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. The Challenges of Machine Learning

& How can we use learning to progress towards AI?

» Can we find learning methods that scale?

» Can we find learning methods that solve really complex
problems end-to-end, such as vision, natural language,
speech....?

& How can we learn the structure of the world?

» How can we build/learn internal representations of the
world that allow us to discover its hidden structure?

» How can we learn internal representations that capture
the relevant information and eliminates irrelevant
variabilities?

» How can a human or a machine learn those
representations by just looking at the world?

Yann LeCun * New York University
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_Challenges of Artificial Perception (& Neuroscience)
[ — S ———————— |

& How do we learn “invariant representations”?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

& How can we learn visual categories from just a few examples?

. | i .
» I don't need to see many airplanes before I can |
recognize every airplane (even really weird ones)

- ~i
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_What is Intelligence? |

& Most wetware cycles in higher animals are devoted to perception, and most
of the rest to motor control.

» 20% of our brain does vision

& Intelligence includes the ability to derive complex behavior from massive
amounts of sensory information.

» Intelligence requires making sense complex sensor input (including
proprioception).
& Intelligence is modeling, prediction, and evaluation

» The more intelligent the organism, the better it can predict the
world, predict the consequences of its actions (including rewards),
and pick the “best” action.

& How can an intelligent agent learn to predict the world?

» Not the whole world, only the part of the world which is relevant to
the purpose of its existence, including its own actions.

Yann LeCun
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- What is Intelligence? |

& In the past we thought that intelligence was what smart humans could do
» Speech, logical reasoning, playing chess, computing integrals.....

& But those things turned out to be pretty simple computationally

» It turns out that the complicated things are perception, intuition and
common sense

» Things that even a mouse can do much better than any existing
robot.
& What about rat-level intelligence?
» We will achieve rat-level intelligence before we achieve human-level,
so let's work on rat-leve intelligence
o It is likely that intelligent agents cannot be “intelligently designed” ;-)

» They have to build themselves through learning (or evolution)
» How much prior structure is required?
» The more intelligent, the less prior structure.

Yann LeCun

t New York University



. Where are we now?

& We are still quite far from rat-level intelligence

» We don't really have robots that can run around without bumping
into things or falling into ditches using vision only.

» We know that the methods currently being developed are hacks.

& Most NIPS/ICML papers do not take us any closer to rat-level intelligence
» In fact, some of them take us backward.

& What problems should we work on, what type of new methods should we
develop?

& Which methods currently being worked on the community, while being
valuable, will not take us to rat-level intelligence?

» How do we avoid the trap of building ever so taller ladders when our
goal is to reach the Moon?

Yann LeCun
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Questions?
RO —————————TTT

& Is there a magic bullet?
» Is there a general principle for learning/Al, or is it just a bunch of
tricks? (see Gary Marcus's book “Kluge”).

» Is there a universal learning algorithm/architecture which, given a
small amount of appropriate prior structure, can produce
intelligent agents?

» Or do we need to accumulate a large repertoire of "modules” to
solve each specific problem an intelligent agent must solve. How
would we assemble those modules?

& Let's face it, our only working example uses neurons.
» Does that mean rat-level intelligence will be achieved with
simulated neurons?
» Airplanes don't flap their wings

» Yes, but they exploit the same aerodynamical properties as birds
(and they are not as efficient at it)

» What is the analog of aerodynamics for intelligence?

Yann LeCun
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_Questions?
[

& Every reasonable learning algorithm we know minimizes some sort of
loss function?

» Does the brain minimize a loss function?
» If yes, what is it, and how does it do it?
» Is there any other way to build learning systems?

& If we accept the loss function hypothesis:

» Can the loss function possibly be convex?
» How is it parameterized?

¢ What is the architecture?
» How is it minimized

¢ direct solution (like quadratic problems),

¢ gradient-based iterative procedures

@ perturbation/trial and error

¢ all of the above?

