"Yann LeCun

BIRE Courant Institute of Mathematical Sciencesnm

Center For Neural Science

New York University

collaborators:
Y-Lan Boureau, Rob Fergus,
Karol Gregor, Kevin Jarrett,

ray Kavukcuoglu, Marc'Aurelio Ranz

Yann LeCun * New York University

& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet:
29.0%

» SIFT features + Pyramid Match Kernel SVM: 64.6%
@ [Lazebnik et al. 2006]

& When learning the features, there are simply too many parz}meters B
to learn in purely supervised m(pe% for so we thought).

minaret

otus

dollar

joshua .

t New York University

— —— ———— e

‘ nsupervised Deep Learning: Leveraging Unlabeled Data

[Hinton 05, Bengio 06, LeCun 06, Ng 07]

& Unlabeled data is usually available in large quantity
& A lot can be learned about the world by just looking at it
& Unsupervised learning captures underlying regularities about the data

& The best way to capture underlying regularities is to learn good
representations of the data

& The main idea of Unsupervised Deep Learning

» Learn each layer one at a time in unsupervised mode
» Stick a supervised classifier on top
» Optionally: refine the entire system in supervised mode

& Unsupervised Learning view as Energy-Based Learning

Yann LeCun

t New York University

* Energy-Based Framework for Unsupervised Learning

INPUT Y

ENERGY F(Y;W)

& GOAL: make F(Y,W) lower around areas of high data density

Yann LeCun

t New York University

M

_Energy-Based Framework for Unsupervised Learning

INPUT Y

& GOAL: make F(Y,W) lower around areas of high data density
ENERGY BEFORE TRAINING

F(Y) A

Yann LeCun

t New York University

_Energy-Based Framework for Unsupervised Learning

INPUTY

& GOAL: make F(Y,W) lower around areas of high data density

ENERGY AFTER TRAINING

F(Y)

Yann LeCun

t New York University

| Energy-Based Framework for Unsupervised Learning

INPUT Y

& GOAL: make F(Y,W) lower around areas of high data density

& Training the model by minimizing a loss functional L[F(., W)]

Yann LeCun

t New York University

M

_Energy-Based Framework for Unsupervised Learning

INPUTY

& GOAL: make F(Y,W) lower around areas of high data density

& Contrastive loss

» Pushes down on the energy of data points
» Pushes on the energy of everything else

LW)=L(F(Y,;W),F(Y;W))

& L(a,b): increasing function of a, decreasing function of b.
& Y: data point from the training set

- ?z “fantasy”’ point outside of the region of high data density

Yann LeCun

t New York University

: Energy-Based Framework for Unsupervised Learning

INPUT Y

& Contrastive loss

L(W)=L(F(Y,W),F(Y,;W))

F(Y)

Yann LeCun

t New York University

: Energy-Based Framework for Unsupervised Learning

INPUT Y

& Contrastive loss

L(W)=L(F(Y,W),F(Y,;W))

F(Y)

it

Yann LeCun

j Each Sta

Mﬁe—;

& Probabilistic View:
» Produce a probability density
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

& Energy-Based View:
» produce an energy function
F(Y,W) that:
» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun

=<V

t New York University

e

Energy <-> Probability

B

E(Y,W) x —log P(Y|W)

=<V

Yann LeCun

_The Intractable Normalization Problem
[——

& Example: Image Patches

& Learning:

» Make the energy of every “natural image” patch low
» Make the energy of everything else high!

AE(Y)

o—BE(Y.W)

P(Yﬂ ”) — [y o—BE(y,W)

Yann LeCun

t New York University

Training an Energy-Based Model to Approximate a Density

RN R—————— ——————

make this big A P(Y)

—BE(Y,W) &
PY W) = J, e PRI +¢ : **

make this small

Maximizing P(YIW) on training samples l

Minimizing -log P(Y,W) on training samples

1
L(Y,W)=E(Y,W)+ Blog / —pEww) | A
Y

Yann LeCun

oW oW
& Gradient descent:

OL(Y,W) _OE(Y,W) / PlyIW)

OL(Y, W)
oW

Pushes down on the Pulls up on the T AY
energy of the samples energy of low-energy Y's

