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The Next Frontier in Machine Learning: L.earning Representations

& The big success of ML has been to learn classifiers from labeled data
» The representation of the input, and the metric to compare them
are assumed to be “intelligently designed.”

» Example: Support Vector Machines require a good input
representation, and a good kernel function.

& The next frontier is to “learn the features”
» The question: how can a machine learn good internal
representations

» In language, good representations are paramount.
© What makes the words “cat” and “dog” semantically similar?

@ How can different sentences with the same meaning be mapped to the same
internal representation?

& How can we leverage unlabeled data (which is plentiful)?

Yann LeCun

t New York University



_The Traditional ““Shallow” Architecture for Recognition
[ S— SR

=

Pre-processing / , o
, — Trainable Classifier —%
Feature Extraction

/

this part 1s mostly hand-crafted

Internal Representation

& The raw input is pre-processed through a hand-crafted feature extractor
& The features are not learned
& The trainable classifier is often generic (task independent)

& The most common Machine Learning architecture: the Kernel Machine

Yann LeCun

t New York University



- The Next Challenge of ML, Vision (and Neuroscience)
-y * = : f om—

& How do we learn invariant representations?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

& How can we learn visual categories from just a few examples?

» | don't need to see many airplanes before | can
recognize every airplane (even really weird ones)

Yann LeCun

t New York University
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‘ Gobd Representations are Hierarchical

Trainable Trainable ,
Trainable
Feature |— — — -»| Feature e
Classifier
Extractor Extractor

& In Language: hierarchy in syntax and semantics

» Words->Parts of Speech->Sentences->Text
» Objects,Actions,Attributes...-> Phrases -> Statements -> Stories

& In Vision: part-whole hierarchy
» Pixels->Edges->Textons->Parts->0bjects->Scenes

Yann LeCun

t New York University
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“Deep” Learning: L.earning Hierarchical Representations

— — = |

Trainable Trainable ,
Trainable
Feature |— - —»| Feature | e
Classifier
Extractor Extractor

Learned Internal Representation

& Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

& Representations are increasingly invariant as we go up the layers

& using multiple stages gets around the specificity/invariance dilemma

Yann LeCun

t New York University



_The Primate's Visual System is Deep
[ ——— - |

& The recognition of everyday objects is a very fast process.

» The recognition of common objects is essentially “feed forward.”
» But not all of vision is feed forward.

& Much of the visual system (all of it?) is the result of learning
» How much prior structure is there?

& If the visual system is deep and learned, what is the learning algorithm?

» What learning algorithm can train neural nets as
“deep” as the visual system (10 layers?).

» Unsupervised vs Supervised learning

» What is the loss function?

» What is the organizing principle?

» Broader question (Hinton): what is the learning
algorithm of the neo-cortex?

Yann LeCun

t New York University
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& We can approximate any function as close as we want with shallow
architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

» kernel machines and 2-layer neural net are “universal”.
& Deep learning machines
o K K—1 0
y=FWE FWELF(. .FW°.X)..)))
& Deep machines are more efficient for representing certain classes of

functions, particularly those involved in visual recognition

» they can represent more complex functions with less
“hardware”

& We need an efficient parameterization of the class of functions that
are useful for “AI” tasks.

Yann LeCun

t New York University
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W hy are Deep Architectures More Efficient?
R —N———————TT

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”’]

& A deep architecture trades space for time (or breadth for depth)

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with an
exponential number of minterms O(2”N).....

