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"Two Big Problems in Machine Learning
RO

& 1. The “Deep Learning Problem”
» "Deep” architectures are necessary to solve the invariance problem
in vision (and perception in general)
& 2. The “Partition Function Problem”

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

& This tutorial discusses problem #2

» The partition function problem arises with probabilistic approaches
» Non-probabilistic approaches may allow us to get around it.

& Energy-Based Learning provides a framework in which to describe
probabilistic and non-probabilistic approaches to learning

& Paper: LeCun et al. : ‘A tutorial on energy-based learning”’

» http://yann.lecun.com/exdb/publis
» http://www.cs.nyu.edu/~yann/research/ebm
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_Plan of the Tutorial

& Introduction to Energy-Based Models

» Energy-Based inference
» Examples of architectures and applications, structured outputs

& Training Energy-Based Models

» Designing a loss function. Examples of loss functions
» Which loss functions work, and which ones don't work
» Getting around the partition function problem with EB learning

& 2. Architectures for Structured Outputs

» Energy-Based Graphical Models (non-probabilistic factor graphs)
» Latent variable models

» Linear factors: Conditional Random Fields and Maximum Margin
Markov Nets

» Gradient-based learning with non-linear factors

& Applications: supervised and unsupervised learning

» Integrated segmentation/recognition in vision, speech, and OCR.
» Invariant feature learning, manifold learning

Yann LeCun * New York University
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Energy-Based Model for Decision-M’ai{;lg

=SS . =

Human

Animal ] @ Model: Measures the compatibility
Airplane T | between an observed variable X and
Car NN ] a variable to be predicted Y through
Lcic | M. an energy function E(Y,X).

1‘ E(Y, X)
E Function E(Y, X * :
nergy Function E(Y, X) Y' = argmlnYEyE(Ya X)
T T i@ Inference: Search for the Y that
X Y minimizes the energy within a set y
Observed variables Variables to be If th has dinali
(input) predicted i If the set has low cardinality, we can
(answer) use exhaustive search.
Human
Animal
Airplane
Car
Truck
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Complex Tasks: Inference is non-trivial

S . ==

! T T

B(Y, X) [ B(Y, X) ] [ B(Y, X) l“Whe“ .

A A | cardinality or
YT YT dimension of Y
1064 105,62 10862 3425 0370-004) is large,

e exhaustive
search is
impractical.

@) () © ial We need to use a
T T T “smart”
E(Y, X) E(Y, X) inference
| ‘ | | procedure: min-
X T YT X T YT sum, Viterbi, .....

! h LS "this" "This is easy"  (pronoun verb adj)

(d) (e) (®)
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What Questions Can a Model Answer?

& 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:
»"Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3. Detection:

» *Is this value of Y compatible with X"?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

& 4. Conditional Density Estimation:
» “"What is the conditional distribution P(Y|X)?”
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun * New York University



; Decision-M ling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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. Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W € W}
@ Training set 8 - {(X?*!Y?*) - l-...P}

@ Loss functional / Loss function  L(FE, S) L(W,S)
» Measures the quality of an energy function

@ Training W* = min L(W,S).
] Wwew
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
L(E,S) =5 ) LIV, EW,Y,X") + R(W).
1=1 / \
| Energy surface Regularizer
Per-sample Desired  for a given Xi
loss answer as Y varies
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Designing a L.oss Functional
[

Human T |—F Human T ]
Animal BT |3+ After Animal B
Airplane I =%  (raining  Airplane "]

Car ] =* P Car HEEEET |
Truck T 1—F Truck T ]
> >
PV Y v Y\
A A
push down
0 NJ\L After S
%ﬁ i training %:n
= | S
= =
- -~ - - — -
Y* Y* Y* Y*
Answer (V) Answer (V)

& Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
[

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

& Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they
are smaller than the correct one

Yann LeCun t New York University



Architecture + Inference Algo + Loss Function = Model

E(W.,Y.X) i@ 1. Design an architecture: a particular form for E(W,Y,X).

* @ 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
gradient descent, MCMC, HMC.....

i 3. Pick a loss function: in such a way that minimizing it
with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

W%

!