I

OE(Y, W)
— W I P(ylW
W [n /y (y|W) P

Yann LeCun

W — W —n

WWME——%

_Contrastive Divergence Trick [Hinton 2000]

[N R———————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy

» this digs a trench in the energy Y.T g

surface around the training samples

DE(Y,W) OE(Y',W)
ow T aw

Pushes doyv.n on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun

t New York University

WWME——%

_Contrastive Divergence Trick [Hinton 2000]

[N R———————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy A

» this digs a trench in the energy
surface around the training samples

DE(Y,W) OE(Y',W)
ow T aw

Pushes doyv.n on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun

t New York University

Energy-Based Model Framework

INPUTY
JOINT ENERGY E(Y;Z;W)
CODE Z

@ Restrict information content of internal representation

» assume that input 1s reconstructed from code

* inference determines the value of Z and F(Y ;W)

M

| Getting Around The Intractability Problem

INPUTY
CODE Z

JOINT ENERGY E(Y;Z;W)

& MAIN INSIGHT:
& Assume that the input is reconstructed from an internal code Z
& Assume that the energy measures the reconstruction error

& Restricting the information content of the code will automatically push
up the energy outside of regions of high data density

CODE Z
INPUTY » Encoder _>\/ Decoder - Reconstruction
/\ Cost t—P Error
(ENERGY)

Yann LeCun

t New York University

How do we push up on the energy of everything else?

& Solution 1: contrastive divergence [Hinton 2000]

» Move away from a training sample a bit
» Push up on that

& Solution 2: score matching [Hyvarinen]
» On the training samples: minimize the gradient of the energy, and
maximize the trace of its Hessian.
& Solution 3: denoising auto-encoder [Vincent & Bengio 2008]
» Train the inference dynamics to map noisy samples to clean
samples (not really energy based, but simple and efficient)
& Solution 4: MAIN INSIGHT! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» Idea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun

t New York University

m—

The Encoder/Decoder Architecture

@ Each stage is composed of [Hinton 05, Bengio 06, LeCun 06, Ng 07]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
© PCA is a special case (linear encoder and decoder)

RECONSTRUCTION

ERROR
, Decoder
Distance ,
(basis fns)

Encoder
(predictor)

INPUT FEATURES

Yann LeCun

t New York University

N ———— |

‘ Deep Learning: Stack of Encoder/Decoders
I ——— =

& Train each stage one after the other

& 1. Train the first stage

. Decoder
Distance ,
basis fns

bredictor

t New York University

Yann LeCun

— —— e ——————

_Deep Learning: Stack of Encoder/Decoders

m”k

& Train each stage one after the other

& 2. Remove the decoder, and train the second Stage

, Decoder
Distance _
basis fns

bredictor predictor

t New York University

Yann LeCun

m@mf—sf—@m

Deep Learning: Stack of Encoder/Decoders
R RO

& Train each stage one after the other
@ 3. Remove the 2" stage decoder, and train a supervised classifier on top

& 4. Refine the entire system with supervised learning
» e.g. using gradient descent / backprop

Classifier;

bredictor predictor

Yann LeCun

t New York University

4raiig an Encoder/Decoder Module
RO«

& Define the Energy F(Y) as the reconstruction error
» Example: F(Y) = || Y - Decoder(Encoder(Y)) ||?

& Probabilistic Training, given a training set (Y1, Y2.......)

» Interpret the energy F(Y) as a -log P(Y) (unnormalized)
» Train the encoder/decoder to maximize the prob of the data

& Train the encoder/decoder so that:

» F(Y) is small in regions of high data density (good reconstruction)

» F(Y) is large in regions of low data density (bad reconstruction)
RECONSTRUCTION
ERROR F(Y)

Encoder
(predictor)

INPUT FEATURES

t New York University

Yann LeCun

- s ————

"Encoder-Decoder: feature Z is a latent variable

[

& Energy:

E(Y, Z) = Dist|Y, Dec(Z)] + Dist|Z, Enc(Y)]
& Inference through minimization or marginalization

1
F(Y)=minE(Y,z) or F(Y)=——log / —BE(Y.2)

_ Decoder
Distance ,
(basis fns)
Encoder _
. Distance
(predictor)