Yann LeCun

t New York University
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_Feature Extraction in Computer Vision
[ — —

Filter Non- Spatial o
—>> —>> +»| C(lassifier |—»

Bank Linearity|] | Pooling

Oriented Edges  Sigmoid Averaging
Gabor Wavelets Rectification  Max pooling
Other Filters...  Vector Quant. VQ-+Histogram

Contrast Norm. Geometric Blurr

& Examples:

» SIFT features with Spatial Pyramid Matching Kernel SVM
[Lazebnik et al. 2006]

» Edges + Rectification + Histograms + SVM [Dalal & Triggs 2005]

& Fixed Features + ‘“‘shallow”’ classifier

Yann LeCun

t New York University
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Trainable Feature Extraction: Hubel-Wiesel Stage

&——__‘__ - E———— |

“Simple cells”
“Complex cells”

average pooling &
Filter Bank + subsampling
Sigmoid

& Filter Bank -> Sigmoid -> Average Pooling & Subsampling
& Filter Bank + Sigmoid similar to ‘“‘simple cells” in the visual cortex

& Pooling & Subsampling similar to ‘““‘complex cells” in the visual cortex
» [Hubel & Wiesel 1962]

Yann LeCun

t New York University



Deep Archltecture The Multl-stagerﬁ;l;l Wlesel Archltecture

— S

Classifier —»

Spat1a1

Spat1a1 Filter
Bank Pooling Bank Pooling
& Stacking multiple stages of simple cell / complex cell layer pairs

& We can't build the second layer features by hand!

& Neocognitron [Fukushima 1971-1982]
» simple unsupervised/competitive feature learning

& Convolutional Nets [LeCun 1988-2007, Garcia 2004, Yu 2008....]

» fully supervised feature learning
» A rare example of successful supervised deep learning

<& HMAX & friends [Poggio's group 2002-2006, Lowe 2006]
» simple feature learning (fixed Gabor filters + stored templates)

Yann LeCun

t New York University
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Convolutlonal Net: Supervised Multi-Stage Hubel-Wiesel Arch

L 2 Layer 3 Layer 4 Layer >
input Layer | et 12@10x10 g 100@1x1
1@32x32 6@28x28 6@14x14 12@5x5
Layer 6: 10
% .10
/'
5x5 2X2 SXS | convolution
convolution
convolution pooling/ pOOllng/
subsampling subsampling

& Convolutional Net: supervised multi-stage Hubel-Wiesel Architecture

» Convolutional Layers: detect local motifs
» Pooling/Subsampling: builds local invariance to distortions

& Training by supervised gradient descent (using back-propagation)

» Every coefficient of every filter is learned simultaneously
» “end-to-end learning”

& The architecture is biologically inspired, but not the learning algorithm.

Yann LeCun

t New York University



m%

Superyvised Training of Convolutional Network
[ ——— e —————

& End-to-End Supervised Training of Convolutional Nets:

» Gradient-based learning algorithm (similar to back-propagation)
» Every filter at every layer is learned.

& This training method
works very well but it
requires many labeled
training samples.

sl

(] | H
I

& It is the record-holding
method for hand-writing
recognition

o It is used commercially by
NCR for check reading
machines, and Microsoft
for OCR.

al v LEEE?:'{*M===“1HH.¢E

Yann LeCun
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& Supervised Convolutional nets work
very well for:
» handwriting recognition
@ Holds the record on MNIST!
» face detection

» object recognition with few classes
and lots of training samples

]
]

il
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Il
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Deep Supervised ConvNets Work (with lots of labeled data)

M

& On recognition tasks with lots of training samples, deep supervised
architecture outperform shallow architectures in speed and accuracy

& Handwriting Recognition: ConvNets hold the record

» raw MNIST: 0.62% for convolutional nets [Ranzato 07]
» raw MNIST: 1.40% for SVMs [Cortes 92]
» distorted MNIST: 0.40% for conv nets [Simard 03, Ranzato 06]
» distorted MNIST: 0.67% for SVMs [Bordes 07]
& Object Recognition: beats SVMs
» small NORB: 6.0% for conv nets [Huang 05]
» small NORB: 11.6% for SVM [Huang 05]
» big NORB: 7.8% for conv nets [Huang 06]
» big NORB: 43.3% for SVM [Huang 06]

& Face Detection: ConvNets beat Viola-Jones
» [Vaillant 93,94 ][Garcia & Delakis PAMI 05][Osadchy JMLR 07]

Yann LeCun

t New York University
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Face Detection: Results

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 26.9 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun t New York University
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Geneﬂrié\()bject Detection and Recognition

with Invarlance to Pose and Illummatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i@ 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g ;;rzzé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

i on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun

t New York University



‘ extured and Cluttered Datasets

Yann LeCun




Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance




idustrial Applications of ConvNets
e | T —.

