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Challenges of Visual Neuroscience (and Computer Vision)
[ SE——

& How do we learn “invariant representations”?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those

representations by just looking at the world?
& How can we learn visual categories from just a few examples?

» I don't need to see many airplanes beforeI can oo
recognize every airplane (even really weird ones) &
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_Challenges of Visual Neuroscience (and Computer Vision)

Mﬁ&%eﬂmw

& The recognition of everyday objects is a very fast process.

» Experiments by Simon Thorpe and others have shown that the
recognition of common objects is essentially “feed forward.”

» Not all of vision is feed forward (what would all those feed-back
connection be there for?).
& How much of the visual system is the result of learning?

» How much prior structure must be built into the visual system to
enable it to learn to see?

» Are V1/V2/V4 neurons learned or hard-wired?

& If the visual system is learned, what is the learning algorithm?

» What learning algorithm can train neural network as
“deep” as the visual system (10 layers?).
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_Learning Deep Feature Hierarchies
R BB ===

& The visual system is deep, and is learned
» How do we learn deep hierarchies of invariant features?

& On recognition tasks with lots of training samples, deep supervised
architecture outperform shallow architectures in speed and accuracy

& Handwriting Recognition:

» raw MNIST: 0.62% for convolutional nets [Ranzato 07]
» raw MNIST: 1.40% for SVMs [Cortes 92]
» distorted MNIST: 0.40% for conv nets [Simard 03, Ranzato 06]
» distorted MNIST: 0.67% for SVMs [Bordes 07]
& Object Recognition
» small NORB: 6.0% for conv nets [Huang 05]
» small NORB: 11.6% for SVM [Huang 05]
» big NORB: 7.8% for conv nets [Huang 06]
» big NORB: 43.3% for SVM [Huang 06]
-
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Learning Deep Feature Hierarchies (unsupervised)
s b - * BL> pp—

& On recognition tasks with few labeled samples, deep supervised
architectures don't do so well

» a purely supervised convolutional net gets only 20% correct on
Caltech-101 with 30 training samples/class

@ We need unsupervised learning methods that
can learn invariant feature hierarchies

& This talk will present methods to learn hierarchies of sparse and
invariant features

& Sparse features are good for two reasons:

» they are easier to deal with for a classifier

» we will show that using sparsity constraints is a way to upper
bound the partition function.

Yann LeCun

t New York University



_The Basic Idea for Training Deep Feature Hierarchies

& Stage k measures the ‘“compatibity’”’ between features at level k-1 (Zy_1)
and features at level k (Zy).
» compatibility = -log likelihood = energy = E(Zk-1,Zk, Wk)

& Inference: Find the Z's that minimize the total energy.

& The stages are trained one after the other
» the input to stage k+1 is the feature vector of stage k.

“Likelihood” “Likelihood”

h

LEVEL 2
FEATURES 72

INPUT Y LEVEL 1
FEATURES 71
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Unsuperyvised Feature Learning as Density Estimation
& Energy function: E(Y,W) = MINy E(Y,Z,W)

»Y: input

» Z: “feature” vector, representation, latent variables
» W: parameters of the model (to be learned)

» Maximum A Posteriori approximation for Z

& Density function P(YIW)

» Learn W so as to maximize the likelihood of the training data
under the model

E(Y.,Z)

o—BE(Y,W)

fy 6_5E(Q:W)

PY|W) =

Parameters W

h

FEATURES Z

INPUTY
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j What is Unsupervised Learning?

& Probabilistic View:
» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

=<V

& Energy-Based View:

» produce an energy function A
E(Y,W) that: E(Y,W)

» has low value in regions of high
sample density

» has high(er) value everywhere
else

ol |
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What is Unsupervised Learning?

