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__Denoising Auto-Encoders
[

& [Vincent & Bengio, ICML 2008]

@ Idea: feed a ‘““noisy’’ (corrupted) input to an auto-encoder, and train it to
produce the uncorrupted version.

& Use the states of the hidden layer as features
& Stack multiple layers

& Very simple and effective technique!
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“Another way to Learn Deep Invariant Features: DrLLIM
| — - = — n— - .

Hadsell, Chopra, LeCun CVPR 06], also [Weston & Collobert ICML 08 for language models]

@ Loss function: Make this small Make this large

» Outputs R 4+
corresponding to
input samples
that are . . 4 4
neighbors in the
neigborhood
graph should be | f
nearby

» Outputs for input
samples that are _ :
not neighbors ‘-f'
should be far

away from each Similar images (neighbors Dissimilar images
other in the neighborhood graph) (non-neighbors in the
neighborhood graph)
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_Application of Stacked Auto-Encoders to Text Retrieval
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& Ranzato et al. ICML 08
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Figure 5. Precision-recall curves of the Reuters dataset
comparing the model trained with only one layer (shal-
low architecture) to a deep model with the same number
of code units. The deep model outperforms the shallow
one overall when the features are extremely compact.

Figure 4. Precision-recall curves of the Reuters dataset
comparing a linear model (LSI) to the non-linear deep
model with the same number of code units (c.u.). Retrieval
is done using the k most similar documents according to
cosine similarity, with & € [1...2047].
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_Application of Stacked Auto-Encoders to Text Retrieval
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& Ranzato et al. ICML 08
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Figure 6. Precision-recall curves of the 20 Newsgroups
dataset comparing the performance of the model (1 layer)
trained on documents with various number of words in the
dictionary (from 1000 to 10000).
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Figure 7. Precision-recall curves using very compact rep-
resentations and high dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.
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Application of Stacked Auto-Encoders to Text
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Ohsumed dataset - deep model: 30689~100~10~5~2
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Figure 8. The two-dimensional codes produced by the deep
model trained on the Ohsumed dataset (shown only the 6
most numerous classes). The codes have been computed by

propagating test documents through the 4-layer network.
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Learning Codes for Natural Language Processing

[Collobert & Weston ICML 2008, ACL 2008]

& 1D convolutional networks. Input is window of 11 words on a text, output
is a single unit.
» Input is 1-of-N code, where N is the size of the lexicon

& Positive examples come Wikipedia text

& Negative examples are generated by substituting the middle word by
another random word

& The network is trained to produce 0 for positive examples and 1 for
negative examples

& The first layer learns “semantic-syntactic codes’ for all words

& The codes are used as input representation for various NLP tasks

Yann LeCun
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me = = |nput Sentence n words, K features
. feature 1 (text) the cat sat on the mat
- Leal'llll'lg COdeS fOl.»NLP feature 2 s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)
[Collobert & Weston ICML 2008, ACL 2008] — l
° f \
@ Convnet Architecture Lookup Tables (d1+d2+...dK)*n
LTy —~_> I:
L M |y U H
_4><"
) | .
Convolution Layer Y VvV VvV Y
#hidden units * (n-2)
— _

Max Over Time J,
#hidden units I

4

( Optional Classical NN Layer(s)

CSoftmax I | sctasses ' )
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Learning Codes for Natural Language Processing —

[Collobert & Weston ICML 2008, ACL 2008]

& Convnet on word window

Binary encoded Five Time-Delay

u Words embedded Multilayer networks :
sentence words. in 50100 dim space y
N 7 Part Of Speech Tagging »
_ ( treebank, split 02-21 /23 )
N .
Y - Named Entity Recognition »
N q / ( treebank, Stanford NER )
N ] N ! >‘.\
\l\\ Z .
o q 7 | a. Chunking »
y g ) ( treebank )
7
o | i g I i
_ ] Q_ Semantic Role Labeling »
| L B N ( propbank)
L/ Positional . \  Weakly Supervised Task
| information relat_lve to ( wikipedia, 631M examples )
the chosen predicate for

- semantic tagging
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. Learning Codes for Natural Language Processing
[ ——, NN

[Collobert & Weston ICML 2008, ACL 2008]

& Performance on various NLP tasks

Table 2.4: Deep NN architecture with no hand-engineered features (with or without multitasking)

vs. top systems that use hand-engineered features. The top systems for POS is [Toutanova et al.,
2003], for CHUNK is [Ando and Zhang, 2005b], for NER is [Florian et al., 2003], and for SRL

is [Punyakanok et al., 2004].