INPUT

FEATURES

Yann LeCun

t New York University

Restricted Boltzmann Machines Decoder
A= Distance ,
(basis fns)
[Hinton & Salakhutdinov 2005]
Encoder
. Distance
(predictor)
& Distance is negative dot product

& Y and Z are binary
E(Y,Z) = Dist|Y,Dec(Z)| + Dist|Z, Enc(Y)]

& Enc and Dec are linear

Enc(Y) = -W.Y Dist(Z,W.Y) = —§ZT.W.Y

1
Dec(Y)=-W?'.Z Dist(Y,E".Z) = ——YT wt.z
EY,Z)=-Z"WY F(Y)= —logz Z5 Wy

Yann LeCun

‘Non-Linear Dimensionality Reduction with Stacked RBMs

m—_m“__._

& [Hinton and Salakhutdinov, Science 2006]

Yann LeCun

- DBGHE‘EI-!
i [30] | g
w i ‘
: Top :
i REM | i
Sgiassm I 1 i 2000 l
[, g Twi-
! W, ! I | | 1000 |
R N TN Y |
|
I T o (B0 Corlu lmpme; |
1 I w’ 5 |
i 2000 | ks .
| | | |
I | I | l
i
i
REM i Encoder = . _E
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

& [Hinton and Salakhutdinov, Science 2006]

Fig. 2. (A) Top to bottom: A N
Random samples of curves from '
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by “logistic PCA” (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

Yann LeCun * New York University

Non-Linear Dimensionality Reduction: MNIST

h——.________,

& [Hinton and Salakhutdinov, Science 2006]

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

o0

Lo B L I T L R i

Yann LeCun

¢ New York University

Non-Linear Dimensionality Reduction: Text Retrieval
—————— F——

& [Hinton and Salakhutdinov, Science 2006]

Fig. 4. (A) The fracton of A .. c
retrieved documents in the i
same class as the query when o4
a query document from the

Autosncoder=100

Eurocpean Community

= 035
test set is used to retrieve other ﬁ 03 Intarbank markels monetaryeconamic
test set documents, averaged 3 o5)]
over all 402,207 possible que- =< o2 - LY
ries. (B) The codes produced r:? A

by two-dimensional LSA. (C) Disasters and

The codes produced by a 2000- 0.06 accidents
500-250-125-2 autoencoder. e R e e g
Number of retriesved documents 2
":-I' o
s o RS-, : 2
E . " TS -"+!.|-r : * - -.n'..:.
o . 5 el e
- | o 4T % ‘ L ¥Ry i
eading economic™ = -5,] YRy Legaljudicial
indicators . _?- B Oy 3 w
) L Y
. LI Lk -
i S Y, e
4 Read e Government
. a7 Mg i
Acoourtet }\:»w:_ﬁ bBorrowings
gamings ':*

Yann LeCun * New York University

Examples of LabelMe retrieval using RBMs
e [Torralba, Fergus, Weiss, CVPR 2008]

e 12 closest neighbors under different distance metrics

Inputimage _ Ground truth neighbors L2—Pixels Gist : 32-RBM

v L

LabelMe Retrieval Comparison of methods

1

g r

aar

o7

0a

(LR o

32—-LSH
32-boosting | |
32—-RBM .
1024—gist/kd| |
4096 —gist/kd
16384—qgist ||

04

03

02

2.1

% of 50 true neighbors in retrieval set

0 2000 10000 ___ 20.0000

Size of retrieval set

m =

; Encoder-Decoder with Sparsity
D ——————

& Energy:
E(Y, Z) = Dist|Y, Dec(Z)| 4+ Dist|Z, Enc(Y)] + Regularizer(Z)

& Inference through minimization or marginalization

1
F(Y)=minE(Y,z) or F(Y)=——log / —BE(Y.2)

, Decoder
Distance ,
(basis fns)
Encoder ,
. Distance
(predictor)

INPUT

Regularizer \FEATURES
(sparsity)

t New York University

Yann LeCun

_The Main Insight [Ranzato et al. AISTATS 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» If few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University

N S ——

e Training sample

e Input vector which is NOT a training sample

e Feature vector

INPUT SPACE
®
® ® ®
o
®
o ®
® ®

Yann LeCun

'* hy Limit the Information Content of the Code?