@ AT&T/Lucent/NCR
» Check reading, OCR, handwriting recognition (deployed 1996)

& Vidient Inc

» Vidient Inc's “SmartCatch” system deployed in several airports
and facilities around the US for detecting intrusions, tailgating,
and abandoned objects (Vidient is a spin-off of NEC)

& NEC Labs
» Cancer cell detection, automotive applications, kiosks

& Google
» OCR, 777

& Microsoft
» OCR, handwriting recognition, speech detection

& France Telecom
» Face detection, HCI, cell phone-based applications

& Other projects: HRL (3D vision)....

Yann LeCun

t New York University



& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

& Example: Caltech-101 Object Recognition Dataset

» 101 categories of objects (gathered from the web)
» Only 30 training samples per category!

& Recognition rates (OUCH!):

» Supervised ConvNet: 26.0%
» SIFT features + spatial pyramid kernel SVM: 66.2%

@ [Lazebnik et al. 2006]
@ When learning the features, there are simply too many parameters {8

to learn in purely supervised mode (or so we thought). lotus
cellphone

minaret

joshua .

e, S

e e

Yann LeCur;
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@ We need unsupervised learning methods that can
learn invariant feature hierarchies

@ “Deep Belief Networks” strategy [Hinton 20035]

» train each stage unsupervised one after the other.

» Hinton uses Restricted Boltzmann Machines for each
stage.

[Hinton et al. “A fast learning algorithm for DBNs” 06]
[Hinton et al. “Reducing the dimensionality of data with neural nets” 06]
[Bengio et al. “Greedy layer-wise training of deep nets” 07]

[Ranzato et al. “Efficient learning of sparse representations with energy-based models” 07]

[Lee et al. 07]

Yann LeCun

t New York University



“The Deep Encoder/Decoder Architecture

@ Each stage is composed of [Bengio 06, LeCun 06]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ Hinton's Restricted Boltzmann Machines are a special case

& Each stage is trained one after the other in a greedy fashion
» the input to stage k+1 is the feature vector of stage k.

ENCODER ENCODER
INPUT Y LEVEL 1 LEVEL 2

FEATURES FEATURES

Yann LeCun

t New York University



The eepEncoder/Decoder Architecture

T 7 7 SR

@ Each stage is composed of [Hinton 05, Bengio 06, LeCun 06, Ng 07]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ Hinton's Restricted Boltzmann Machines are a special case

& Each stage is trained one after the other
» Training stage 1

RECONSTRUCTION ERROR

DECODER
ENCODER

INPUT Y LEVEL 1

FEATURES

Yann LeCun

t New York University
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_The Deep Encoder/Decoder Architecture
===

@ Each stage is composed of [Hinton 05, Bengio 06, LeCun 06, Ng 07]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ Hinton's Restricted Boltzmann Machines are a special case

& Each stage is trained one after the other
» Training stage 2

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

Trained encoder

of stage 1

Yann LeCun t New York University
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Lraining an Encoder/Decoder Module

& Define the Energy E(Y) as the reconstruction error
» Example: E(Y) = || Y - Decoder(Encoder(Y)) ||?

& Probabilistic Training, given a training set (Y1, Y2.......)

» Interpret the energy E(Y) as a -log P(Y) (unnormalized)
» Train the encoder/decoder to maximize the prob of the data

& Train the encoder/decoder so that:
» E(Y) is small in regions of high data density (good reconstruction)
» E(Y) is large in regions of low data density (bad reconstruction)

E(Y) RECONSTRUCTION ERROR

DECODER
ENCODER
INPUT Y FEATURES Z

Yann LeCun t New York University




& Probabilistic View:

» Produce a probability density
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

& Energy-Based View:

» produce an energy function
E(Y,W) that:

» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun
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Energy <-> Probability

=

E(Y,W) x —log P(Y|W)

- e

[T} Jas

= <
~< ¥ Sl /

Yann LeCun




_The Intractable Normalization Problem
[ —

& Example: Image Patches

& Learning:

» Make the energy of every “natural image” patch low
» Make the energy of everything else high!