=

E(Y,W) x —log P(Y|W)
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| Training a Probabilistic Unsupervised Model
S e :

make this big A P(Y)

—BE(Y,W) A
PY W) = J, e PRI +¢ : ** v

make this small

Maximizing P(YIW) on training samples l

Minimizing -log P(Y,W) on training samples

1
L(Y,W)=E(Y,W)+ Blog / —pEww) | A
Y

“ ! SR
make this small make this big T
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Training a Probabilistic Unsupervised Mo
[N ———— —

& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) _OE(Y,W) / . (y|W)8E(y, W)

oW ow ow v
& Gradient descent: AE(Y)
OL(Y, W) l
il
Pushes down on the Pulls up on the - RY ' g
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P
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. The Normalization problem

& The “Intractable Partition Function Problem” a.k.a. the
Normalization Problem

» Give high probability (or low energy) to training samples
» Give low probability (or high energy) to everything else
» There are too many “everything else”!

» The normalization constant of probabilistic models is a sum
over too many terms.

» Making the energies of everthing else large is very hard

Yann LeCun
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_The Intractable Partition Function Problem
[ ——

& Example: Image Denoising

& Learning:

» push down on the energy of training samples
» push up on the energy of everything else

AE(Y)

¥ <

P(Y)
?
<

o—BE(Y.W)

P(Yﬂ ”) — [y c—BE(y,W)
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Lhe Two Biggest Challenges in Machine Learning

& 1. The “Intractable Partition Function Problem’’

» Complicated probability distributions in high dimensional spaces are
difficult to normalize

-~ —BE(Y.W)
ET/\/\» v PY,W) = [‘ o—BE(y,W)
Jy

» Example: what is the PDF of natural images?
» Question: how do we get around this problem?

& 2. The *““Deep Learning Problem”
» Complex tasks (vision, audition, natural language understanding....)
require appropriate internal representations.

» With most current approaches to learning, the internal
representation (and the similarity metric on it) are assumed to be
given (or hand-engineered).

» Question: how do we learning internal representations?

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy

» this digs a trench in the energy Y.T g

surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy A

» this digs a trench in the energy
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n
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Problems in CD in High Dimension
[ —

& If the energy surface is highly flexible and high-dimensional, there are
simply too many points whose energy needs to be pulled up.

& It becomes very difficult to make it non-flat.

& We need a more ‘“wholesale’” way of making the energy surface non-flat.

OE(Y,W)  OE(Y',W)

W — W — |
T ow T ow

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

Yann LeCun * New York University




_Unsupervised Feature Learning: Encoder/Decoder Architecture

R — ———————————.- |

& Learns a probability density
function of the training data

& Generates Features in the process

& The feature space is akin to an
embedding of the manifold
containing regions of high-

DECODER

density of data. FEATURES
& Learning Algorithms: (CODE)
_ _ ENCODER Z
» contrastive divergence
» constraints on the information
content of the features Y
—BE(Y,W)

€
[ e—BEw.W)
Jy

P(Y,W) =
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The Deep Encoder/Decoder Architecture

@ Each stage is composed of [Hinton 2005, Bengio 2006, LeCun 2006]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ (Restricted Boltzmann Machines are a special case)

& Each stage is trained one after the other
» the input to stage k+1 is the feature vector of stage k.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY
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*. General Encoder/Decoder Architecture

< Decoder:
» Linear

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

Sparsity

& Optional encoders of

different types: FEATURES
» None DECODER (CODE)
» Linear Z

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

& Optional sparsity penalty
» None, L1, Log Student-T

& Feature Vector Z

ENCODER
» continuous

» binary stochastic > _ :
'hary Z =argmin E(Y ,Z,W)
» discrete (e.g. 1-of-N)

E(Y,W)=min E(Y,Z,W)

Yann LeCun
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/ Encoder/Decoder Architecture: PCA

Mﬁm“ === ‘LMM

& PCA:

» linear encoder and decoder
» no sparsity

RECONSTRUCTION ENERGY
E(Y,W) = llY-W'WYII"2

_ | FEATURES
» low-dimensional code Z LINEAR (CODE)
> E(Y) = [[Y-W'WY]|? DECODER Z

LINEAR
ENCODER

Yann LeCun
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& Restricted Boltzmann Machines:

» [Hinton et al. 2005]

» symmetric encoder/decoder

» E(Y,Z,W)=-Y'WZ

» Z: binary stochastic vector

» Learning: contrastive
Divergence

» It seems that the energy
surface becomes non flat
because Z is binary and noisy

(not just because of
contrastive divergence).