@ 4. Pick an optimization method.

=~ —P>

& PROBLEM: What loss functions will make the machine approach
the desired behavior?

Yann LeCun t New York University



Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

& Both surfaces compute Y=X"2
& MINy E(Y,X) = X*2

& Minimum-energy inference gives us the same answer

Yann LeCun t New York University



D(Gw(X),Y) ] [ -Y Gy (X) ] -
. n v $ ¢ !
f f !
go g1 g2 |
Gw(X) ] [ Gw(X) ] [ Gw (X) ] I
|
A A A |
|
X Y X Y X Y
@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),

Yann LeCun t New York University



E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

& The Implicit Regression architecture
» allows multiple answers to have low [IIG’1W (X) — Gan, (Y)Hl]
energy. i -

» Encodes a constraint between X and 1‘ T
Y rather than an explicit functional ( ) [
relationship Gy, (X) Gy, (Y)

» This is useful for many applications

» Example: sentence completion: “The 1u 1;
cat ate the | |
{mouse,bird,homework,...}"” P o

» [Bengio et al. 2003]

» But, inference may be difficult.

Yann LeCun * New York University
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Examples of Loss Functions: Energy Loss
I ————

@ Energy Loss  Lepergy (Y, E(W, Y, X")) = E(W,Y", X").

» Simply pushes down on the energy of the correct answer
&

[| Net(X) - Net(Y) ||L1

%

ergy
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy

A f \ \

Neural Net ( input X X output Y )
(zgr:'jin%éien (b) (5\\.\.‘
A &
CHED &
(a) CJO
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer

» Pulls up on the energy of the machine's answer

» Always positive. Zero when answer is correct

» No "margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun t New York University
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y, X)=-YGw(X),

@ Inference: Y™ = argminy ;13 — YGw (X) = sign(Gw (X)).

P
1 . i 7 )
@ Loss: L"perceptron(vva S) — F Z (Slgn(GW (X )) -Y ) Gw (X )
i=1
. . L O0Gw (X!
& Learning Rule: W —W+n (Y@ _ sign(GW(X“)) gvg/ ) :
@ If GW(X) is linear in W:  E(W,Y, X) = —YWT®(X)

W — W+ (Y —sign(WT®(X7))) ®(X7)

Yann LeCun



i Examples of Loss Functions: Generalized Margin Losses
[ —

& First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

& Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y = argminy ¢y 1y _yi > E(W, Y, X*). (9)

Yann LeCun

t New York University



Examples of Loss Functions: Generalized Margin Losses

M

Linargin(W, Y, X") = Qm (E(W, YY", X"), EOW,Y", X")) .

& Generalized Margin Loss

» Qm increases with the
energy of the correct
answer

» Qm decreases with the

| energy of the most
5s should bé = E, | offending incorrect

large here | answer—
» whenever it is less

HP,| 7™~ than the energy of the
o : correct answer plus a
m$ 0 margin m.

EC+m=EI

0.9r

osf  [HP
.| Tsessshoul Lbe

W osr  small here
>
9 0.5
D
C
L

0.4r

0.3

0.2

1 | 1 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy: E_
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’ Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003]

» With the linearly-parameterized binary
classifier architecture, we get linear SVM

2t

—
% 1.5
o
—

-2 —1
= =

E_correct - E_incorrect
Liog(W, Y, X7) = log (1 4 #(VY XD=EWYT XD )

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

E correct - E_incorrect

Yann LeCun

t New York University
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Examples of Margin Losses: Square-Square Loss
I ———— _—

Leq—sq(W, Y%, X%) = EOW,Y?, X1)? + (max(0,m — E(W,Y", X%)))"
@ Square-Square Loss SS———

» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

|| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6

param Wx param Wy
A [
\ \

( input X X output Y )
(b)

Yann LeCun t New York University



Other Margin-Like Losses

maﬁ&;» —

& LVQ2 Loss [Kohonen, Oja], [Driancourt-Bottou 1991] <- speech recognition

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), (v, ¥, X°) v, Y7, ))),

SE(W, Y, X7)

& Minimum Classification Error Loss [Juang, Chou, Lee 1997] <- speechr.
Linee(W,Y", X") = 0 (E(W,Y", X") — E(W,Y", X)),
o(x) = (1+e %) !

