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Challenges of Visual Neuroscience (and Computer Vision)
[ — —

@ How do we learn “invariant representations’’?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

& How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can
recognize every airplane (even really weird ones)
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_Challenges of Visual Neuroscience (and Computer Vision)
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& The recognition of everyday objects is a very fast process.

» Experiments by Simon Thorpe and others have shown that the
recognition of common objects is essentially “feed forward.”

» Not all of vision is feed forward (what would all those feed-back
connection be there for?).

@ How much of the visual system is the result of learning?

» How much prior structure must be built into the visual system to
enable it to learn to see?

» Are V1/V2/V4 neurons learned or hard-wired?

& If the visual system is learned, what is the learning algorithm?

» What learning algorithm can train neural network as
“deep” as the visual system (10 layers?).

Yann LeCun * New York University




The visual system is “deep’ and learned

M

@ The primate's visual system is ‘““deep”
» It has 10-20 layers of neurons from the retina to the infero-
temporal cortex (where object categories are encoded).
» How does it train itself by just looking at the world?.

@ Is there a magic bullet for visual learning?

» The neo-cortex is pretty much the same all over

» The “learning algorithm” it implements is not specific to a
modality (what works for vision works for audition)

» There is evidence that everything is learned, down to low-
level feature detectors in V1

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we have to keep accumulating a large repertoire of
pre-engineered "modules” to solve every specific problem an
intelligent vision system must solve?

Yann LeCun
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“The Traditional “Shallow” Architecture for Recognition

Pre-processing / . -
—®| Trainable Classifier |—%

Feature Extraction

/

this part 1s mostly hand-crafted

Internal Representation

& The raw input is pre-processed through a hand-crafted feature extractor
& The trainable classifier is often generic (task independent)

& The most common Machine Learning architecture: the Kernel Machine
» kernel machines are shallow

Yann LeCun * New York University
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Kernel Machine (the most popular ML architecture)

Kernel Expansion || Linear Classifier [~

/

Matches input to training samples Matching scores K(X,X1)

using a kernel function K(X,Xi) P |

y=>» a;K(X,X")
i=1

& Kernel methods are very efficient for many applications BUT

& A kernel machine is a glorified template matcher

& How can we ever expect this to solve complex AI-type problems such as

invariant visual object recognition?

Yann LeCun * New York University
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“Deep” Learning: Learning Internal Representations

Trainable Trainable
Trainable
Feature |— — - Feature > —>
Classifier
Extractor Extractor

Learned Internal Representation

@ Deep Learning: learning a hierarchy of internal representations

& From low-level features to mid-level invariant representations, to

object identities

Yann LeCun
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& We can approximate any function as close as we want with shallow

architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa

& Deep learning machines
y=FW" FW L F(..FOW".X)..))

@ Deep machines are more efficient for representing certain classes of

functions, particularly those involved in visual recognition
» they can represent more complex functions with less

“hardware”
@ We need an efficient parameterization of the class of functions that

we need to build intelligent machines (the ‘“Al-set”)

Yann LeCun
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Why would Deep Architectures be more efficient?
TRARSN A | B —

& A deep architecture trades space for time

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”~N).....

Yann LeCun
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Strategies (after Hinton 2007)

& Defeatism: since no good parameterization of the Al-set is available, let's
parameterize a much smaller set for each specific task through careful

engineering (preprocessing, kernel....).

& Denial: kernel machines can approximate anything we want, and the VC-

bounds guarantee generalization. Why would we need anything else?
» unfortunately, kernel machines with common kernels can only

represent a tiny subset of functions efficiently
@ Optimism: Let's look for learning models that can be applied to the
largest possible subset of the Al-set, while requiring the smallest amount

of task-specific knowledge for each task.

» There is a parameterization of the Al-set with neurons.

» Is there an efficient parameterization of the Al-set with computer
technology?

@ Today, the ML community oscillates between defeatism and denial.

Yann LeCun
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Supervised Learning of a Deep Feature Hierarchy

@@ [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “"pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun
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Convolutlonal Net Architecture

| SRRS—
Layer 3 Layer 5
. Layer 1 Layer 2 Y Layer 4
e 6@28x28 12@10x10 ) 655 VOO
X 6@14x14 X
1@32x32 Layer 6: 10
% .10
— o
5x5 ~ convolution
' convolution .
convolution pooling/ pooling/
subsampling subsampling

@ Convolutional net for handwriting recognition (400,000 synapses)
i Convolutional layers (simple cells): all units in a feature plane share the same weights

il Pooling/subsampling layers (complex cells): for invariance to small distortions.
il Supervised gradient-descent learning using back-propagation

@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun
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_Deep Architectures for Vision: Convolutional Network
[ — ——— |

@ Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX
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&@ Supervised Convolutional nets work

very well for:
» handwriting recognition(winner on
MNIST)
» face detection

» object recognition with few classes
and lots of training samples
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. Learning Deep Feature Hierarchies
RSB

& The visual system is deep, and is learned
» How do we learn deep hierarchies of invariant features?