FEATURE
SPACE

y Limit the Information Content of the Code?

w

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

Training based on minimizing the reconstruction error over

the training set

INPUT SPACE .
o ®
®
° e
® o

Yann LeCun

l""l"lllllllllll“

FEATURE
SPACE

t New York University

‘Why Limit the I

[———

|

e Training sample

e Input vector which is NOT a training sample

e FKeature vector

BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
®
® ®
o
®
° ®
® ®

FEATURE
SPACE

Yann LeCun

t New York University

Why Limit the Information Content of the Code?

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
? SPACE
@ ® () @
o o
(] @
@ ® @ ®
@ @ ([

Yann LeCun

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

Why Limit the Information Content of the Code?

INPUT SPACE FEATURE
° SPACE
() ® o
P o g —— - o
@ @ @

Yann LeCun

t New York University

g_

Why Limit the Information Content of the Code?

S e ——

e Training sample
e Input vector which is NOT a training sample

e FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
@
o
P "“""""""""""""'"“““““““““““ o
@ @ @

Yann LeCun

t New York University

‘ Sparsity Penalty to Restrict the Code

& We are going to impose a sparsity penalty on the code to restrict its
information content.

& We will allow the code to have higher dimension than the input

& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University

1.5

@ 2 dimensional toy dataset
» Mixture of 3 Cauchy distrib.

0.5

@ Visualizing energy surface
(black = low, white = high)

-0.5

[Ranzato 's PhD thesis 2009]

|
o 0.5

7 "PCA autoencoder sparse coding K-Means

nde uni pde units nde uni

Y —wZ|I Y —wZ|I

pull-up dimens. part. func. sparsity

decoder
energy

w7z
Y—WZ|F+AlZ

wz
Y —wZ||

1-of-N code

@ 2 dimensional toy dataset
» spiral

; @ Visualizing energy surface
(black = low, white = high)

‘ "PCA ‘autoencoder sparse coding K-Means

nde nni nde uni) code units) code uni

energy Y —wz|?

pull-up dimens. dimens. sparsity [-of-N code

Sparse Decomposition with Linear Reconstruction

[Olshausen and Field 1997]
@ Energy(Input,Code) = || Input — Decoder(Code) II> + Sparsity(Code)

@ Energy(Input) = Min_over_Code[Energy(Input,Code)]

Dbserved Latent
Input Y Decoder Code Z Sparsity

t“%

™, Reconstr. of
*. input
v uzf,:<—<fd(2) -V,

[}
“l

» Energy: minimize to infer Z
E(Y,Z':W)=|Y'-W,Z'|[+A > |7
R ’ - . d . Z ;
i . I]
F(Y;W)=min E(Y',z; W)
» Loss: minimize to learn W (the columns of W are constrained to have norm 1)

LW)=), F(Y ;W)= (min,E(Y',Z :W))

t New York University

Yann LeCun

Problem with Sparse Decomposition: It's slow

@ Inference: Optimal_Code = Arg Min_over_Code[Energy(Input,Code)]
E(Y,Z W)=Y =w,Z| +a 2. |2
F(Y;W)=min_E(Y',z; W)

Zi:argminZE (Y', z;, W)

» For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

» This would be very slow for large scale vision tasks
» Also, the optimal Z are very unstable:

¢ A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University

Solution: Predictive Sparse Decomposition (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]
& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z W)=Y =w, ZIP+IZ' = f,(Y)IF+A 2. |2]
f (Y)=Dtanh(W Y)

Prediction of

f,(Y) =D tanh(W, Y)

Observed S,
Input Y Reconstr. of

"«.’ ’,‘n i n p u t
1Y - £4Z) 12

L)
o
L)

* ’h..