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004] <- face detection

Loqmexp(W, Y, X7) = E(W, Y, X7)? 4 5o #ORYX0,

Yann LeCun t New York University



’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

=1 1=1

. e_JBE(W:IY:Xz)
& Gibbs distribution: P(Y|X“, W) —

—BE(W,y,X%) "
fyeye BE(W,y )

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

& We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity

Yann LeCun t New York University



Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

. ) 1 i
( (W, Y%, X% + = log / e PEWy, X >).
B ye)y

8Lnu(W, Y“',Xi) 8E(W, Y%',X“') / aE(W, Y, Xi)
Yey

M:

Lon(W,S)

?,=1

P(Y|X", W),

oW B oW oW

Yann LeCun t New York University



& Binary Classifier Architecture:
P

Lon(W,8) = 5> [—Y@GW(X“) +log (&1Ew XD 4 YWD
1=1

'CHH(W S — Zlog (1 4 G_QY GW(X ))

?,_1

& Linear Binary Classifier Architecture'

Lan(W, ) Z log (1 -+ =2 W20,

1_1
& Learning Rule in the linear case: logistic regression

& NLL is used by lots of speech recognition systems (they call it Maximum
Mutual Information), lots of handwriting recognition systems (e.g.
Bengio, LeCun 94] [LeCun et al. 98]), CRF [Lafferty et al 2001]

Yann LeCun t New York University
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T ——— . — R ———

Negative Log-Likelihood Loss

& Negative Log Likelihood Loss has been used for a long time in many
communities for discriminative learning with structured outputs
» Speech recognition: many papers going back to the early 90's

[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001]

» Lots more......

» In all the above cases, it was used with non-linearly
parameterized energies.

Yann LeCun t New York University



0.9 EC +m= E| Pid ’
° e A
(Loss Function m— os  [HP,
i 0.7} R //‘,
|-_|J__ 0.6} ,\/‘,
& Good loss functions make the & .| o7 E _E
. D P c
machine produce the correct G o4} -
answer | |
) o2 7 HP
» Avoid collapses and flat Pt 2
energy surfaces m$ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy: E_.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

LW, Y" X") = Qg (EOW, Y, X"), E(W,Y", X")).

Yann LeCun

t New York University



| What Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun

t New York University



( Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

& Losses with a log partition function in the contrastive term pull up all
the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use
a loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the
full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for
a given amount of computation?
» The theory for this is does not exist. It needs to be developed

Yann LeCun * New York University



; Latent Var

iable Models

& The energy includes ‘“hidden” variables Z whose value is never
given to us

» We can minimize the energy over those latent variables
» We can also "marginalize” the energy over the latent

\l—\lﬂ:—\lﬂlf\l“

Minimization over latent variables:

B0Y ) = piy (2 ¥. )

Marginalization over latent variables:

1 Z
E(X,Y)=—=log e PEEY.X)
/6 z€Z

X Y
Estimation this integral may require some approximations

(sampling, variational methodes,....)

Yann LeCun

t New York University



& The energy includes ‘“hidden’ variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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. What can the latent variables represent?

& Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

& In general, we will search for the value of the latent variable that
allows us to get an answer (Y) of smallest energy.

Yann LeCun * New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = Jzez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined
energy function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

& Reduces to minimization when Beta->infinity

Yann LeCun t New York University



Face Detection and Pose Estimation with a Convolutional EBM

@ Training: 52,850, 32x32 E*(W, X) = ming||Gw (X) — F(Z)]

grey-level images of faces,

52,850 selected non-faces. T* argminz| |GW (X) — F(Z)| |

i Each training image was used
5 times with random variation

) . . E(W,Z,X)
in scale, in-plane rotation, 7Y
brightness and contrast. l
il 2" phase: half of the initial
negative set was replaced by ‘ IG,, (X)—F(Z)
false positives of the initial /
G (X
version of the detector . wX) Fiz)
: analytical
convolutional .
*I nework [ | aifold
W (param) — N
4 p 4 N
Small E*(W,X): face X 7
Large E*(W,X): no face (image) (pose)
. J . y