Yann LeCun
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& Learning
» Supervised, unsupervised, reinforcement

& Efficient reasoning with large numbers of variables
» e.g. For image segmentation/labeling...

& Very fast inference for high-dimensional complex tasks

» People and animal can recognize common visual categories in less
than 100ms. There is no time for complex
reasoning/relaxation/inference.

& Emotions
» Emotion, in the restricted sense of reward prediction.

Yann LeCun
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.What Do We Need?

& Learning algorithms that scale

» Sub-linearly with the number of training samples
» Not much more than linearly with the size of the learning system
» Non-exponentially with the size of the action space and state space

@ “Deep” Learning

» Intelligent inference requires lots of elementary decisions (non-
linear steps):
¢ pixels->low-level feature->high-level features->categories
¢ Global goal->macro-action sequence->action sequence->motor commands

& A framework with which to build large-scale ‘“‘deep” learning machines
with millions of parameters

» A framework that allows us to specify prior knowledge

& How little prior knowledge can we get away with?

Yann LeCun
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_ Vhat classes of methods will NOT take us there?
R RRRRRRRRREOOR—N——————TTT

& Template matching

» Fast nearest-neighbor methods, kernel methods, and other
“glorified template matching methods” are very useful, but they
won't take us there.

& “‘Shallow” learning

» Linear combinations of fixed basis functions won't take us there

» Examples: SVM, generalized linear models, boosting with simple
weak learners, Gaussian processes..... Those methods are useful,
just not for our purpose

» Shallow architectures are inefficient: most complex functions are
more efficiently implemented with many layers of non-linear
decisions

» We need “hierarchical” models that learn high-level representations
from low-level perceptions, features, macro features.....

Yann LeCun * New York University
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“What classes of methods will NOT take us there?

R RO

& Convex Optimization with a practical number of variables

» If intelligence could be reduced to convex optimization, the order in
which we learn things would not matter: we would go to the same
minimum no matter what.

& Purely generative methods, purely supervised methods, purely
unsupervised methods.

& Fully probabilistic methods

» Because we can't normalize complicated distributions in high
dimension

& Purely discriminative methods

» Because not everything comes down to classification
» We need to model the world

Yann LeCun * New York University




“What problems should we solve?
R RO ——————

& Integrating reasoning with learning
» Graphical models (factor graphs in particular) are a good avenue,
but we need to free ourselves from the “partition function problem”

» How do we build non-probabilistic factor graphs that can be trained
in supervised, unsupervised, and reinforcement mode.

& Invariant Representations

» How do we learn complex invariances in vision?

» We can pre-engineer some of it, but ultimately, we need a scheme
to learn features and invariant representation automatically.

» Optimization algorithms (learning) will become better at this than
human engineer. It is already the case for handwriting recognition
systems and speech recognition systems.

Yann LeCun * New York University




What problems should we solve?

M

& Deep learning
» Ultimately, we need to think again about learning in deep
structures with many layers on non-linear decisions.
» We have partial solutions that are not entirely satisfactory

» Pure back-prop can't handle more than a few layers and is very
inefficient for unsupervised learning

» Probabilistic belief nets have some of the right ingredients (e.g.
Boltzmann machines-like algorithms), but they are plagued by the
“partition function problem”: learning involves estimating
intractable integrals.

Yann LeCun
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. What Project should we work on?

& Vision
» Generic object recognition, object detection, and such are some of
the most challenging perceptual tasks for learning

» We can make progress with clever as-hoc preprocessing combined
with simple (linear) learning methods or generative models, but
ultimately, good performance will be achieved when we come up
with efficient “"deep” learning algorithms that can learn the whole
task end-to-end (with the minimum amount of prior knowledge)

& Robotics
» The best way to integrate perception, action, and reinforcement.

Yann LeCun * New York University
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_The visual system is ‘“‘deep” and learned
RO ER—N—————~—TT

& The primate's visual system is ‘“‘deep”’
» It has 10-20 layers of neurons from the retina to the infero-
temporal cortex (where object categories are encoded).
» How does it train itself by just looking at the world?.