FEATURES
(CODE)

Z

& Sampling is expensive Y

P(Z =11Y ,W)=1/(1+exp(B ), W Y,
P(Y=UZ,W)=1/(1+exp(B), W, Z
Yann LeCun E(Y’W):_I/BIOg ZZ eXp _BE( ’Z’W))
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E(Y,W)=—\/Blog >, exp(—BE(Y,Z,W))

& W is a symmetric matrix ‘ 7
& Z is a binary (stochastic) vector W
» the distribution on Z can be approximated
by sampling
| Y

P(Z =YY ,W)=\/()+exp (B > W, Y,))

P(Y =V/Z, W)=1/() —I—exp(BZj W,.Z))

Yann LeCun




_Restricted Boltzmann Machine: Learning Procedure
il - f 2 * , . . ,

& 1. Clamp y with observed data vector ‘

-ilZ.SampleZ from P(ZIY,W) A
-il3.SampleI7 from P(Y/Z, W) / W
nil4.SampleZ from P(ZIY.W) ‘ v

& update W with

W . «—W +n(Y Z —Y Z )
ij i z J z J
The learning rule minimizes the loss:
L(W,Y)=E(Y,Z,W)—FE(Y,Z,W)

which can be seen a sampled approximation of

_ 1 —BE(y, W)
L(W,Y)—E(Y,W)+3logfye

Yann LeCun




‘Non-Linear Dimensionality Reduction
[

& [Hinton and Salakhutdinov, Science 2006]

Yann LeCun
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Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.




& [Hinton and Salakhutdinov, Science 2006]

Fig. 2. (A) Top to bottom: A N
Random samples of curves from '
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by “logistic PCA” (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions

by the 30-dimensional autoen- ‘_
coder; reconstructions by 30- 'q
dimensional logistic PCA and

standard PCA. The average
squared errors for the last three . ‘ ; F !
rows are 3.00, 8.01, and 13.87. |

(C) Top to bottom: Random 4

samples from the test data set;

reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Non-Linear Dimensionality Reduction
——————

& [Hinton and Salakhutdinov, Science 2006]

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

o0

Lo B L I T L R i
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Non-Linear Dimensionality Reduction
|

& [Hinton and Salakhutdinov, Science 2006]

Fig. 4. (A) The fracton of A .. >
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& K-Means:

» no encoder, linear decoder
» Z is a one-of-N binary code
> E(Y) = []Y-ZW]]|?

FEATURES
(CODE)

Z

& Sparse Overcomplete Bases:

» [Olshausen & Field]

» no encoder

» linear decoder

» log Student-T sparsity

& Learned Basis Pursuit

» [Chen & Donoho]
» no encoder

» linear decoder

» L1 sparsity

Y — }
Z, =argmin E(Y ,Z,W)

E(Y,W)=min E(Y,Z,W)
& Problem: computing Z from Y involves running a minimization algorithm

Yann LeCun
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“The Main New Idea in This Talk!

& Contrastive divergence doesn't work too
well when the dimension of the input is very RECONSTRUCTION ENERGY

large (> a few hundred)
» because the space of “everything else”
is too large
& Main Idea: Restrict the information
content in the feature vector Z
» by making it sparse Z =argmin E(Y ,Z,W)
» by making it low dimensional

» by making it binary
» by making it noisy

FEATURES
(CODE)
Z

& We need a more efficient way to ensure that
the energy surface takes the right shape

» with a groove around the manifold
containing the training samples

E(Y,W)=min E(Y,Z,W)

[Ranzato et al. AI-Stats 2007]

Yann LeCun
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& If the information content of the feature
vector is limited (e.g. by imposing sparsity
constraints), the energy MUST be large in
most of the space.