AE(Y)

o—BE(Y.W)

P(Yﬁ H-") — fy o—BE(y,W)

Yann LeCun
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Training an Energy-Based Model to Approximate a Density

RN R———— ——————

make this big A P(Y)

—BE(Y,W) A
PY W) = J, e PRI +¢ : ** v

make this small

Maximizing P(YIW) on training samples l

Minimizing -log P(Y,W) on training samples

1
L(Y,W)=E(Y,W)+ Blog / —pEww) | A
Y

“ ! SR
make this small make this big T

Yann LeCun




& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) _OE(Y,W) / . (y|W)8E(y, W)

oW oW oW v
@ Gradient descent: AE(Y)
OL(Y, W) l
AR
Pushes down on the Pulls up on the Y B . >
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P

Yann LeCun




Solving The Intractable Normalization problem

& Probabilistic unsupervised learning is hard

» Pushing up on the energy of every points in regions of low data
density is often impractical.

& Solution 1: contrastive divergence [Hinton 2000]

» Only push up on points that are not to far from the training
samples, and only on those points that have low energy. These
points are obtained from the training samples through MCMC.

» This makes a “groove” in the energy surface around the data
manifold.

& Solution 2: MAIN INSIGHT'! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» |If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» ldea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun

t New York University
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy
» this digs a trench in the energy Y,T >

surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

T

Pulls up on the energy Y'

W —W—n

Pushes down on the energy
of the training sample Y

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy A

» this digs a trench in the energy
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

T

Pulls up on the energy Y'

W —W—n

Pushes down on the energy
of the training sample Y

Yann LeCun
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: The Main Insight [Ranzato et al. 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» |f few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University



N —

e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

INPUT SPACE
®
® ® ®
®
®
° ®
® ®

Yann LeCun

'* hy Limit the Information Content of the Code?

2 ——

FEATURE
SPACE
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- Why Limit the Information Content of the Code?

B—

e Training sample
e Input vector which is NOT a training sample

e FKFeature vector

Training based on minimizing the reconstruction error over
the training set

INPUT SPACE FEATURE
° SPACE —
® ® o . .
o
’ ¢ w = e
® ° ° . . .

Yann LeCun
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‘Why Limit the I
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|

e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
O
O o
O
O
O © O
O O
Yann LeCun
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FEATURE
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_Why Limit the Information Content of the Code?

e Training sample
e Input vector which is NOT a training sample

e FKFeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
([ o @ @
o o
@ @
e ® e ®
([ ([ ([

Yann LeCun
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e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

'* hy Limit the Information Content of the Code?

IDEA: reduce number of available codes.

INPUT SPACE

lllllllllllllllllllllllllllllllllllllll

Yann LeCun
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Why Limit the Information Content of the Code?

[ ——— ——

e Training sample
e Input vector which is NOT a training sample

e FKFeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
@
@
P ———e ®
@ @ @

Yann LeCun

t New York University



& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University



_Sparse Decomposition with Linear Reconstruction

@ Energy(Input,Code) = || Input — Decoder(Code) II* + Sparsity(Code)
& Energy(Input) = Min_over_Code[ Energy(Input,Code) ]

Dbserved Latent
Input Y Decoder Code Z Sparsit

t“%

# . Reconstr. of
. input
: IIY fd(l) Ilf(—<fd(Z) =W,Z

[}
“l

& Energy: minimize to infer Z
E(Y,Z ;W)=Y =W, Z'|[+A Z
F(Y', W) min E(Y L2, W)
@ Loss: minimize to learn W (the columns of W are constrained to have norm 1)
=) F(Y ;W)= (min, E(Y' ,Z';W))

Yann LeCun
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Problem with Sparse Decomposition: It's slow