& Is there a magic bullet for visual learning?

» The neo-cortex is pretty much the same all over

» The “learning algorithm” it implements is not specific to a
modality (what works for vision works for audition)

» There is evidence that everything is learned, down to low-
level feature detectors in V1

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we have to keep accumulating a large repertoire of
pre-engineered "modules” to solve every specific problem an
intelligent vision system must solve?

Yann LeCun
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Can we learn everything end-to-end?

& There are simple situations where we have been able to demonstrate
end-to-end learning in vision.
» Learning to recognize handwritten words from pixels to labels

with no preprocessing and minimal prior knowledge (NIPS
1990-1998)

» Learning to detect faces (NIPS 2004)

» Learning to detect and recognize generic object categories from
raw pixels to labels (CVPR 2003)

» Training a robot to avoid obstacles from raw left/right image
pairs to steering angles (NIPS 2005)

Yann LeCun
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. Two Big Problems in Machine Learning and Computer Vision

& 2. The “Deep Learning Problem”
» Training “"Deep Belief Networks” is a necessary step towards solving
the invariance problem in vision (and perception in general).
» How do we train deep architectures with lots of non-linear stages?

& 1. The “Intractable Partition Function Problem”

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

» The normalization constant of probabilistic models is a sum over too
many terms.

Yann LeCun
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Plan

& 1. Deep Supervised Learning, Gradient-Based Learning

» Simple gradient-based learning
» Learning invariant feature hierarchies for visual recognition
» Convolutional networks

& 2. Energy-Based Models. Structured Output Models.

» Circumventing the “Intractable Partition Function Problem”
» Discriminative learning for structure output models

» Energy-Based factor graphs

» CRF, Max Margin Markov nets, Graph Transformer Networks

& 3. EBM for Manifold Learning and Feature Extraction

» Learning Similarity Metrics
» Neighborhood Component Analysis, DrLIM

& 4. Deep Unsupervised Learning

» Unsupervised learning: the Energy-Based approach.
» Restricted Boltzmann Machines, Contrastive Divergence.
» Sparse feature models.

Yann LeCun
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Deep Supervised Learning for Vision:

The Convolutional Network Architecture

& Convolutional Networks:

» [LeCun et al., Neural Computation, 1988]
» [LeCun et al., Proc IEEE 1998]

& Face Detection and pose estimation with convolutional networks:

» [Vaillant, Monrocq, LeCun, IEE Proc Vision, Image and Signal
Processing, 1994]

» [Osadchy, Miller, LeCun, JMLR vol 8, May 2007]

& Category-level object recognition with invariance to pose and lighting

» [LeCun, Huang, Bottou, CVPR 2004]
» [Huang, LeCun, CVPR 2005]

& autonomous robot driving
» [LeCun et al. NIPS 2005]

Yann LeCun
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_The Traditional Architecture for Recognition

R ———————-— |

Pre-processing / , .
—| Trainable Classifier |—%

Feature Extraction

this part 1s mostly hand-crafted

& The raw input is pre-processed through a hand-crafted feature extractor

& The trainable classifier is often generic (task independent)

Yann LeCun * New York University
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_End-to-End Learning

trainable . o
, —»| trainable classifier |1+
Feature Extraction

& The entire system is integrated and trainable “‘end-to-end”.

& In some of the models presented here, there will be no discernible
difference between the feature extractor and the classifier.

& We can embed general prior knowledge about images into the
architecture of the system.

Yann LeCun

t New York University



“Deep” Learning: Learning Internal Representations

B . i_

Trainable Trainable ,
Trainable
Feature |— - —»| Feature | e
Classifier
Extractor Extractor

Learned Internal Representation

& Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to
object identities

Yann LeCun
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& We can approximate any function as close as we want with shallow
architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa
& Deep learning machines
K K-—1 0
y=FWE FWELF(.FW.X)..)))

& Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less
“hardware”

& We need an efficient parameterization of the class of functions that
we need to build intelligent machines (the “Al-set”)

Yann LeCun
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_Why should Deep Architectures be more Efficient?

M

& A deep architecture trades space for time

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”N).....

Yann LeCun
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Strategies (after Hinton 2007)

& Defeatism: since no good parameterization of the *“Al-set” is available,
let's parameterize a much smaller set for each specific task through
careful engineering (preprocessing, kernel....).

& Denial: kernel machines can approximate anything we want, and the VC-
bounds guarantee generalization. Why would we need anything else?
» unfortunately, kernel machines with common kernels can only
represent a tiny subset of functions efficiently

& Optimism: Let's look for learning models that can be applied to the
largest possible subset of the Al-set, while requiring the smallest amount
of task-specific knowledge for each task.

» There is a parameterization of the Al-set with neurons.

» Is there an efficient parameterization of the Al-set with computer
technology?

& Today, the ML community oscillates between defeatism and denial.

Yann LeCun
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Back-propagation: deep supervised gradient-based learning

M‘-ﬁ-—a‘._.p — = ¥‘_‘mﬂM
To compute all the derivatives, we use a backward sweep called the back-propagation
algorithm that uses the recurrence equation for gf

Energy
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Y. LeCun: Machine Leaming and Pattern Recognition — p. 12/1
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Any Architecture works

M‘_&m&‘,‘,

& Any connection is permissible

» Networks with loops must be
“unfolded in time”.

‘ ‘ & Any module is permissible

T _L » As long as it is continuous and
differentiable almost everywhere
with respect to the parameters, and
with respect to non-terminal inputs.

Yann LeCun
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‘ Deep Supervised Learning is Hard

& Example: what is the loss function for the simplest 2-layer neural net ever

» Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

y = tanh(W; tanh(Wy.z)) L = (0.5 — tanh(WW; tanh(W00.5)2

“impigraspdotier- 1 7 6C-TTetdan”
2
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Deep Supervised Learning is Hard

& The loss surface is non-convex, ill-conditioned, has saddle points, has
flat spots.....

& For large networks, it will be horrible!

& Back-prop doesn't work well with networks that are tall and skinny.
» Lots of layers with few hidden units.

& Back-prop works fine with short and fat networks

» But over-parameterization becomes a problem without
regularization

» Short and fat nets with fixed first layers aren't very different
from SVMs.

& For reasons that are not well understood theoretically, back-prop
works well when they are highly structured

» e.g. convolutional networks.

Yann LeCun
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “"pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun

t New York University



_The Multistage Hubel-Wiesel Architecture |

[ — R ——————— |

m =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

@ neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]

L} ] q
i
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E?ﬂh'

& QUESTION: How do we
find (or learn) the filters?

..
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tion from Biology: Convolutional Networ

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i dense features: features detectors applied everywhere (no interest point)
i@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun
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Convolutional Net Architecture

=

mﬁiiiij,, P

Layer 3 Layer 5

Layer 4
input Layer 1 Layer 2 peloxklo 20T jo0@ixl

1@32x32 6@28x28 6@14x14 12@5x%5

Layer 6: 10
- 10
2x2 5x5 2x2

/' .
5X3 , convolution
convolution pooling/ convolution pooling/

subsampling subsampling

i@ Convolutional net for handwriting recognition (400,000 synapses)

i@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

i@ Supervised gradient-descent learning using back-propagation

ig@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun
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Results on MNIST Handwritten Digits
[ EEERRERRRRRREEROOOENOEREEA=N=—™=™™=—™=—IT—

CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU

3-layer NN, 500+150 HU
3-layer NN, 500+150 HU
3-layer NN, 5004300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Conv. net LeNet-5,

