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The Challenge of Computer Vision and Machine Learning
[ — |

Pre-processing / “Simple” Trainable

Feature Extraction Classifier

& Given features, we know how to train good classifiers

@ Our next challenge is to learn the features.

Trainable Trainable ,
Trainable
Feature = — — -»| Feature |- e
Classifier
Extractor Extractor

& How do we learn internal representations of the visual world?

& How do we leverage unlabeled data?

Yann LeCun
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_The Next Challenge of ML, Vision (and Neuroscience)

& How do we learn invariant representations?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

@ How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can
recognize every airplane (even really weird ones)

Yann LeCun * New York University
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“Modern’ Object Recognition Architecture in Computer Vision
| —— - - - ’

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

Oriented Edges  Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters...  Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“shallow’’ classifier

Yann LeCun
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“State of the Art” architecture for object recognition
[ E——————— |

Jfimees Filter Non- feature Filter Non- feature -
e ey o —> —> » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A HiStogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT, GIST, HOG.... kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun
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‘ GOOd Representations are Hierarchical

Trainable Trainable _
Trainable
Feature |— — — -»| Feature e
Classifier
Extractor Extractor

& In Language: hierarchy in syntax and semantics

» Words->Parts of Speech->Sentences->Text

» Objects,Actions,Attributes...-> Phrases -> Statements ->
Stories

& In Vision: part-whole hierarchy
» Pixels->Edges->Textons->Parts->0bjects->Scenes

Yann LeCun
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“Deep”” Learning: L.earning Hierarchical Representations

— — = |

Trainable Trainable _
Trainable
Feature |— - —»| Feature | e
Classifier
Extractor Extractor

Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

& Representations are increasingly invariant as we go up the layers

& using multiple stages gets around the specificity/invariance dilemma

Yann LeCun
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Can't we traln multi-stage vision architectures?
[ —— ——— |

Filter Non- feature Filter Non- feature o
—> B —> » Classifier

Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.

& Creates a hierarchy of features

Yann LeCun
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Supervised Convolutional Networks
| S

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i dense features: features detectors applied everywhere (no interest point)
ia®@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun

t New York University
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun
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Parzen Windows Classifier
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_The Multistage Hubel-Wiesel Architecture |

[ —— R ——————— |

m =

&@ Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers
» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron
» [LeCun 1988-now]
@ convolutional net
» [Poggio, Serre 2002-now]
¢ HMAX
» [Ullman 2002-now]
¢ fragment hierarchy

» [Lowe 2006]
& HMAX
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Face Detection and Pose Estimation with a ConvNet

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University



Face Detection and Pose Estimation with a ConvNet

Yann LeCun
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Face Detection with a ConvNet
ettt | et - B——

face = iacel
facem - i
l- . "

& Demo produced with EBLearn open source package

& http://eblearn.sf.net

Yann LeCun
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http://eblearn.sf.net/
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Category-Level Obje'ct Recognition |

| ST

& 5 categories: humans, animals,
airplanes, cars, trucks

& Only 5 training instances per class

& Lots of pose and lighting variations
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Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance




Convolutional Nets For Brain Imaging and Biology
[ ——— —_—

& Brain tissue reconstruction from slice images [Jain......Denk, Seung 2007]

» Sebastian Seung's lab at MIT.
» 3D convolutional net for image segmentation

» ConvNets Outperform MRF, Conditional Random Fields, Mean Shift,
Diffusion,...[ICCV'07]

Yann LeCun
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_Industrial Applications of ConvNets

@ AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& Vidient Inc

» Vidient Inc's "SmartCatch” system deployed in several airports
and facilities around the US for detecting intrusions, tailgating,
and abandoned objects (Vidient is a spin-off of NEC)

& NEC Labs
» Cancer cell detection, automotive applications, kiosks

& Google
» OCR, face and license plate removal from StreetView

& Microsoft
» OCR, handwriting recognition, speech detection

& France Telecom
» Face detection, HCI, cell phone-based applications

& Other projects: HRL (3D vision)....

Yann LeCun

t New York University
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| FPGA Custom Board: NYU ConvNet Processor

Mﬁ_g‘“‘_‘, S ————— |

& Xilinx Virtex 4 FPGA, 8x5 cm board [Farabet et al. 2009]
» Dual camera port, Fast dual QDR RAM,

& New version being developed with Eugenio Culurciello (Yale EE)

» Full custom chip (ASIC)
» Version for Virtex 6 FPGA

Yann LeCun

t New York University



FGA Performance
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@ Seconds per frame for a robot vision task (log scale) [Farabet et al. 2010]
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& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
© [Lazebnik et al. 2006]

to learn in purely supervised mode (or so we thought).
cellphone

minaret

t New York University



f Fast Sparse Coding: Predictive Sparse Decomposition (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z)=llY'=W ZI+|Z~g (W, Y +A 2 |z
g (W _,Y')=Dtanh (W,Y)

INPUT

Yann LeCun




SD: Learning Algorithm

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University
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PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

& 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun
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_Learned Features on natural patches: V1-like receptive fields

[ S—— IR—|

Yann LeCun
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Using PSD to Train a Hierarchy of Features

“——m_im

S —————— |

& Phase 1: train first layer using PSD

FEATURES

Yann LeCun
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| Using PSD to Train a Hierarchy of Features

m—_m“__.