& Inference: Optimal_Code = Arg_Min_over_Code[ Energy(Input,Code) ]
E(Y,Z ;W)=Y =w,Z|*+a 2. |2
F(Y;W)=min E(Y',z; W)

Z'=argmin E(Y', z; W)

& For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

& This would be very slow for large scale vision tasks
& Also, the optimal Z are very unstable:

» A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University



_Solution: Predictive Sparse Decomposition (PSD)

& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z W)=Y =W, ZIP+1Z' = f,(Y)IF+A 2. |2]
f . (Y')=Dtanh(W,Y)

Prediction of

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
YLD

L)
o
L)

o’h..

Yann LeCun

t New York University



' PSD: Inference

& Inference by gradient descent starting from the encoder output

E(Y,Z W)=Y =w, ZIP+|Z' = f,(Y) P+ a2 |2

Z'=argmin E(Y', z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun
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& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(W)Z Zi F (Yi : W)
F(Y;W)=min E(Y',z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun
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PSD: Learning Algorithm

Prediction of

4 1.(Y) =D tanh(W, Y) I Z-£,(Y) I,
Latent
‘~’ Code Z
Observed s e
I n p u t Y .0'.’ .'00. Re cons t F. Of 1°’. * *
.'t’.' %4,‘ i n p u t ‘o"’+’ ‘..io
> | Y -£{2) I f(Z)=W,Z |- r VA

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

& PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

» Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University
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PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

o 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun
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Classification Error Rate on MNIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder

R 10 Samples 100 Samples 1000 Samples
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Classification Error Rate on MNIST
Mﬁaﬁ‘m

& Supervised Linear Classifier trained on 200 trained sparse features

10 samples 100 samples 1000 samples
[+ FAIN trsin : - ' + : : Raw pixels ' : '
RAW st ' - ' ' : -
4 Ef 10 + . S 5 . . +PCA S
n PCA Irsin B
A PN 3 o L
‘ ® : o i - -
o SN fhal . . .
-4-GEShite Ry ﬂ i e o Sparse
- . 19 ' \ '
o REM: brsin .
4 REH: Ll e # # : Features
- ko R ‘RBM
= fmim O L Lrain é é E : :
T R C m ¥
| Qo B C
i i i {l T TIE TR T, |
C-F T : I
"} !} ul
E g
i L i
. . ) |
L. .
5t . } 1 I
EF’ ) ' '¢I 43 4
v ool P * b
_n L 1 ] :'] L ::!_ 1
Cooelouzoood G U 0E o VR A S T X T TS 1 Y 1T | A T v B ¥ I S 1 R ¥
RMSE AMSE AMSE
Yann LeCun

t New York University



T —— —_— —_——

_Learned Features on natural patches: V1-like receptive fields
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Yann LeCun
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Learned Features: V1-like receptive fields

o 12x12 filters
& 1024 filters

Yann LeCun * New York University
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_How well d PSD features work on Caltech-101?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (lassifier |—»

Bank Linearity| |Pooling

SVM

| oo EEEE )

Yann LeCun

t New York University



_Using PSD Features for Recognition
M&m“

A_._.S_——M

& 96 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

& Recognition:

» Normalized Image -> Learned_Filters -> Rectification ->
Local Normalization -> Spatial Pooling -> PCA -> Linear_Classifier

» What is the effect of rectification and normalization?

welghts §-0,9275 - Q,286888




PSD: Caltech-101 Recognition Rate

[

& Learning 96 Filters with PSD

» Filters->Sigmoid->AvPool->PCA->LIinSVM 16%
» Filters->Sigmoid+Abs->AvPool->PCA->LinSVM 51%
» LCN->Filters->Sigmoid+Abs->AvPool->PCA->LinSVM 56%
» LCN->Filters->Sigm+Abs->LCN->AvPool->PCA->LInSVM 58%

LCN = Local Contrast Normalization (division by std dev of neighbors)
AvPool = Average pooling using boxcar filter and subsampling
PCA = PCA to 3000 components; LinSVM: Linear SVM classifier.