Boosted LeNet-4

Conv. net, CE

Comv net, CE

Yann LeCun

DEFORMATION PREPROCESSING

Affine

Affine

Affine

Affine
Elastic
Elastic

Affine
Affine
Affine
Elastic

none
deskewing

deskewing

none

deskewing

deskew, clean, blur
deskew, clean, blur
shape context feature
none

none

subsamp 16x16 pixels
none

deskewing

deskewing

none

none

deskewing

none

none

deskewing

none

none

none

none

none

none

none

subsamp 16x16 pixels
none

none

none

none

none

none

ERROR (%)
12.00
8.40
7.60
3.09
2.40
1.80
1.22
0.63
3.30
3.60
1.10
1.40
1.10
1.00
0.80
0.68
0.56
4.70
3.60
1.60
2.95
2.45
1.53
1.60
1.10
0.90
0.70
1.70
1.10
0.95
0.80
0.70
0.60
0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. IEEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, ML 2002
DeCoste and Scholkopf, ML) 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
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- Some Results on MNIST (from raw images: no preprocessing)

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 040  Simard et al., ICDAR 2003

Note: some groups have obtained good results with various amounts of preprocessing
such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf])

hand-designed feature representations (e.g. 0.63% with “shape context” and nearest neighbor [Belongie]

Yann LeCun * New York University
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‘ Recognizing Multiple Characters with Replicated Nets
|
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Handwriting Recognition
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Face Detection and Pose Estimation with Convolutional Nets
Ms - IS S — -

& Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness
and contrast.

& 2" phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
_'“:==—--_—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling  connection
Canvalutions Convolutions
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Face Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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plying a ConVNeta\Sliding Winfd;\—vs is Very Cheap! .

=

=
m&};;;; .

S =

output: 3x3

96x96

input: 120x120

@ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

i@ Convolutional nets can replicated over large images very
cheaply.
@ The network is applied to multiple scales spaced by 1.5.

Yann LeCun

t New York University



Replicated Convolutional Nets

SS==——==—=————

i@ Computational cost for replicated convolutional net:
il 96x96 -> 4.6 million multiply-accumulate operations
il 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
i 480x480 -> 232 million multiply-accumulate operations

i@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

il 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
il 480x480 -> 5,083 million multiply-accumulate operations

<— 96x96 window
< ]2 pixel shift

84x84 overlap




Geneﬂrié\()bject Detection and Recognition

with Invarlance to Pose and Illummatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i@ 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g ;;rzzé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

i on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University




Data Collection, Sample Generation
| SR

Image capture setup

Objects are painted green so that:
- all features other than shape are removed
- objects can be segmented, transformed,

and composited onto various backgrounds

Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University



‘ extured and Cluttered Datasets
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New York University

First 60 eigenvectors (EigenToys)E

Representations
= 1024
=95

| -
o2
| L2
£
ot
=

1

d-Un

| VAS

Normal

-

Experimen

i@ 1 - Raw Stereo Input: 2 images 96x96 pixels input dim. = 18432
i@ 2 - Raw Monocular Input:1 image, 96x96 pixels input dim. = 9216
i@ 4 - PCA-95 (EigenToys): First 95 Principal Components input dim.

i 3 — Subsampled Mono Input: 1 image, 32x32 pixels input dim




-
Convolutlonal Network

L 3
ayet Layer 6
24@18x18 Layer 4
Stereo Layer 1 2A@6x6 Layer 5 Flllly
input 8@92x92 Layer 2 100 connected
2@96x96 8@23x23 (500 weights)

/v

6x6
5x5 4x4

' convolution 3x3
convolution subsampling ) convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

i@ 90,857 free parameters, 3,901,162 connections.

ial The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun * New York University



F@@ , \1- f _E. -- 'animal
Alternated Convolutions and Subsampling & S it T
3 R I ————— A ":-, Eag.plane
x mm .tr‘uck

ff, !

“Simple cells” L =l

“Complex cells” E;E

: am

o g

O

o

_ S

Averaging LLE

Multiple subsampling L)

convolutions EE

i@ Local features are extracted
everywhere.