Yann LeCun

t New York University

' PSD: Inference

& Inference by gradient descent starting from the encoder output

E(Y,Z W)=Y =w, ZIP+|1Z' = f,(Y) P+ a2 |2

Z'=argmin E(Y', z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun

t New York University

& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(W):Zi F (Yi : W)
F(Y;W)=min_ E(Y',z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun

t New York University

PSD: Learning Algorithm

Prediction of

4 1.(Y) =D tanh(W, Y) I Z-£,(Y) I,
Latent
‘~’ Code Z
Observed s e
I n p u t Y .0'.’ .'00. Re cons t F. Of 1°’. * *
.'t’.' %4,‘ i n p u t ‘o"’+’ ‘..io
> | Y -£{2) I f(Z)=W,Z |- r VA

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University

R e e S S MBS T e e e T T TS T TN

Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University

e —————————

PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

& 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun

e e e
e e
A I T e R e TR A T
ﬁ!ﬁﬁﬁﬁﬂﬁﬁﬁﬁiﬁﬁﬁﬁ

G I Sl T LR R 5
e S S SRt
R S R S
e SR DS
gD e DL P

e R R
ﬁﬁ@ﬂﬂﬁmﬁﬁﬁﬂﬁﬁﬁﬁﬁ

gt
Eﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬂlﬂ

iteration no @

Classification Error Rate on MINIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder

. 10 3amples 100 Samples 1000 Samples
= (i [T Tewinicrg a5 : : . o :
= tJ1zarg
=== Twining
== "arirg Ape e ok
M a ' '
. gk
By gl
a& - - £ .
- & ' ' &
& " ' : &
I i T & : : T
£ 2 ' £
i ; - - 8o
i1 4 ' j ¢
i
' ' i
. . i Gk
k] i : I
9 Hobhd P48
| ooetE—a-00 4MF ¢ . Z"MA :
o] a kK
Hi [.2 e nk L8 a7 1.0 ne 0 1E e 2.7 iy e L4 0.5 E 07
RNZE ANZE FMZE

Yann LeCun

t New York University

T —— —_— —_——

_Learned Features on natural patches: V1-like receptive fields

[S—— IR—|

Yann LeCun

t New York University

—————— — — —

Learned Features: V1-like receptive fields

& 12x12 filters
& 1024 filters

Yann LeCun * New York University

Using PSD to learn the features of an object recognition system
[e i

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

& Learning the filters of a ConvNet-like architecture with PSD
& 1. Train filters on images patches with PSD
& 2. Plug the filters into a ConvNet architecture

& 3. Train a supervised classifier on top

Yann LeCun

t New York University

m — —

“Modern’ Object Recognition Architecture in Computer Vision
| —— - - - ’

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

Oriented Edges Sigmoid Averaging
Gabor Wavelets Rectification = Max pooling
Other Filters... Vector Quant. VQ+Histogram

Contrast Norm. Geometric Blurr

& Example:

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]
» SIFT + classification

& Fixed Features + ‘“shallow’’ classifier

Yann LeCun

t New York University

m

“State of the Art” architecture for object recognition
[E——————— |

, Filter Non- feature Filter Non- feature o
=T —> —p » Classifier
Bank Linearity Pooling Bank Linearity Pooling
Oriented WT A HiStogram K_means Pyramid SVM With
Edges (sum) Histogram Histogram
(sum) Intersection
SIFT kernel

& Example:

» SIFT features with Spatial Pyramid Match Kernel SVM [Lazebnik
et al. 2006]

& Fixed Features + unsupervised features + ‘“shallow” classifier

Yann LeCun

t New York University

Can't we get the same results with (deep) learning?

M‘m"l;,

Filter Non- feature Filter Non- feature o
R o o o s R o < . » Classifier
Bank Linearity Pooling Bank Linearity Pooling

& Stacking multiple stages of feature extraction/pooling.
& Creates a hierarchy of features
& ConvNets and SIFT+PMK-SVM architectures are conceptually similar

& Can deep learning make a ConvNet match the performance of
SIFT+PNK-SVM?

