-0.2828 - 0.3043

weights :-0.0929 - 0.0784

Demo: real-time learning of visual categories

Parzen Windows Classifier

CLASSIFIER

contrast-normalized

(raw:

91×91)

Input

high-pass

filtered

Why Random Filters Work?

The Competition: SIFT + Sparse-Coding + PMK-SVM

Replacing K-means with Sparse Coding

[Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

	Method	Caltech 15	Caltech 30	Scenes
Boiman et al. [1]	Nearest neighbor + spatial correspondence	65.00 ± 1.14	70.40	-
Jain et al. [8]	Fast image search for learned metrics	61.00	69.60	-
Lazebnik et al. [12]	Spatial Pyramid + hard quantization + kernel SVM	f 56.40	64.40 ± 0.80	81.40 ± 0.50
van Gemert et al. [24]	Spatial Pyramid + soft quantization + kernel SVM	_	64.14 ± 1.18	76.67 ± 0.39
Yang et al. [26]	SP + sparse codes + max pooling + linear	67.00 ± 0.45	73.2 ± 0.54	80.28 ± 0.93
Zhang et al. [27]	kNN-SVM	59.10 ± 0.60	66.20 ± 0.50	-
Zhou et al. [29]	SP + Gaussian mixture	_	_	84.1 ± 0.5
Baseline:	SP + hard quantization + avg pool + kernel SVM	56.74 ± 1.31	64.19 ± 0.94	80.89 ± 0.21
Unsupervised coding	SP + soft quantization + avg pool + kernel SVM	59.12 ± 1.51	66.42 ± 1.26	81.52 ± 0.54
1×1 features	SP + soft quantization + max pool + kernel SVM	63.61 ± 0.88	_	83.41 ± 0.57
8 pixel grid resolution	SP + sparse codes + avg pool + kernel SVM	62.85 ± 1.22	70.27 ± 1.29	83.15 ± 0.35
	SP + sparse codes + max pool + kernel SVM	64.62 ± 0.94	71.81 ± 0.96	84.25 ± 0.35
	SP + sparse codes + max pool + linear	64.71 ± 1.05	71.52 ± 1.13	83.78 ± 0.53
Macrofeatures +	SP + sparse codes + max pool + kernel SVM	69.03±1.17	75.72±1.06	84.60 ± 0.38
Finer grid resolution	SP + sparse codes + max pool + linear	68.78 ± 1.09	75.14 ± 0.86	84.41 ± 0.26

Small NORB dataset

5 classes and up to 24,300 training samples per class

NORB Generic Object Recognition Dataset

- **50** toys belonging to 5 categories: animal, human figure, airplane, truck, car
- 10 instance per category: 5 instances used for training, 5 instances for testing
- Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
- For each instance:
- 18 azimuths
 - 0 to 350 degrees every 20 degrees
- 9 elevations
 - 30 to 70 degrees from horizontal every 5 degrees
- **6 illuminations**
 - on/off combinations of 4 lights
- 2 cameras (stereo)
 - 7.5 cm apart
 - 40 cm from the object

Training instances

Test instances

Small NORB dataset

Architecture

Two Stages

Error Rate (log scale) VS. Number Training Samples (log scale)

Convolutional Training

Problem:

- With patch-level training, the learning algorithm must reconstruct the entire patch with a single feature vector
- But when the filters are used convolutionally, neighboring feature vectors will be highly redundant

weights :-0.2828 - 0.3043

Convolutional Training

Problem with patch-based training: high correlation between outputs of filters from overlapping receptive fields.

Learning Complex Cells with Invariance Properties

Convolutional Training

■ Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Learning Invariant Features [Kavukcuoglu et al. CVPR 2009]

- Unsupervised PSD ignores the spatial pooling step.
- Could we devise a similar method that learns the pooling layer as well?
- Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
 - Minimum number of pools must be non-zero
 - Number of features that are on within a pool doesn't matter
 - Polls tend to regroup similar features

Learning the filters and the pools

- Using an idea from Hyvarinen: topographic square pooling (subspace ICA)
 - ▶ 1. Apply filters on a patch (with suitable non-linearity)
 - 2. Arrange filter outputs on a 2D plane
 - 3. square filter outputs
 - 4. minimize sqrt of sum of blocks of squared filter outputs

Units in the code Z Define pools and enforce sparsity across pools

Learning the filters and the pools

- The filters arrange themselves spontaneously so that similar filters enter the same pool.
- The pooling units can be seen as complex cells
- They are invariant to local transformations of the input
 - For some it's translations, for others rotations, or other transformations.

Pinwheels?