[Osadchy, Miller, LeCun, NIPS 2004]

Yann LeCun
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‘Face Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill — o G(X)

Face Manifold —/

parameterized by pose

Apply =) Mapping: G
1




Probabilistic Approach: DM(:] of joint P(face,pose)

m‘ - = — e

Probability that image _E(W.7Z. X
| ! P(X.7) = eP(=E(V.Z.X)
X is a face with pose Z exp(—E(W, Z, X))

fX,ZEimages,poses

Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Enéfgy-Based Contrastive Loss Function
——

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convoleork Architture

| S = = —

[LeCun et al. 1988, 1989, 1998, 2005]

Cl: feature
g 2Bx.28
LR AR C3: f. maps

Input , 20@10x10
32x32 51: f. maps S4: f. maps

. 20@5x5 C5: 120
8@14x14 F @5x5 RN
— - —

- Subsamplin el :
Convolutions Lt el ~ subsampling  oapection
Convolutions Convolutions

Hierarchy of local filters (convolution kernels),
sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun t New York University



JF— | “Simple cells”
"Alternated Convolutions

(13

. and Pooling/Subsampling
i@ Local features are extracted ,
pooling
everywhere.

Complex cells”

Multiple subsampling
i@ pooling/subsampling layer builds convolutions
robustness to variations in feature
locations.

T
[ ]

CJIREY

i@ Long history in neuroscience and
computer vision:

i Hubel/Wiesel 1962,

i Fukushima 1971-82,

i LeCun 1988-06

sl Poggio, Riesenhuber, Serre 02-06
i Ullman 2002-06

e Triggs, Lowe.,....

: H-.m"-'”.ﬂ
= .
o TPEN
5.-m i
|
ul

=rﬂh'

o
.,
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Face Detection: Results

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun t New York University
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; Efficient In gy-Based Factor Graphs

R RO

& Graphical models have given us efficient inference algorithms, such as
belief propagation and its numerous variations.

& Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models from the
probabilistic view (think ‘“Bayesian networks”’).

& Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

& An EBFG is an energy function that can be written as a sum of “‘factor”
functions that take different subsets of variables as inputs.

& Basically, most algorithms for probabilistic factor graphs (such as belief
prop) have a counterpart for EBFG:

» Operations are performed in the log domain
» The normalization steps are left out.

Yann LeCun

t New York University



Energy-Based Factor Graphs

m:ﬂﬂ&r

& When the energy is a sum of partial energy functions (or when the
probability is a product of factors):
» An EBM can be seen as an unnormalized factor graph in the log
domain

» Our favorite efficient inference algorithms can be used for inference
(without the normalization step).

» Min-sum algorithm (instead of max-product), Viterbi for chain
graphs

» (Log/sum/exp)-sum algorithm (instead of sum-product), Forward
alaorithm in the loa domain for chain araphs

EIX.ZD | [E2z1.22)| |E3(Z2.23)| |E4(Z3.Y)

/N NV NV

X Z1 /72

Yann LeCun t New York University



; EBEG for S puts: Sequences, Graphs, Images

M

& Structured outputs

» When Y is a complex object with components that must satisfy
certain constraints.

& Typically, structured outputs are sequences of symbols that must satisfy
“srammatical’ constraints
» spoken/handwritten word recognition
» spoken/written sentence recognition
» DNA sequence analysis
» Parts of Speech tagging
» Automatic Machine Translation

& In General, structured outputs are collections of variables in which
subsets of variables must satisfy constraints

» Pixels in an image for image restoration
» Labels of regions for image segmentations

& We represent the constraints using an Energy-Based Factor Graph.