Yann LeCun

t New York University

—_— — e e e e o]

: How well do PSD features work on Caltech-rl()l?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (Classifier |—»

Bank Linearity| |Pooling

SVM

[B .- EEEEE

Yann LeCun

t New York University

“Procedure for a single-stage system

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University

S e T

Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08 LAYER

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Local Contrast

Pinto, Cox and DiCarlo, PloS 08 Normalization Layer

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pinto, Cox and DiCarlo, PloS 08

Feature Extraction

C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

Pooling Down-
Sampling Layer

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

Feature Extraction

+ C Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION

Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

* Classifier
@ Multinomial Logistic Regression or Pyramid Match Kernel SVM

64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% | 13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun

_Using PSD Features for Recognition
e —— R NNNNNNN——————

& Rectification makes a huge difference:

» 14.5% -> 50.0%, without normalization
»44.3% -> 54.2% with normalization

& Normalization makes a difference:
» 50.0 - 54.2

& Unsupervised pretraining makes small difference
& PSD works just as well as SIFT

& Random filters work as well as anything!
» If rectification/normalization is present

& PMK_SVM classifier works a lot better than multinomial log_reg on low-
level features

» 52.2% - 65.0%

Yann LeCun * New York University

Comparing Optimal Codes Predicted Codes on Caltech 101
R RRRNNNNNNNA————————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

» PSD features are more stable.

53
% 5ol ___ ___ __ i Feature SlgIl (FS)
Y] 5
. ' ' 1S an optimization
9 51 L N] p
o | | methods for
g 50 ESURRRRNRORRRNNY VO AU 4 Computlng
g | sparse codes
%49 —©-PSD Predictor [Lee...Ng 2006]
g | —©—=Regressor
é 48 L _e_ FS

47 ; | —©=PSD Optimal

0 0.05 0.1 0.15 0.2

Sparsity Penalty per Code Unit

Yann recun * New York University

_PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] R— PLI#) 0000 ______________ L P 000f ______________]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University

_PSD features are much cheaper to compute
[— S —————————-..SSSSE |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University

_How Many 9x9 PSD features do we need?
[— -S|

& Accuracy increases slowly past 64 filters.

55

o
-

B~
(#2)

B~
o

Recognition Accuracy

D
on

(o)
o

0 20 40 60 80
Number of Basis Functions

Yann LeCun

Tralnlng a Multi-Stage Hubel ‘Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun * New York University

\ .__.. Ly By Wy Wy Ny

ﬂ W ,r. N N

f”'__,:_ﬂp’ u'a '_,. '_,ig'

cfg:ﬂ'y&w';e'ﬂsw;cs 7

Hr a! 5“ ,_: ' _b _5@
;;_ﬂﬂ;. W _\‘:z !

CONVOLUTIONS Amwv.nmwv

,y,,,,% W

w.
B
—
o
o
=
=
-]
-4
=
o
2
i
L
Z
=

64@5x5

64@25x25

\

J

32@33x33

MAX/SUBSAMPLING (4x4)

\

W

CONVOLUTIONS (9%x9)

1)

32@132x132

_Multistage Hubel-Wiesel Architecture on Caltech-101

e

INPUT 3@140x140

Y (luminance)

Yann LeCun

‘ Multistage Hubel-Wiesel Architecture

& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University

ltebl iesel Architecture o

n ateh-l -

Single Stage System: [64.F < — R/N/P°*®] - log_reg

R/N/P Rabs — N —Pa | Raps — Pa N — Pwum N —Pa Pa
U™ 54.2% 50.0% 44.3% 18.5% 14.5%
RT 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(£1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(x2.2)
G 52.3%
Two Stage System: [64.F s> — R/N/P°*®] — [256.F g — R/N/P**?] - log_ reg
R/N/P Rabs — N —Pa | Raps — Pa N — Pm N —-Pa Pa
Uutut 65.5% 60.5% 61.0% 34.0% 32.0%
RTR™ 64.7% 59.5% 60.0% 31.0% 29.7%
Uu 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(x1.5) | 37.6%(£1.9) 19.6% 8.8%
GT 55.8% < like HMAX model

Single Stage: [64.F 5 — R/N/P**%] - PMK-SVM
U 64.0%

Two Stages: [64.F .7

CSG

— R/N/P>*%| — [256.F J5&

— R/N] - PMK-SVM

uu

52.8%

Yann LeCun

t New York University

m

Two-Stage Result Analysis
[—

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refirnement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun * New York University

e

T e P T T T E T E T T

Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University

MNIST dataset

@ 10 classes and up to 60,000 training samples per class

ARNSMNO R~

A NN SR LOXQ

=M IO
ST N N A 3 e TR RN
TN D (N0~ (DT
QYHUORXWORWND
e X ©

MNIST dataset

@ Architecture

@ U'U™: 0.53% error (this is a record on the undistorted MNIST!)
I
& Comparison:RR Versus- and RW

Classification error on the MNIST dataset

12_ ...
11__ ...
oL N e Supervised taining ofthe whole network |
] #\ ... —4&— Unsupervised training of the feature extractory.
T R N e e e — <+ — Random feature extractors

6

5

4

w

% Classification error

0.6

05 | | |
300 1000 2000 5000 10000 20000 40000 60000

Size of labelled training set

Why Random Filters Work?