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES

Yann LeCun

t New York University
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j Using PSD to Train a Hierarchy of Features

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES

Yann LeCun

t New York University
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’ Using PSD to Train a Hierarchy of Features

[

| ——————————S—S S|

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor
& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2" feature extractor

FEATURES

Yann LeCun

t New York University



_Using PSD to Train a Hierarchy of Features

BEp—

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

@ Phase 4: use encoder + absolute value as 2" feature extractor
& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES

Yann LeCun

t New York University



Using PSD to learn the features of an object recognition system
[ e i

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

& Learning the filters of a ConvNet-like architecture with PSD
& 1. Train filters on images patches with PSD
& 2. Plug the filters into a ConvNet architecture

& 3. Train a supervised classifier on top

Yann LeCun

t New York University
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“Modern’ Object Recognition Architecture in Computer Vision
| —— - - - ’

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

Oriented Edges  Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters...  Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“shallow’’ classifier

Yann LeCun
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“State of the Art” architecture for object recognition
[ E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A HiStogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University



Can't we get the same results with (deep) learning?
I ———— S

IR E————————— |

Filter Non- feature Filter Non- feature o
R o o o s R o < . » Classifier
Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.
& Creates a hierarchy of features
& ConvNets and SIFT+PMK-SVM architectures are conceptually similar

& Can deep learning make a ConvNet match the performance of
SIFT+PNK-SVM?

Yann LeCun

t New York University
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_How well do PSD feature learning work on Caltech-lOl?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (Classifier |—»

Bank Linearity| |Pooling

SVM

| oo EEEE )

Yann LeCun
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“Procedure for a single-stage system

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University
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Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University



Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION




Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

* Classifier
@ Multinomial Logistic Regression or Pyramid Match Kernel SVM




64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% |  13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun




Tralnlng a Multi-Stage Hubel ‘Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun * New York University
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ltebl iesel Architecture o

n ateh-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P>*%| — [256.F J5&

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun
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Two-Stage Result Analysis
[ —

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refirnement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun * New York University
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Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University



CLASSIFIER

Parzen Windows Classifier
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Why Random Filters Work?
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"The Competition: SIFT + Spa

& Replacing K-means with Sparse Coding
» [Yang 2008] [Boureau, Bach, Ponce, LeCun 2010]

rse-Coding + PMK-SVM

Method Caltech 15 Caltech 30 Scenes
Boiman et al. [1] Nearest neighbor + spatial correspondence 65.00£1.14  70.40
Jain et al. [8] Fast image search for learned metrics 61.00 69.60
Lazebnik et al. [12] Spatial Pyramid + hard quantization + kernel SVM 56,40 64.40 = 0.80  81.40 = 0.50
van Gemert et al. [24] | Spatial Pyramid + soft quantization + kernel SVM ~ — 64.14 £ 1.18 76.67T =0.39
Yang et al. [26] SP + sparse codes + max pooling + linear 67.000.45 73.210.54 80.28 = 0.93
Zhang et al. [27] ENN-SVM 59.10 £0.60  66.20x0.50 -
Zhou et al. [29] SP + Gaussian mixture — — 84.1+0.5
Baseline: SP + hard quantization + avg pool + kernel SVM 56,74 £1.31 6419 £0.84 80.89 +£0.21
Unsupervised coding | SP + soft quantization + avg pool + kernel SVM 5912151 66.42x1.26 81.52x=0.54
[ x 1 features SP + soft quantization + max pool + kernel SVM ~ 63.61 088  — 83.41 = 0.57
8 pixel grid resolution | SP + sparse codes + avg pool + kernel SVM 62.85 £1.22 7027129 83.15x0.35
SP + sparse codes + max pool + kernel SVM 64.62 054  T1.81=0.96  84.25+0.35
SP + sparse codes + max pool + linear 64.71 £ 1.05 T71.52=x1.13 83.78 £0.53
Macrofeatures + SP + sparse codes + max pool + kernel SVM  69.03=1.17  7572x1.06  84.60 £ 0.38
Finer grid resolution | SP + sparse codes + max pool + linear 08.78 £ 1.09  7h14x 086 84411026

Yann LeCun

t New York University



Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g




—
NORB Generlc ObJect Recognltlon Dataset

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:
gl 18 azimuths

i O to 350 degrees every 20 ) | = 2
detgrees : ’ 3.,— “3: 1 »& /ﬁ % ﬁj @ g "E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University




@ Architecture

@ Two Stages

Error Rate (log scale) VS. Number Training Samples (log scale)

error rate
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Small NORB dataset
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Convolutional Training
[

& Problem:
» With patch-level training, the learning algorithm must
reconstruct the entire patch with a single feature vector

» But when the filters are used convolutionally, neighboring
feature vectors will be highly redundant

welghts (-0,2828 - 00,3043

Yann LeCun




. Convolutional Training

& Problem with patch-based training: high correlation between outputs of
filters from overlapping receptive fields.