Yann LeCun

t New York University



; Energy-Based Factor Graphs: Three Inference Problems
[ ————————— — — -

& X: input, Y: output, Z: latent variables, Energy: E(Z,Y,X)

& Minimization over Y and Z
» B(Y,X)=minE(Z,Y,X). Y"=argminycyE(Y, X).
& Min over Y, marginalization over Z (E(X,Y) is a “free energy”’)

> E(X,Y) = —llog e PEEY.X) Y™ = argminy .y E(Y, X).

& Marginal Distribution OVZC%'
5 o—BE(Y,X)

> P(Y|X) =

E_QE(yzx) j

fyey

E1(X,Z1) | |E2(Z1,22)| |E3(Z2,Z3)| |E4(Z3.Y)
/ AV AV N N
71 72 73

X Y

Yann LeCun




Energy-Based Factor Graphs: simple graphs
TR E—————

& Sequence Labeling V¥

» Qutput is a sequence
Y1,Y2,Y3,Y4......

» NLP parsing, MT,
speech/handwriting
recognition, biological
sequence analysis

» The factors ensure
grammatical consistency

» They give low energy to
consistent sub-
sequences of output Yl
symbols

» The graph is generally
simple (chain or tree)/ X

» Inference is easy
(dynamic programming)

= argminycy zezE(Z,Y, X).

@\

Y4

Yann LeCun t New York University



m’

_Energy-Based Factor Graphs: complex/loopy graphs

Mﬂml‘

& Image restoration Y — argminy cy E(Y, X).
» The factors ensure
local consistency on
small overlapping
patches

» They give low energ
to “clean” patches,
given the noisy
versions

» The graph is loopy
when the patches
overlap. -

» Inference is difficult, |
particularly when the
patches are
large,and when the —
number of greyscale X Y

Yann LeCun t New York University



Efficient Inference in simple EBFG

& The energy is a sum of “factor” functions, the graph is a chain

& Example:
» 71,72, Y1 are binary 28GR
» Z2 is ternary @

» A naive exhaustive
inference would require

2X2X2X3 energy [ E.(X,Z) [Eb(X AP Zg)] [ E.(Z3,Y1) ] { E;(Y1,Y?) ]
evaluations (= 96 factor NN AN
evaluations) X/izl/ \22/ \yl/ \Y2

» BUT: Ea only has 2 possible
input configurations, Eb
and Ec have 4, and Ed 6.

» Hence, we can precompute
the 16 factor values, and ¢
put them on the arcs i
graph.

» A path in the graph is a
confia of variable

Yann LeCun * New York University




[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

Y* = argminYEy?ZEZE(Zj Yj X)

Yann LeCun * New York University



nergy-Based Belief Prop:

. Minimization over Latent Variables

& The previous picture shows a chain graph of factors with 2 inputs.

& The extension of this procedure to trees, with factors that can have
more than 2 inputs is the “min-sum” algorithm (a non-probabilistic
form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-ring
algebra (min instead of sum, sum instead of product), without the
normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun t New York University



[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

1
Y* — argminYey — E log/ G_BE(Z,Y,X)- 5
zEZ

log/sum/exp-SUM Alg., Forward Algorithm S

Yann LeCun * New York University



nergy-Based Belief Prop:

Marginalization over Latent Variables

& The previous picture shows a chain graph of factors with 2
inputs.
» Going along a path: add up the energles
» When several paths meet: compute ——logz —PEji

& The extension of this procedure to trees, with factors that can
have more than 2 inputs is the ‘“[log/sum/exp]-sum” algorithm
(a non-probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (log/sum/exp instead of sum, sum instead of
product), and without the normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun

t New York University



& Linearly Parameterized Factors

EW,Y,X)= > W'f(X,Yn,Yo). -

(m,n)eF / Iy \

Yann LeCun



E(W,Y, X)

Llnearly Parameterized Factors + L =
Negative Log Likelihood Loss = T ’ )

(X, Y1,Ys) I\f (X,Y2,Y3 ] [f(X Ys Y)]

= Y; Y/|\ Ys Y,
& Linearly Parameterized Factors + NLL loss = CRF

» [Lafferty, McCallum, Pereira, 2001]