E A

Foom= 0.6, Thres=-1.0, f on , 05=40, mv

=
r
=
H
s o

i@ averaging/subsampling layer
builds robustness to variations in
feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'02,....

A N

Yann LeCun



Normalized-Uniform Set: Error Rates

B

el o’ e =

@ Linear Classifier on raw stereo images: 30.2% error.
@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
@ Pairwise SVM on 96x96 stereo images: 11.6 % error
@ Pairwise SVM on 95 Principal Components: 13.3% error.

@@ Convolutional Net on 96x96 stereo images: 5.8 % error.

-k g =g g D
s+ 3 61358 &%
20 eI S S PR
C e COC R PV S

Training instances Test instances
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_Ndrmalized-Uniform Set: Learning Times

wjlil; NE—
SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



@ Jittered-Cluttered Dataset:
i@ 291,600 tereo pairs for training, 58,320 for testing

i Obijects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

- 291 600 training samples, 58 320 test samples

& SVM with Gaussian kernel 43.3% error
i Convolutional Net with binocular input: 7.8% error
& Convolutional Net + SVM on top: 5.9% error
@ Convolutional Net with monocular input: 20.8% error
& Smaller mono net (DEMO): 26.0% error

@ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

t New York University



\J ittered-Cluttered Dataset

e ==

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
C'=40 C=1
oU CH!/ The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

don't seem to help it works!

Yann LeCun




What's h K-NN and SVMs?

m&‘xii, e,

i Both are “shallow” architectures

@ K-NN and SVM with Gaussian kernels are based on matching global templates

i@ There is now way to learn invariant recognition tasks with such naive architectures
(unless we use an impractically large number of templates).

i@ The number of necessary templates grows
exponentially with the number of dimensions
of variations.

i@ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background
texture, background clutter, .....

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




Examples (Monocular Mode)
\77 S N

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal

i3
1
1

human

human

upla“e

plane

truck truck

car

car
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Learned Features
m‘ e e
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Examples (Mi)i;:lﬁ;ﬁ(ﬁ) 7
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xamples (Monocular Mode)
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Examples (Monocular Mode)
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Examples (Monocular Mode)
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Examples (Monocular Mode)

=SS . =

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University
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Examples (Monocular Mode)

khkk}

Foom= 0.7, Threshold= -1.8, filter on

Yann LeCun * New York University
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Thrs= 0.5, f on , 05=40, nwin=23616

animal

hunan

plane

truck
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Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance




‘Supervised Convolutional Nets: Pros and Cons

R R
& Convolutional nets can be trained to perform a wide variety of visual
tasks.
» Global supervised gradient descent can produce parsimonious
architectures
& BUT: they require lots of labeled training samples

» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition

& Since low-level features tend to be non task specific, we should be able to
learn them unsupervised.

& Hinton has shown that layer-by-layer unsupervised ‘‘pre-training”’ can be
used to initialize ‘““deep” architectures
» [Hinton & Shalakhutdinov, Science 2006]

& Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun * New York University
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vModels Similar to ConvNets

m‘z;—h

& HMAX

» [Poggio &
Riesenhuber
2003]

» [Serre et al.
2007]

» [Mutch and Low
CVPR 2006]

< Difference?
» the features are

small Scale

Large Scale
not learned
. Input Image 51 (o 52 c2
' HMAX 1S Very gray-value Apply battery of Gabor Lacal maximum over Filter (L2 RBF) with N previously The C2 values
filters. Here we see position and scale. seen patches {Pi | i=1.NL These are computed by
° ° filtration at 8 scales and patches are in C1 format. Each taking a max
Slmllal' tO 4 arientations (c olor orientation in the patch is matched | overall 52
. , indicates arientation), to the corresponding arientation in | associated with
m The full model uses 16 C1. The result is one image per C1 | a given patch.
FUkuShl a S scales, band per patch. Thus, the C2
° response has
Neocognitron A s |eonn

[from Serre et al. 2007]

Yann LeCun * New York University
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