Method POS (% Err) CHUNK (FI) NER(FI) SRL (% Err)
Top Systems 2.76 94.20 88.76 13.36
NN 3.15 §8.82 §1.61 16.40
NN + Multitask | 2.78 94.18 83.88 13.82

Yann LeCun
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Learning Codes for Natural Language Processing

[Collobert & Weston ICML 2008, ACL 2008]

& Nearest neighbor words to a given word in the feature space

FRANCE JESUS XBOX REDDISH SCRATCHED VLADIMIR NYU
SPAIN CHRIST PLAYSTATION YELLOWISH SMASHED VIKTOR MU
ITALY GoD DREAMCAST GREENISH RIPFPED ALEKSANDR CALTECH

RUSSIA RESURRECTION P52 BROWNISH BRUSHED MIKHAIL BERKLEE

FOLAND FRAYER SNES BLUISH HURLED ALFRED JUILLARD

ENGLAND YAHWEH WlI CREAMY GRABBED NIKOLAI UCLA
DENMARK JOSEPHUS NES WHITISH TOSSED O5KAR VASSAR
GERMANY MOSES NINTENDO BLACKISH SQUEEZED JTOSEF CLAREMONT
PORTUGAL SIN GAMECUBE SILVERY BLASTED ANDREI BYU

SWEDEN HEAVEN PSP GREYISH TANGLED GIUSEFFPE USC

AUSTRIA SALVATION AMIGA FALER SLASHED PIETRO LsU
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Learning Codes for Natural Language Processing —

[Collobert & Weston ICML 2008, ACL 2008]

& Convnet on word window

Binary encoded Five Time-Delay

u Words embedded Multilayer networks :
sentence words. in 50100 dim space y
N 7 Part Of Speech Tagging »
_ ( treebank, split 02-21 /23 )
N .
Y - Named Entity Recognition »
N q / ( treebank, Stanford NER )
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Learning Codes for Natural Language Processing —

[Collobert & Weston ICML 2008, ACL 2008]
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DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

i@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i@ Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun
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Long Range Vision: Distance Normalization

e Ground plane estimation

* Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 15
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Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> S classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net@SCALE Page 16

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

VOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUYV input

net(®)SCALE o e 17
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Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 18

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. E!I!.‘Eli!
@ for near-to-far generalization i!ii!i!uuﬁ
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Long Range Vision: the Class

Online Learning (52 ms)

e Train a logistic regression on every frame, with cross entropy loss function

D_(RIY) Minimize 4 5 categories are learned
L
A o8 4 750 samples of each class
Y=FWX): 5x1 T are kept in a ring buffer:
short term memory.
Logistic
Regression Wi 4 Learning “snaps” to new
Weights environment in about 10
frames
X: 100x1
4 Weights are trained with
Feature Extractor (CNN) stochastic gradient descent
T 4 Regularization by decay to
R: 5x1 default weights
Pyramid Window Input: Label from Stereo
3x12x25
QSCALE Page 20 NEW YORK UNIVERSITY
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Long Range Vision Results
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“Inputimage &
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Long Range Vision Results
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-dt'-‘- A y &£ o ,’*’ 5 '#“-

Ciaséifier O

e
s

o+

5 t L

tereo Label

: ‘“‘3}%

s - -

net(SCALE



Long Range Vision Results

Stereo Labels Classifier Output

inputimage. - ~ Stereolabels - -  ClassifierOutput

net(SCALE
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» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map
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Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map
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Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
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FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
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_Learning Deep Invariant Features with DrLIM
[
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& Co-location patch data

@ multiple tourist photos
@ 3d reconstruction
@ groundtruth matches

& Uses temporal consistency
» Pull together outputs for same patch

» Push away outputs for different patches

Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Output
64x64 —> —> —> —> —> —>

6x60x60 6x20x20 21x15x15  21x5x5 55x1x1 25x1x1

/

S $ Q AL
< o < O <

o o o o o 3
c S c =1 c 5
— — —

o « o « o) o
oD oD =] O
w ) w —

t New York University
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Feature Learning for traversability prediction (LAGR)

[ —
Comparing
- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binary labe |
Comparison of Feature Extractors on Groundtruth Data

mrof
gsupervised
gautoencoder
gautoenc + sup
gPrLM

25
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