1 T i
P yey

aﬁnn(W) _ l Z X?, Y?, Z F y|X% )

simplest/best learning

P
1 o
Lan(W) = > WIR(XL Y +

=1

P( |X=i W) e AW F(Xy) procedure:
Yy — FERVANE
| Zyr cy e PWTF(X*y") " giochastic gradient

Yann LeCun t New York University



A

gLinearly Parameterized Factors +

Perceptron Loss = ’ ’ ’
] || el
~ — ::Vi:i?:;}i‘ii‘gsigigrz%éz%ég;& : Yl Y'2 /[\ Y3 Y4
& Linearly Parameterized Factors + Perceptron loss ¥

» [LeCun, Bottou, Bengio, Haffner 1998, Collins 2000, Collins 2001]

P
Cperceptron(W) — F ZE(Wa Y%:X?J) — E(I/Va Y :X )a
1=1
1 P
ﬁperceptron(W) — F Z WT (F(X%a Yz) - F(X%;Y*z)) .
1=1

W W —n(F(X"Y")~F(X",Y*").

(but [LeCun et al. 1998] used non-linear factors)

Yann LeCun t New York University



EW,Y, X)

Lmearly Parameterized Factors + /T
Hinge Loss =

Y; Y5 Y3 Yy
& Linearly Parameterized Factor + Hinge loss
» [Altun et a. 2003, Taskar et al. 2003] X

P
Lringe (W) = 5 > max(0,m + BOW, Y, X¥) = BOW, ¥, X)) + || W]
Liinge(W) = 2 Z max (0, m + WTAF(X“, Yz)) + ’}f||W||2,

1=1

AF(X'Y") =F(X"Y") — F(X',Y?)

Simple gradient descent rule:

It AF(Xi, Y?") > —m then W «— W — nAF(Xi, Yi) — 27W
Can be performed in the dual (like an SVM)

Yann LeCun



.Non-Linear Factors

& Energy-Based sequence labeling systems trained discriminatively have
been used since the early 1990's

& Almost all of them used non-linear factors, such as multi-layer neural nets
or mixtures of Gaussians.

& They were used mostly for speech and handwriting recognition

& There is a huge literature on the subject that has been somewhat ignored
or forgotten by the NIPS and NLP communities.

& Why use non linear factors?

» :-( the loss function is non-convex

» :-0 You have to use simple gradient-based optimization algorithms,
such as stochastic gradient descent (but that's what works best
anyway, even in the convex case)

» :-) linear factors simply don't cut it for speech and handwriting
(including SVM-like linear combinations of kernel functions)

Yann LeCun * New York University



; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and
various acoustic models

» Training the acoustic model (feature extractor) and a
(normalized) HMM in an integrated fashion.
& With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

< with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)

Yann LeCun t New York University



_Example 1: Integrated Disc. Training with Sequence Alignment

B

& Spoken word recognition with trainable elastic templates and trainable
feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

Objectt models A?/._>
(elastic template) 1 [
Energies | Switch
Sequence of |
feature vectors I
| LVQ2 Loss
Trainable feature |
extractors |
/ TAIRIAIRIRTN |
I
Input Sequence |
(acoustic vectors) Warping  Category

(latent var) (output)

Yann LeCun * New York University




e —— = = — = = = — — — -

: Example: 1-D Constellation Model (a.k.a. Dynamic Time Warping)

& Spoken word recognition with trainable elastic templates and trainable
feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

& Elastic matching using dynamic time warping (Viterbi algorithm on a trellis).

@ The corresponding EBFG is implicit (it changes for every new sample).