» pulling down on the energy of the
training samples will necessarily make
a groove

& The volume of the space over which the
energy is low is limited by the entropy of
the feature vector

» Input vectors are reconstructed from
feature vectors.

» If few feature configurations are
possible, few input vectors can be
reconstructed properly

Yann LeCun

Main Insight [Ranzato et al. 2007]

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

FEATURES
(CODE)
Z

E(Y,W)=min E(Y,Z,W)

t New York University
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_Why sparsity puts an upper bound on the partition function

& Imagine the code has no restriction on it

» The energy (or reconstruction error) can be zero everywhere,
because every Y can be perfectly reconstructed. The energy is
flat, and the partition function is unbounded

& Now imagine that the code is binary (Z=0 or Z=1), and that the
reconstruction cost is quadratic E(Y) = lIlY-Dec(Z)I"2

» Only two input vectors can be perfectly reconstructed:
» YO=Dec(0) and Y1=Dec(1).
» All other vectors have a higher reconstruction error

& The corresponding probabilistic model has a bounded partition
function: Ap (Y)

e_E(Y)
B fy o—E(y)

P(Y)

YO Yl

Yann LeCun
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.Restricting the Information Content of the Code
[ R ———— |

& Restricting the information content of the code alleviates the need to
push up of the energy of everything.

& Hence, we can happily use a simple loss function that simply pulls
down on the energy of the training samples.

& We do not need a contrastive term that pulls up on the energy
everywhere else.

Yann LeCun

t New York University



: xample: A Toy Problem. The Spiral

[ —

+ Dataset

> 10’000 random points along a y The data: Randomly sampled from a spiral
spiral in a 2D plane

* The spiral fits in a square with
opposite corners (-1,1), (1,-1)

+ The spiral is designed so that no
function can predict a single value
of from

+ Goal

* Learn an energy surface with low
energies along the spiral and high
energy everywhere else

Yann LeCun
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PCA (Principal Component Analysis)

\m‘__n—;_,_,A — |

+ Can be seen as encoder-decoder architecture that minimizes mean
square reconstruction error (energy loss)

* Optimal code 1s constrained to be equal to the value predicted by
encoder

* Flat surfaces are avoided by using a code of low dimension
Enc(Y)=WY
Dec(Z)=W"Y ,where WeR™"
C.(Y,Z)=|lwy-Z|
C,\Y.Z)=|w"Z-Y]|

* For large value of y energy
reduces to

E(Y,w)=|lw'wy-Y|/

Yann LeCun




* In this architecture the code Z 1s a binary vector of size N (N being
the number of prototypes)

* For any sample Y, only one component is active (equal to 1) and
all the others are 1nactive (equal to 0).

* This 1s a one-of-N sparse binary code

* The energy 1is:
E(Y,Z)=2, Z|Y-w

W .isthei " prototype

*+ Inference involves finding Z
that minimizes the energy

Yann LeCun
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Auto-encoder neural net (2-100-1-100-2 architecture)

. ——

+ A neural network autoencoder that learns a low dimensional
representation.

* Architecture used
* Input layer: 2 units
* First hidden layer: 100 units
* Second hidden layer (the code): 1 unit
* Third hidden layer: 100 units
* Output layer: 2 units
* Similar to PCA but non-linear
* Energy is

E(Y)=|Dec(Enc(Y))=Y|

Yann LeCun
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j Wide auto-encoder neural net with energy loss

" = . 7 ,

* The energy loss simply pulls down on the energy of the training samples (no
contrastive term).

* Because the dimension of the code is larger than the input, nothing prevents the
architecture from learning the identity function, which gives a very flat energy
surface (a collapse): everything is perfectly reconstructed.

* Simplest example: a multi layer neural network with identical input and output
layers and a large hidden layer.