& [Pinto&DiCarlo 2008] V1 model with 96 Gabor Filters (16 orientations, 4
scales) and half rectification

» LCN->G.Filters->Half-Rectif.->LCN->AvPool->PCA->LinSVM
» Caltech-101 recognition rate 59%

& Adding a rectification makes a huge difference: 16 %->51%

» The right features are not the output of the encoder
» The right features are the output of the sparsification function

& Learning the filters with PSD gives the same results as multiscale Gabors

Yann LeCun

t New York University



Comparing Optimal Codes Predicted Codes on Caltech 101
N S R RANNNNNNNNn——————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!
» PSD features are more stable.

53

8 o
— N

Average Accuracy per Class (%)
0
-

49 ............................................................................................................ -e- PSD Predictor H
—©—Regressor
48 ............................................................................................................... _e_ FS
47 ; | —©=PSD Optimal
0 0.05 0.1 0.15

llllll

Sparsity Penalty per Code Unit

0.2

Feature Sign (FS)
1S an optimization
methods for
computing

sparse codes
[Lee...Ng 2006]
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_PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [ e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] ............... ............... R— PLI#) 0000 ............... ______________ L P 000f ............... ______________ ]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University



_PSD features are much cheaper to compute
[ — S-S |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University



_How Many 9x9 PSD features do we need?
[ — -S|

& Accuracy increases slowly past 64 filters.

55
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Tralnlng a Multi-Stage Hubel Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun

t New York University
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.Multistage Hubel-Wiesel Architecture on Caltech-101

& Each architecture has two stages of feature extraction and pooling, plus a
supervised linear classifier on top.

& Convolutional Net: purely supervised training

» Stage: Filters->Tanh->AveragePooling->Tanh
» Architecture: Stage->Stage->LinClassifier 26%

& Convolutional Net: unsupervised training of stages with SESM, and
supervised training of top layer [Ranzato et al. CVPR 07]

» Stage: Filters->Tanh->MaxPooling
» Architecture: Stage->Stage->LinClassifier 54%

& HMAX [Serre 05] -> [Mutch&Lowe 06]

» Fixed Gabors at stage-1, simple learning algo for stage-2 (storing
random templates)

» Stage: MultiscaleFilters->Sigmoid->Scale/Space Pooling

» Architecture: Stage->Stage->LinClassifier 56%

Yann LeCun

t New York University



& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University



_Multistage Hubel-Wiesel Architecture on Caltech-101

& Various non-linearities and training protocols

» R: random
Initialization +
supervised training

» P: PSD training
(frozen)

» A: PSD training +
supervised
adjustment

» Tanh: sigmoid non-
linearity

» Abs:
sigmoid+absolute
value non-linearity

» Cnorm: local
contrast
normalization

Yann LeCun

Id | Accuracy (%) | Protocol | Machine
Traditional ConvNet Architecture
] 26.0% RR Tanh, 64 features
2 30.0% AA Tanh, CNorm, 64 features
With Absolute Value Non-Linearity
3 58.0% RR Abs, 64 features
Abs and Contrast Normalization
4 60.0% RR Abs, CNorm, 64 features
5 62.0% AR Abs, CNorm, 64 features
6 62.9% PP Abs, CNorm, 64 features
7 63.0% PA Abs, CNorm, 64 features
S 67.2% AA Abs, CNorm, 64 features
Smaller net with Abs and CNorm
9 59.8% PP Abs, CNorm, 16 features
10 65.2% AA Abs, CNorm, 16 features

t New York University
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_Multistage Hubel-Wiesel Architecture on Caltech-101

& Our Best result is 67.2 %

» comparable to the 66% of [Lazebnik 2006], obtained with SIFT
features, VQ, and an SVM with spatial pyramid matching kernel.

» Comparable to the 67.2% of [Ahmad, Yu et al 2008], which was a
ConvNet trained with a “pseudo-task” with extra output produced
by an HMAX-like model.