IR == T ST N
A= - '“-"'-1"'""1.1"-"4 II|."l.
| | |.. Wil A= ==

2 " SR Oy

Yann LeCun
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Learning Complex

with Invariance Properties

Yann LeCun




Convolutional Training
S -

Yann LeCun

t New York University
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Learning Invariant Features [Kavukcuoglu et al. CYPR 2009]
|TTTTTTTTTTTTTTRRSANNNI——_—_—_—_—_—_—_—a——s—mss—ssS,S

M

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

FEATURES

Yann LeCun

t New York University



. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)

» 1. Apply filters on a patch (with suitable non-linearity)

» 2. Arrange filter outputs on a 2D plane

» 3. square filter outputs

» 4. minimize sqrt of sum of blocks of sauared filter outnuts

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

[

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
S ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z  Define pools and enforce sparsity across
pools

Yann LeCun

t New York University
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Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input IH

» For some it's translations,
for others rotations, or
other transformations.

Yann LeCun * New York University




—— |

Pinwheels?
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Yann LeCun

t New York University



~Invariance Properties Compared to SIFT

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images

» Left: normalized distance as a function of translation

» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT

rotation 0 degrees rotation 25 degrees
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& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqgr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1

o
;unnuul. W

Pl N

W [nh ==
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4

n
u‘!

“n [T

7

1

unsupervised invariant feature extractor

Maps of
Features
o
Object
: | f‘ Category
o=
supervised
classifier

t New York University



Reognitio ucy
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» A/B Comparison with SIFT (128x34x34 descriptors)
» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling
» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Reallltina featiire mang are enatiallv amnnthed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vam | IPSD (120x120) 65.5 T,




e

Recognition Ac
mﬁ R ——

curacy on Tiny Images & MNIST

» A/B Comparison with SIFT (128x5x5 descriptors)
» 32x16 topographic map with 16x16 filters.

Yann LeCun

Performance on Tiny Images Dataset

Method Accuracy (%)
I[PSD (5x5) 54
SIFT (5x5) (non rot. inv.) 33

Performance on MNIST Dataset

Method Error Rate (%)
I[PSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5




[Gregor and LeCun, 2010]

Yann LeCun




“Training Slgi;:i\ex‘a:ﬁsk‘v_vrtﬁocal Rexcgi)t;;:‘?Tjjs

_over Large Input Images

& Training on 115x115 images. Kernels are 15x15

Yann LeCun * New York University




Simple Cells + Complex Cells with Sparsity Penalty: Pinwheels
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K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)

119x119 Image Input
100x100 Code
20x20 Receptive field size

sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology
Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)



- Same Method, withTraining at the Image Level (vs patch)

& Color indicates orientation (by fitting Gabors)

Yann LeCun * New York University
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DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

i@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun

t New York University
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Camera image ” Detected obstacles (red)

Yann LeCun * New York University
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Navigating to a goal is hard...

h—-___*

stereo perspective human perspective

PEEmETTTTTTTT T

especially in a showstorm.

Yann LeCun * New York University
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| Self-Supervised Learning

& Stereo vision tells us what nearby obstacles look like

& Use the labels (obstacle/traversible) produced by stereo vision to train a
monocular neural network

& Self-supervised ‘‘near to far”’ learning

Yann LeCun

t New York University



Long Range Vision: Distance Normalization

e Ground plane estimation

e Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized 1image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 76

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> S classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net@SCALE Page 77

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

VOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUYV input

net(®)SCALE o e s

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 79

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. E!I!.‘Eli!
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 80 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision Results

' - 3 =

“Inputimage &

net@SCALE Page 81

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision Results

Classifie
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Long Range Vision Results

Stereo Labels Classifier Output

inputimage. - ~ Stereolabels - -  Classifier Output

net(SCALE



net(3>)SCALE
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» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

NEW YORK UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)
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Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY
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+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)
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FarOD Stereo: Input labels to Neural Network
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Feature Learning for traversability prediction (LAGR)

L —
Comparing
- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binary labe |
Comparison of Feature Extractors on Groundtruth Data

mrof
gsupervised
gautoencoder
gautoenc + sup
gPrLM
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