+ Architecture used
+ Input layer: 2 units
+ Hidden layer (the code): 20 units
+ Output layer: 2 units

* Energy loss leads to a collapse

+ Tried a number of loss functions

Yann LeCun

t New York University
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_Wide auto-encoder with negative-log-likelihood loss

* Negative Log Likelihood Loss

+ Pull down on the energy of
training (observed) samples

* Pull up on the energies of all the
other (unobserved) samples

* Approximate the log of partition
function through dense sampling.

* Energy surface is very “stiff”
because of small number of
parameters.

* Hence the energy surface 1s not
perfect.

Yann LeCun

t New York University
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_Wide auto-encoder with energy-based contrastive loss
* Linear-Linear Contrastive Loss
* Avoid the cost associated with
minimizing negative log likelihood
+ Idea 1s to pull up on unobserved points
in the vicinity of training samples
* We use Langevin dynamics to
generate such points

Pey-p?Ll

+ The loss function 1s

+€

LY, W)=xE(Y,W)+max(0,m—E(Y ,W))

Yann LeCun
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Wide auto-encoder with sparse code
| ——

* Sparse Codes

* Limiting the information
content of the code prevents flat
energy surfaces, without the
need to explicitly push up the
bad points

* Idea 1s to make the high
dimensional code sparse by
forcing each variable to be zero
most of the time

Yann LeCun

t New York University



Learning Sparse Features

o If the feature vector is larger than the input, the system can learn the

identity function in a trivial way
RECONSTRUCTION

ERROR
DECODER
ENCODER

& To prevent this, we force the feature
vector to be sparse

Sparsity

& By sparsifying the feature vector, we
limit its information content, and we
prevent system from being able to
reconstruct everything perfectly

» technically, code sparsification
puts an upper bound on the
partition function of P(Y) under
the model [Ranzato AI-Stats 07]

FEATURES
(CODE)
Z

INPUTY

Yann LeCun
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_Sparsifying with a high-threshold logistic function

Mﬁé&l ———————————e |
& Algorithm: Energy of decoder
. Code Z
@ 1. find the code Z (reconstruction error)

that minimizes the
reconstruction
error AND is close -
to the encoder DECODER Sparsifying
output Logistic f

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the

weights of the
encoder to

decrease the
prediction error - Energy of encoder

(prediction error)

Yann LeCun * New York University
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 Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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ANSE

reconstructed

original without minimization
()
R = 1 + 1 +1
4
+1 +1 + 0.8
+1 F +1 + 0.8
o i
reconstructed
original without minimization difference
B forward propagation through
oS
F - ; = o encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

after training there is no need to

minimize in code space

7 - |7
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RBM: filters trained on MNIST

& ‘““bubble’ detectors

Yann LeCun * New York University
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Sparse Encoder/Decoder Architecture on Natural Image Patches

[ — —

@ Orientation-sensitive feature detectors

Yann LeCun * New York University
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RBM.: filters trained on natural images WITH SPARSITY

——
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- noisy image: PSNR 14.15dB denoised image
original 1mmage
. . (std. dev. noise 50) PSNR 26.50dB

Z00M ->
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Denoising

s.d./ PSNR Lena Barbara Boat House Peppers

350/ 1415 N86 2861 7079|2649 || 2346 2548|2547 315 || 2600 2638 2595 | M53 || 785 2826 795 | 2674 | 2635 1590 2613 | 132
75/10.63 1597 2684 2580 2413 || 2246 2365 2300 2136 || 431 479 2398 248 | 2577 2641 522 W13 || U6 100 369 2168
100/8.13 2449 2564 2446 2087 || 2177 2261 2189 1977|2309 | 2375|2281 2080 || 2420 2511 70 266 | 2304 | 2266 2075 1960

Comparison between:

@ our method [first column]

@ Portilla et al. IEEE Trans. Image Processing (2003) [second column]
@ Elad and Aharon CVPR 2006 [third column]

@ Roth and Black CVPR 2005 [fourth column]
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Unsupervised Training of Convolutional Filters

BSSSSui i —— —— S ASRRSNSN I )

CLASSIFICATION EXPERIMENTS

IDEA! improving supervised learning by pre-training supervised filters in first conv. layer

with the unsupervised method (*) T s L e

sparse representations & lenet6 (1->50->50->200->10) “

@ The baseline: lenet6 initialized randomly
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EALTE
AT e
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il
Pied ¥

Test error rate: 0.70% . Training error rate: 0.01%.
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unsupervise e

@ Experiment 1

+ Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

FHIT
I e I
LTI
S Hura
M=k Bk
KL'FINN
1HYaN
T
S
EALIE -

Test error rate: 0.60 % . Training error rate: 0.00%.

@ FExperiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).

Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets’ Neural Computaton 2006]



“Best Results on MNIST (fromraw1mages. no preprocessmg)

S R —————————
CLASSIFIER DEFORMATION ~ ERROR Reference
Knowledge-free methods
Y-layer NN, A- - HU, CE AT Simard et al., ICDARY - - ¥
¥-layer NN, 0- - +¥- - HU, CE, reg 1.0¥  Hinton, in press, Y- -0
SVM, Gaussian Kernel 1.6~ Cortes aY + Many others
Unsupervised Stacked RBM + backprop .90 Hinton, Neur Comp Y- -1
Convolutional nets
Convolutional net LeNet-0, A Ranzatoetal. NIPSY- -1
Convolutional net LeNet-1, AL Ranzatoetal. NIPSY- -1
Conv. net LeNet-1- + unsup learning At Ranzatoetal. NIPSY- -1
Training set augmented with Affine Distortions
Y-layer NN, A- - HU, CE Affine AE Simard et al., ICDARY - - ¥
Virtual SVM deg-a poly Affine A Scholkopf
Convolutional net, CE Affine 2 Simard et al., ICDARY - - ¥
Training et augmented with Elastic Distortions
Y-layer NN, A- - HU, CE Elastic AR Simard et al., ICDARY - - ¥
Convolutional net, CE Elastic & Simard et al., ICDARY - - ¥
Conv. net LeNet-1- + unsup learning Elastic ¥4 Ranzatoetal NIPSY- -1

Yann LeCun * New York University




Sparse Features with ‘“Predictable Basis Pursuit”

& Linear Decoder with normalized
basis functions

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

Sparsity

FEATURES
(CODE)

Z

& L1 Sparsity penalty

& Encoder of different types

» Linear
» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

& The decoder+sparsity is identical
to Chen & Donoho's basis pursuit

& But the encoder learns to

‘“predicts’ the optimal feature
codes _

Z =argmin E(Y ,Z,W)

E(Y,W)=min E(Y,Z,W)

Yann LeCun

t New York University



Encoder/Decoder: Predictable Basis Pursuit

@ Decoder:
> Linear |y—&z|2+a,|z|,

& Encoders of different types:

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

Sparsity

» None FEATURES
» Linear DECODER (CODE)
Z

» Linear-Sigmoid-Scaling

» Linear-Sigmoid-Linear
& Sparsity penalty

» L1

& Main Idea:
» find basis functions such

that the coefficients that

reconstruct any vector can ZY=argminZE(Y ,Z, W)
be predicted by the

encoder. E(Y,W)=min E(Y,Z,W)

Yann LeCun

t New York University



. Training The Predictable Basis Pursuit Model

& Algorithm: Energy of decoder

@ 1. find the code Z
that minimizes the
reconstruction error
AND is close to the
encoder output

@ 2. Update the
weights of the
decoder to decrease
the reconstruction
error

@ 3. Update the
weights of the
encoder to decrease
the prediction error

(reconstruction error) 4

Sparsity

DECODER

EEENRE |y

y Energy of encoder

Ly, z,@,¥)=|y-dzli+e |zl +ellz—¥ (y);

(prediction error)

Yann LeCun

t New York University



P r—— Linear (L)

‘ Encoder Architectures

B IR————_ |
& L: Linear
& FD: Linear + Sigmoid + Gain + Bias

& FL: Linear + Sigmoid + Linear

Z'=MY+b

Non-Linear — Individual gains (FD)
Non-Linear — 2 Layer NN (FL)

Z'=0(MY+b,)xdiag(g)+b, Z'=M,o(M,Y +b,)+b
=, 1 1 2

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

| SSSSSNETE.