» The result is below [Varma 2007] which uses a large number of
hand-designed features and a learned linear combination of kernels.

& Our system is considerably cheaper/faster, and simpler
» Smaller net with only 16 features at stage-1 yield 65.2%.

& The crucial ingredient seems to be the absolute value rectification

» A purely supervised system with rectification and contrast
normalization yields 60%, despite the enormous number of
parameters compared to the number of training samples!

& Global supervised refinement is essential
» The 2" stage features need supervised refinement.

Yann LeCun

t New York University
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Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University



_Learning Invariant Features [ Kavukcuoglu et al. CYPR 2009]

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

,
LA

Prediction of
cod
»1f(Y)=D MWP" Z- 1Y) I, >
Latent
. e oD Y
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Yann LeCun
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. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)
» 1. Apply filters on a patch (with suitable non-linearity)
» 2. Arrange filter outputs on a 2D plane
» 3. square filter outputs
» 4. minimize sqgrt of sum of blocks of squared filter outputs

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

[

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
o NN\, N\ \Window
S ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z  Define pools and enforce sparsity across
Yann LeCun pOOlS

t New York University
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Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input IH

» For some it's translations,
for others rotations, or
other transformations.

Yann LeCun

t New York University
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Pinwheels?
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.Invariance Properties Compared to SIFT
| — . EE—————————————————wr

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images

» Left: normalized distance as a function of translation

» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT
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& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun
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Recognition Accuracy on Caltech 101 |

» A/B Comparison with SIFT (128x34x34 descriptors)

» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling

» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature
maps)

» Resulting feature maps are spatially smoothed

Method Avrge Accuracy/Class (%)
classifier: PCA + linear SVM

Proposed Method 50.9

SIFT (not rotation invariant) 51.2

SIFT (rotation invariant) 45.2

Serre et al. features [20] 47.1

classifier: Spatial Pyramid Matching Kernel SVM

Proposed Method

59.6

SIFT

65

Yann LeCun

t New York University
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_CNP: FPGA Implementation of ConvNets

h———ﬁ““_‘l = R —————— |

& Implementation on low-end Xilinx FPGA

» Xilinx Spartan3A-DSP: 250MHz, 126 multipliers.
» Face detector ConvNet at 640x480: 5e8 connections
» 8fps with 200MHz clock: 4Gcps effective

@ Prototype runs at lower speed b/c of narrow memory bus on dev board
» Very lightweight, very low power
@ Custom board the size of a matchbox (4 chips: FPGA + 3 RAM chips)
¢ good for micro UAVs vision-based navigation.
» High-End FPGA could deliver very high speed: 1024 multipliers at
500MHz: 500Gcps peak pertf.

Yann LeCun

t New York University



_CNP Architecture

Computer
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Systolic Convolver: 7x7 kernel in 1 clock cycle

Pix In

CO Co
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Yann LeCun
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& Soft CPU used as micro-sequencer
» Micro-program is a C program on soft CPU

& 16x16 fixed-point multipliers
» Weights on 16 bits, neuron states on 8 bits.

& Instruction set includes:

» Convolve X with kernel K result in Y, with sub-sampling ratio S
» Sigmoid Xto Y

» Multiply/Divide X by Y (for contrast normalization)

& Microcode generated automatically from network description in Lush

Entity Occupancy

[/Os 135 out of 469 28%
DCMs 2 out of 8 25%
Mult/Accs 56 out of 126 44%
Bloc Rams 100 out of 126 84 %
Slices 16790 out of 23872 T10%

Yann LeCun

t New York University



Convolutions Subsampling Convolutions Subsampling Convolutions Full connections

)

7
2@70x50 187050
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L

Input Image
320x240

Layer kernels layer size s+ 80870550
Input image 1@42 x 42

C1 (Conv) [6@QT x T] 6@36 x 36

S2 (Pool) [6@2 x 2] 6@18 x 18

C3 (Conv) [61QT x 7] 16@12 x 12

S4 (Pool) [16@2 x 2] 16@6 x 6

C5 (Conv) [305@6 x 6] 80@l x 1
F6 (Dotp) [160@1 x 1] 2@1 x 1

Yann LeCun

t New York University



Results

& Clock speed limited by low memory bandwidth on the development board

» Dev board uses a single DDR with 32 bit bus
» Custom board will use 128 bit memory bus

& Currently uses a single 7x7 convolver
» We have space for 2, but the memory bandwidth limits us

& Current Implementation: Sfps at 512x384

& Custom board will yield 30fps at 640x480
» 4e10 connections per second peak.