Energy
Trellis

(elastic template)

Object models

JO0000  wmnsras

Sequence of (latent var)

feature vectors

Yann LeCun t New York University
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Deep Factors / Deep Graph: ASR with TDNN/DTW

& Trainable Automatic Speech Recognition system with convolutional

nets (TDNN) and dynamic time warping (DTW)

A E(Wa Z> Y) X)
& Training the feature . —1 \
/ -
extractor as part of the [/ : ‘1 -
whole process. L"/, 7 DTW
@ with the LVQ2 Loss : —F q
_ feature | vectors
» Driancourt and )
Bottou's speech . "'T. N
recognizer (1991) 1\ l
& with NLL: [ TDNN ] :
» Bengio's speech A word templates :
|

recognizer (1992)

» Haffner's speech

Path

recognizer (1993)

X (acoustic vectors) A
Yann LeCun

word in
the lexicon

Y

t New York University



[

[T AIRIRARri——— B — R —

Two types of ‘“‘deep” architectures

& Factors are deep / graph is deep

Yann LeCun t New York University



| Complex Trellises: procedural representation of trellises

& When the trellis is too large, we cannot store it in its entirety in
memory.

» We must represent it proceduraly

& The cleanest way to represent complex graphs proceduraly is
through the formalism of finite-state transducer algebra

» [Mohri 1997, Pereira et al.]

Yann LeCun t New York University



Haffner 1998]

» Trained with NLL loss
[Bengio, LeCun 1994],

Really Deep Factors/ oo
Viterbi iy ittty Ittt
J—— Transformer 4 ? i
; o i
Grsel O—> . I
& Handwriting Recognition with M !
Graph Transformer Networks A i
/ |
& Un-normalized hierarchical Path Selector P N |
HMMs 4 i
» Trained with Perceptron loss Gro : o |
[LeCun, Bottou, Bengio, : i :
i
|
|
|
|
|
|
|
|
|
|

[LeCun, Bottou, Bengio, TRGCO%HMOH
Haffner 1998] rAnStormer
& Answer = sequence of symbols O
5€g | | |
& Latent variable = segmentation (13427) (path )

X Y VA

Yann LeCun * New York University



m

"End-to-End Learning.

M&J

E""—“}W“’Et @ Making every single module in the

system trainable.

Objective Function

& Every module is trained simultaneously

actual desired °o e .
output / \nutput so as to optimize a global loss function.
t "two faces"
Context ual
postprocessor
Recognizer
I tunable
(trainable)
Segmenter parameters
Locator
!
0

Yann LeCun

t New York University
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' Using Graphs instead of Vectors.
|

B

traditional graph

radient-based transformer | & Whereas traditional learning
earner network . . . .

machines manipulate fixed-size

fixed-size

vectors Varlables graphs vectors, Graph Transformer

A Networks manipulate graphs.
i |

Layer Graph
K

f
|
]

Graph
Transformer

Lo
0

Yann LeCun

t New York University



[0.37i+1)

““(f}raph

Transformer

spa CLAMPED PHASE

ch? b‘t\mnxn]-/.

— | Viterbi Tansformer *
ETCA NS
° Gc +[24F0)
& Variables: Qangﬂxﬂ,f'

naq I Path Selector ]

» X: input image ociea . |
» Z: path in the interpretation " ' e
graph/segmentation o
» Y. sequence of labels on a
path \en fen iy —
e T o e M
& Loss function: computing the %i;::ﬂ? | T rec

energy of the desired answer:

EW,Y,X) (

Segmentation
Graph

G

=g

|  Segmenter |

W

Yann LeCun t New York University




3 [Aa4f0 =" 408} =

g Path Selector
Desined I _
Answer 3 [0.1]0) 4 [0 47i-1) ntepretation
5[2.3](0) —a2p~ Graph
Gint
3 [3.4]10)
4 [4.4]10y
Fecognition
Tambmar
W

] |
Vbt ﬁ) Sogeryir
? L‘ Geeg

Segmenter

-
K1

Yann LeCun t New York University




[0.7](+1)

s CLAMPED PHASE

Covit b"‘t\uunxn]-/.

| Viterbi Tansformer *
63\[&1 I“w + [L*IU];.
3 [34fT 4+[0B)+1)

nagn Path Selector
Desired I _
Answer 3 [0 110 4 [04]-1) 1[0.1]-1) ntepretation
2310 4124 Grap
Gint
Facogniticn
W Tambmar
MNeuml Met T rec
Weights '

Yann LeCun

t New York University



"Graph |
FREE/UNCLAMPED PHASE
Transformer

3['31111 1]-34['34111 1]31[”11: -1

1

I'Viterbi Transformer |

& Variables: /
b X .
I 3l

: Input Image

» Z: path in the interpretation o
graph/segmentation

» Y. sequence of labels on a
path Fecognitin

4 4 1 Tamsimer
w
& Loss function: computing the e rTI%H%‘JL"J".;H_'"V T rec
Weights

constrastive term:

E(W,Y,X)

Yann LeCun t New York University



Graph

Transformer

& Example: Perceptron loss

& Loss = Energy of desired
answer — Energy of best
answer.