Invariance Properties Compared to SIFT

- Measure distance between feature vectors (128 dimensions) of 16x16 patches from natural images
 - Left: normalized distance as a function of translation
 - Right: normalized distance as a function of translation when one patch is rotated 25 degrees.
- Topographic PSD features are more invariant than SIFT

Learning Invariant Features

- Recognition Architecture
 - ->HPF/LCN->filters->tanh->sqr->pooling->sqrt->Classifier
 - Block pooling plays the same role as rectification

Recognition Accuracy on Caltech 101

- A/B Comparison with SIFT (128x34x34 descriptors)
- 32x16 topographic map with 16x16 filters
- Pooling performed over 6x6 with 2x2 subsampling
- 128 dimensional feature vector per 16x16 patch
- Feature vector computed every 4x4 pixels (128x34x34 feature maps)

A -----(01)

Resulting feature mans are snatially smoothed

Method	Av. Accuracy/Class (%)		
$local norm_{5\times5} + boxcar_{5\times5} + PCA_{3060} + linear SVM$			
IPSD (24x24)	50.9		
SIFT (24x24) (non rot. inv.)	51.2		
SIFT (24x24) (rot. inv.)	45.2		
Serre et al. features [25]	47.1		
local norm _{9×9} + Spatial Pyramid Match Kernel SVM			
SIFT [11]	64.6		
IPSD (34x34)	59.6		
IPSD (56x56)	62.6		
IPSD (120x120)	65.5		

Recognition Accuracy on Tiny Images & MNIST

- ► A/B Comparison with SIFT (128x5x5 descriptors)
- ▶ 32x16 topographic map with 16x16 filters.

Performance on Tiny Images Dataset		
Method	Accuracy (%)	
IPSD (5x5)	54	
SIFT (5x5) (non rot. inv.)	53	

Performance on MNIST Dataset		
Method	Error Rate (%)	
IPSD (5x5)	1.0	
SIFT (5x5) (non rot. inv.)	1.5	

Learning fields of Simple Cells and Complex Cells

[Gregor and LeCun, 2010]

Training Simple Cells with Local Receptive Fields over Large Input Images

■ Training on 115x115 images. Kernels are 15x15

Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels

■ Training on 115x115 images. Kernels are 15x15

119x119 Image Input 100x100 Code 20x20 Receptive field size sigma=5

K Obermayer and GG Blasdel, Journal of Neuroscience, Vol 13, 4114-4129 (**Monkey**)

Michael C. Crair, et. al. The Journal of Neurophysiology Vol. 77 No. 6 June 1997, pp. 3381-3385 (**Cat**)

Same Method, with Training at the Image Level (vs patch)

Color indicates orientation (by fitting Gabors)

Deep Learning for Mobile Robot Vision

DARPA/LAGR: Learning Applied to Ground Robotics

- Getting a robot to drive autonomously in unknown terrain solely from vision (camera input).
- Our team (NYU/Net-Scale Technologies Inc.) was one of 8 participants funded by DARPA
- All teams received identical robots and can only modify the software (not the hardware)
- The robot is given the GPS coordinates of a goal, and must drive to the goal as fast as possible. The terrain is unknown in advance. The robot is run 3 times through the same course.
- Long-Range Obstacle Detection with online, self-trained ConvNet
- Uses temporal consistency!

Obstacle Detection

Obstacles overlaid with camera image

Camera image

Detected obstacles (red)

Navigating to a goal is hard...

stereo perspective

human perspective

especially in a snowstorm.

Self-Supervised Learning

- Stereo vision tells us what nearby obstacles look like
- Use the labels (obstacle/traversible) produced by stereo vision to train a monocular neural network
- Self-supervised "near to far" learning

Long Range Vision: Distance Normalization

Pre-processing (125 ms)

- Ground plane estimation
- Horizon leveling
- Conversion to YUV + local contrast normalization
- Scale invariant pyramid of distance-normalized image "bands"

Convolutional Net Architecture

Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes 100 features per 100x1x1 input window 3x12x25 input window Convolutions with 6x5 kernels 20x6x5 input window Pooling/subsampling with 1x4 kernels 20x6x20 input window Convolutions with 7x6 kernels **YUV** image band 3x12x25 input window 20-36 pixels tall,

36-500 pixels wide

Convolutional Net Architecture

100@25x121

20@30x125

20@30x484

3@36x484

YUV input

Long Range Vision: 5 categories

Online Learning (52 ms)

• Label windows using stereo information – 5 classes

Trainable Feature Extraction

- "Deep belief net" approach to unsupervised feature learning
- Two stages are trained in sequence
 - each stage has a layer of convolutional filters and a layer of horizontal feature pooling.
 - Naturally shift invariant in the horizontal direction
- Filters of the convolutional net are trained so that the input can be reconstructed from the features
 - 20 filters at the first stage (layers 1 and 2)
 - 300 filters at the second stage (layers 3 and 4)
- Scale invariance comes from pyramid.
 - for near-to-far generalization

Long Range Vision Results

Long Range Vision Results

Long Range Vision Results

Feature Learning for traversability prediction (LAGR)

Comparing

- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames – binary labels

Comparison of Feature Extractors on Groundtruth Data