R R BN
ER O EE R T

e SR e
e e o G
T i S B e

HEREEREE ey
NS EERE Aaar
EETENERERN o
EEENIEET a7
R EDMNENE febELE
SEREEENE Bk
HERRENES el
RSEEEEES e

Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g

—
NORB Generlc ObJect Recognltlon Dataset

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:
gl 18 azimuths

i O to 350 degrees every 20) | = 2
detgrees : ’ 3.,— “3: 1 »& /ﬁ % ﬁj @ g "E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University

@ Architecture

@ Two Stages

Error Rate (log scale) VS. Number Training Samples (log scale)

error rate

5

1

—
0 ~l oo

Small NORB dataset

5

..............

.................

.................

|=8=c_P (R'R")
C-Abs-N-P (R"R")|

| @=C-Abs-N-P (R R) |

o0

100

200

500

1000

number of traininag sambles ner class

2000

4860

_Learning Invariant Features [Kavukcuoglu et al. CYPR 2009]

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

,
LA

Prediction of
cod
»1f(Y)=D MWP" Z- 1Y) I, >
Latent
. e oD Y

0 b serv Ed ol ."."«'.

In p utyY . ‘r"“ ."'o,* Reconstr. of ',0' "..
S S input
> 1Y-(D1: (Z)=W,Z |- >

C S +
L)
oyt s

Yann LeCun

t New York University

. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)

» 1. Apply filters on a patch (with suitable non-linearity)

» 2. Arrange filter outputs on a 2D plane

» 3. square filter outputs

» 4. minimize sqrt of sum of blocks of sauared filter outnuts

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

[

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
S ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z Define pools and enforce sparsity across
pools

Yann LeCun

t New York University

2

Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input IH

» For some it's translations,
for others rotations, or
other transformations.

Yann LeCun * New York University

—— |

Pinwheels?
| —

Yann LeCun

t New York University

~Invariance Properties Compared to SIFT

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images

» Left: normalized distance as a function of translation

» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT

rotation 0 degrees rotation 25 degrees

.-'{J' TR R R} }

EAAY
N
B
%

0.a

=

o
o
12

o
=

o o

2

Normalized MSE
Normalized MSE

o
=
T
=4
r.anln

- %= 8IFT non rot. inv,
- SIFT

~<1- Qur alg. non inv.

—+— Qur alg. inv.

=

o
=
.

o
%)

=]
ha

I I L _ I I L 1 I
o 12 14 16 4] 2 4 a 12 14 16

Yann LeCun

t New York University

& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqgr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1

o
;unnuul. W

Pl N

W [nh ==
T

4

n
u‘!

“n [T

7

1

unsupervised invariant feature extractor

Maps of
Features
o
Object
: | f‘ Category
o=
supervised
classifier

t New York University

Reognitio ucy
R R EEEEEE———

» A/B Comparison with SIFT (128x34x34 descriptors)
» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling
» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Reallltina featiire mang are enatiallv amnnthed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vam | IPSD (120x120) 65.5 T,

e

Recognition Ac
mﬁ R ——

curacy on Tiny Images & MNIST

» A/B Comparison with SIFT (128x5x5 descriptors)
» 32x16 topographic map with 16x16 filters.

Yann LeCun

Performance on Tiny Images Dataset

Method Accuracy (%)
I[PSD (5x5) 54
SIFT (5x5) (non rot. inv.) 33

Performance on MNIST Dataset

Method Error Rate (%)
I[PSD (5x5) 1.0
SIFT (5x5) (non rot. inv.) 1.5

. The En

—

Yann LeCun

t New York University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Examples of LabelMe retrieval using RBMs
	LabelMe Retrieval Comparison of methods
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