» (no margin)

Yann LeCun

Loss Function

.11+ 1)
e A T pa-
3 [0
Gi P voae

3['1I 1]'1-1]\84['34]': 1]31[”11 -1l

| Viterbi Tansformer §

3 [34FD 4[oaf+1]
ll34ll I E{H BE Eaur I

Desired ‘

| Viterbi Trﬂ nsformer |

1 [3.1]i-1 |ntempretation
4[240 Graph
Gint

\en oo (o] et

Tamtmear

w  —
T
Meuml Met Mec
Weights
‘ Seqmentation
< Giaph
Gmg

t New York University



Loss Function
[3]i+1)

@71k 1) [0.6](-1)

3 [0.1](+1)
o]

C "bt\ﬂun]in]"’. S

3 [0.1]i-1) [0.4]i—1) g1 [O1F-1]
I Viterbi Tansformer :|| 15 Hl t H J"LI'

A[oak+ +[24}0]
G. 6\\ '_? Viterbi Transformer
3[34Fa +[OEY+1]

T Path Selector
Desired

Answer 3 [0.1]i0) 4 [04]1-13 1[0.1]i-1) Intepretation
5 [2.3](0) 4[2 Graph
Gint
Facognition
W Tamsibmar
T
Meuml Net rec
Weights

Yann LeCun

t New York University



W“! : ' — "Script'

Global Training Helps terbl Grah !
7 - 7 — Beam *EEEI'CH
& Pen-based handwriting recognition Tm"ﬁfrmer
(for tablet computer) Interpretation Graph $
> [Bengio&LeCun 1995] kﬂ%ﬂdgeﬁage Ry Compose
» Trained with NLL loss (aka MMI) Recognition Graph “ : :
g ey e e IS L * N

Wi gbalaiing . —— 2 AMAP Computation

+
HOS | Ne Language Model Segmentatlon Graph
no ghobaliraining TN TN TN TR TTT N )

with global fraining Segmentation
Transformer
HOS | 25K Word Lexicon Normalized Word
no ghobaliraining ERETHEERE (3
with globalfrainin 1.4 —
@ ° p— Word Normalization
o 3 1Q 15 E c i p t

Yann LeCun * New York University



Interpretations:

Interpretat] h ut (2.0
" Graph Miepretation grap cap (08
0.8 cat (1.4)

Composition,

grammar graph

& The composition of two
graphs can be computed,
the same way the dot
product between two
vectors can be computed.

Graph Composition

& General theory: semi-ring
algebra on weighted finite-
state transducers and
acceptors.

Recognltion
Graph

Yann LeCun

t New York University



1.1 discdminant cost

i — 4
. Check Reader /+,O‘—\
[ ————— negative log-likellhood 4.3 3.2 negatlve log-likellhood
Forwand Forward
' 5702 ! 3-02 all posslble

@@ Graph transformer network conmect Interpretation gQq_g =% % *a1 i retations

trained to read check amounts. ' b} Grammar

Compose Compose - o
& Trained globally with ‘ - :Rh e
ecognitlon Grap —
Negative-Log-Likelihood loss. | o @9 T
correct Character
& 50% percent corrent, 49 % e Recognizer
Boa |3

reject, 1% error (detectable Segmentatlon Graph m“%": o e

later in the process. Segmenter
@ Fielded in 1996, used in many e Graph =11

banks in the US and Europe. i
& Processes an estimated 10% of Check Graph oL

all the checks written in the w48

US. three doliars and 45%% I !

Yann LeCun

t New York University
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