Yann LeCun

York University



Classification Error Rate on MNIST
m—ﬁ—sﬁﬁﬁm’_l_ —— =

& Supervised Linear Classifier trained on 200 trained sparse features

. 10 Samples 100 Samples 1000 Samples
= mim [T Trwinicn a5 : : | o :
==t 1zarg
—!:ﬁ'—l wining
== "arirg Ape e ok
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Yann LeCun

t New York University
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Classification Error Rate on MNIST
Mﬁaﬁ‘m

& Supervised Linear Classifier trained on 200 trained sparse features

[ RAW trsin
A RAI tast
n o PCA Irin
A FOh I
it SEER Tl
== SESN foef
-+ REM: trsin
4 RRM: Ll
= (i LML Lrin)
== LOML st

Yann LeCun

Y

ERRCA AATE =4
ra
=

10 samples

ERROA AATE %

100 samples

ERRCH AFATE =&

=1

=

1000 samples

t New York University
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_Learned Features: like V1 receptive fields

[ S——

Yann LeCun

t New York University
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t New York University
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Learned Features: like V1 receptive fields

Yann LeCun

t New York University
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| Learned Features: like V1 receptive fields

[“— —

t New York University



Learned Features: like V1 receptive fields

-2 0 2
aFilter 482, D =1 6351

x 10

2

i

U 2] 0 2 4
. 10 Filter 294, D =0.9921

2

i I

% 7] 0 2 4

« 10° Filter 181, D = 0655

2_L
i ]
=2 0 2 4

0
")

i Filter 22, D =1.1796

EL} -2 0 2 4

Yann LeCui




: Noise out versus Noise in (1024 code units)

2sl --LDEM | |/
3 - = =FD DEM
Q
£, 4+ FLDEM | [
= ~==L BP
2. -~ =FD BP
S ~+ FL BP
S, -==L SEP
()]
2 == =FD SEP
s '+ FL SEP
© : : : ' ’
; — _ io
10 10

Yann Le: average error per pixel at the input University



_Denoising
M@@y)

& PBP trained on natural image patches
256 Code Umts logistic

Origin\a\l Noisy Reconstruction

100 ; . ! ! i /
_e- L DEM : : : : L /
=3 =FDDEM| | | | . ’-.1

80r ot FLDEM| ................ ,,,,,,,,,,,,,,,, ................. o95dB l ‘ ‘
-e-LBP : : : : N . f.l
“%=FDBP | é z & 77dB ALl

— 6OF e FLBP | e o S S : ‘
% &=L SEP | | 5 | 63dB l l t
o = %= FD SEP rodE ™A B W

Z I 11

s, ATE] e e—e—s | AL
: e WAE
S : : f : E : F T
8w o e i . A AL
e WA
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o WEE
LI Tenr T SRR ¢

=20 0 20 40 60 80 100 ~29dB -

Input SNR [dB]
Input SNR
\

Yann LeCun

t New York University



_Using PBP Features for Recognition
M&m“

A_._.S_——M

& 96 filters on 9x9 patches trained with PBP
» with Linear-Sigmoid-Gain Encoder

& Recognition:

» Normalized_Image -> Learned_Filters -> Rectification ->
Local_Normalization -> Spatial_Pooling -> PCA -> Linear_Classifier

» What is the effect of rectification and normalization?

welghts $-0,9275 - 0,256585

Yann LeCun




Caltech-101 Recognition Rate
meiliik\gww

weights 10,9275 - 0,2628

& [96_Filters->Rectification]->Pooling->PCA->Linear_Classifier

» [Filters->Sigmoid] 16%
» [Filters->Absolute_Value] 51%
» [Local_Norm->Filters->Absolute_Value] 56%
» [Local_Norm->Filters->Absolute_Value->Local_Norm] 58%