Yann LeCun

t New York University



: Results
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| FPGA Custom Board: NYU ConvNet Proc

M—m‘“_‘l =

&@ Xilinx Virtex 4 FPGA, 8x5 cm board

» Dual camera port, expansion and I/O port
» Dual QDR RAM for fast memory bandwidth
» MicroSD port for easy configuration

» DVI output

» Serial communication to optional host

Yann LeCun

t New York University



DARPA/LAGR: Learning Applied to Ground Robotics

RN, S S = =

i@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

@ Our team (NYU/Net-Scale Technologies

Inc.) was one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

i@ Long-Range Obstacle Detection with on-
line, self-trained ConvNet

i Uses temporal consistency!

Yann LeCun

t New York University



Long Range Vision: Distance Normalization

e Ground plane estimation

e Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 92

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net@SCALE Page 93

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

VOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUV input

net(®)SCALE o oo

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 95

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. NN EELEF
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 96 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision: the Classitier

Online Learning (52 ms)

e Train a logistic regression on every frame, with cross entropy loss function

D _(RIY) Minimize 4 5 categories are learned
L
A o 4 750 samples of each class
Y=FWX): 5x1 T are kept in a ring buffer:
short term memory.
Logistic
Regression W 4 Learning “snaps” to new
Weights environment in about 10
frames
X: 100x1
4 Weights are trained with
Feature Extractor (CNN) stochastic gradient descent
T 4 Regularization by decay to
R: 5x1 default weights
Pyramid Window Input: Label from Stereo
3x12x25
QSCALE Page 97 NEW YORK UNIVERSITY

Technologies, Inc.



Long Range Vision Results
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“Inputimage &

net@SCALE Page 98

Technologies, Inc.
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Long Range Vision Results
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Long Range Vision Results

Stereo Labels Classifier Output

Inputimage. - - ~ Stereolabels -  Classifier Oulput

net(SCALE



net(3>)SCALE

Technologies, Inc.




» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
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M Bumper/Stuck
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Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
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Traversible 15m

Uncertain
10m
Quasi-Lethal
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Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)
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FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map
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+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map
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“Another way to Learn Deep Invariant Features: DrLLIM
| —— - = — n— - .

Hadsell, Chopra, LeCun CVPR 06], also [Weston & Collobert ICML 08 for language models]

@ Loss function: Make this small Make this large

» Outputs )4@ — 46 —
corresponding to ST
iInput samples
that are A A A A
neighbors in the
neigborhood
graph should be , ?
nearby

» Qutputs for input
samples that are

not neighbors ,-f.

should be far
away from each

other Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors in the
neighborhood graph)
Yann LeCun
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Learning Deep Invariant Features with DrLIM
[

& Uses temporal consistency X _ 1
» Pull together outputs for same patch ....

» Push away outputs for different patches

& Co-location patch data

@ multiple tourist photos
@ 3d reconstruction
@ groundtruth matches

Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Output
64x64 > —> —> —> —> —>
6x60x60 6x20x20 21x15x15 21x5x5 95x1x1 25x1x1

/

e Q Q AL
) U S U 5 %
< o < o <

o o O o o 3
= a = a = >
o o) o CDD
> > > o
(Vp] w ()] —

Yann LeCun data from: Winder and Brown, CVPR 07

t New York University
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Feature Learning for traversability prediction (LAGR)

[ —
Comparing
- purely supervised
- stacked, invariant auto-encoders
- DrLIM invariant learning

Testing on hand-labeled groundtruth frames — binary labe |
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