& Multi-Scale Filters->Rectification->Pooling->PCA->Linear_Classifier
» LN->Gabor_Filters->Rectif->LN (Pinto&diCarlo 08) 59%

& Unsupervised Convolutional Net
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 54%

& Supervised Convolutional Net
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 20%

& HMAX (Serre -> Mutch&Lowe 06)
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 56%

Yann LeCun

t New York University



DECODER

DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University



& Learning Shift Invariant Features

& image->filters->pooling->switches->bases->reconstruction

(a) (b) (c) encoder shift-invariant decoder (d)

filter bank representation basis functions

input
image

feature
maps

. maps .
switch convolutions

uonINIISuU0III

convolutions max : :
pOOling E| |||||||||||||||||||||||| i E upsamplin
enco d er transformation je C Ode r

parameters

Yann LeCun

t New York University
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Shift Invariant Global Features on MINIST

M_,

& Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



Example of Reconstruction

T ]

& Any character can be reconstructed as a
linear combination of a small number of
basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

BASIS FUNCTIONS
(in feed-back layer)

red squares: decoder bases

t New York University
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Yann LeCun



Sparse Enc/Dec on Object Images

@ 9x9 filters at the first level

LB sl 1NN b N
Al ENFANFal 2 i3
o= AN F o™
MRS kT I AT

@ 9x9 filters at the second level (like V4?)

LA | AN P

REESHRENGE A==
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Yann LeCun



Recognition Rate on Caltech 101

MGEZQ:‘&J

& 54% on Caltech-101 (only 20% with purely supervised backprop)

bonsai

ewer 65%

w. chair

5“_ 3

background

3%

Yann LeCun

t New York University
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LAGR: Learning Applied to Ground Robotics

@ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

i@ Our team (NYU/Net-Scale Technologies

Inc.) is one of 8 participants funded by
DARPA

i@ All teams received identical robots and can
only modify the software (not the hardware)

i@ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun * New York University




Long Range Vision: Distance Normalization

e Ground plane estimation

e Horizon leveling

Conversion to YUV + local
contrast normalization

e Scale invariant pyramid of
distance-normalized image “bands”

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 78

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes

3x12x25 input window ow

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

YUYV image band
20-36 pixels tall,

36-500 pixels wide

net@SCALE Page 79

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

VOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUV input

net(®)SCALE o e 0

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

e Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 81

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. NN EELEF
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 82 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision: the Classitier

Online Learning (52 ms)

e Train a logistic regression on every frame, with cross entropy loss function

D _(RIY) Minimize 4 5 categories are learned
L
A o 4 750 samples of each class
Y=FWX): 5x1 T are kept in a ring buffer:
short term memory.
Logistic
Regression W 4 Learning “snaps” to new
Weights environment in about 10
frames
X: 100x1
4 Weights are trained with
Feature Extractor (CNN) stochastic gradient descent
T 4 Regularization by decay to
R: 5x1 default weights
Pyramid Window Input: Label from Stereo
3x12x25
QSCALE Page 83 NEW YORK UNIVERSITY

Technologies, Inc.



Long Range Vision Results

' - 3 =

“Inputimage &

net(>)SCALE page 84

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision Results

e
Classiiie
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Long Range Vision Results

Stereo Labels Classifier Output

Inputimage. - - ~ Stereolabels -  Classifier Oulput

net(SCALE



net(3>)SCALE

Technologies, Inc.




» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

NEW YORK UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

“ NEW YORK

UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
B Unseen 5m

-50m
-100m
-200m

2

- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY

Technologies, Inc



+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

1 e mg 8
. B e k" sl

FarOD Stereo: Input labels to Neural Network
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Technologies, Inc

.. NEW YORK UNIVERSITY



Videos

’

c#2008 Europa Technologies

net@SCALE Page 93 NEW YORK UNIVERSITY

Technologies, Inc.
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Yann LeCun

t New York University
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