& On recognition tasks with lots of training samples, deep supervised

architecture outperform shallow architectures in speed and accuracy

& Handwriting Recognition:

» raw MNIST: 0.62% for convolutional nets [Ranzato 07]
» raw MNIST: 1.40% for SVMs [Cortes 92]
» distorted MNIST: 0.40% for conv nets [Simard 03, Ranzato 06]
» distorted MNIST: 0.67% for SVMs [Bordes 07]
@ Object Recognition
» small NORB: 6.0% for conv nets [Huang 05]
» small NORB: 11.6% for SVM [Huang 05]
» big NORB: 7.8% for conv nets [Huang 06]
» big NORB: 43.3% for SVM [Huang 06]

Yann LeCun
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ANormalized-Uniform Set: Error Rates

el

@@ Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
20 eI S S PR
WNNaASR VENRWY X
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun
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Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
&® Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3 %
7.8 %
5.9%

20.8 %

26.0%

error

€rror

error

€rror

error

t New York University



Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun




. isual Navigation for a Mobile Robot

sssssisssiiididl

[LeCun et al. NIPS 2005]

i@ Mobile robot with two cameras

il The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

@ The network maps stereo images to steering

angles for obstacle avoidance




Learning Deep Feature Hierarchies (unsupervised)
el 2 7 7 “RA —

& On recognition tasks with few labeled samples, deep supervised

architectures don't do so well

» a purely supervised convolutional net gets only 20% correct on
Caltech-101 with 30 training samples/class

@ We need unsupervised learning methods that
can learn invariant feature hierarchies

& This talk will present methods to learn hierarchies of sparse and

invariant features

& Sparse features are good for two reasons:

» they are easier to deal with for a classifier

» we will show that using sparsity constraints is a way to upper
bound the partition function.

Yann LeCun

t New York University



_The Basic Idea for Training Deep Feature Hierarchies

& Stage k measures the ‘“‘compatibity’’ between features at level k-1 (Zy._1)

and features at level k (Zy).
» compatibility = -log likelihood = energy = E(Zk-1,Zk, Wk)

& Inference: Find the Z's that minimize the total energy.

& The stages are trained one after the other
» the input to stage k+1 is the feature vector of stage k.

“Likelihood” “Likelihood”

h

LEVEL 2
FEATURES 72

INPUT Y LEVEL 1
FEATURES 71

Yann LeCun * New York University




- Unsupervised Feature Learning as Density Estimation

& Energy function: E(Y,W) = MIN;z E(Y,Z,W)

»Y: input

» Z: “feature” vector, representation, latent variables
» W: parameters of the model (to be learned)

» Maximum A Posteriori approximation for Z

& Density function P(YIW)

» Learn W so as to maximize the likelihood of the training data
under the model E(Y.Z)

o—BE(Y,W)

fy 6_5E(Q:W)

P(Y|W) =

Parameters W

h

FEATURES Z

INPUTY

Yann LeCun
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j What is Unsupervised Learning?

& Probabilistic View:
» Produce a probability density AP(YIW)
function that:

» has high value in regions of
high sample density

» has low value everywhere else

(integral = 1). >
@ Energy-Based View: Y
» produce an energy function A
E(Y,W) that: E(Y,W)
» has low value in regions of high
sample density
» has high(er) value everywhere
else >
Y

Yann LeCun

t New York University
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What is Unsupervised Learning?

|
@
h)
x
=

e

. P(YIW)
o
Y

Ay w)

E(Y,W) x —log P(Y|W)

=
Y
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| Training a Probabilistic Unsupervised Model
S e :

Maximizing P(YIW) on training samples A
make this big P(Y) l

make this small

Minimizing -log P(Y,W) on training samples  j

|
Y
E(Y) l
1 —BE(y, W
L(Y,W):E(Y,W)—Fglog/faﬁ( | 4 *** A

y \ »
| S

make this small make this big

Yann LeCun




_Training a Probabilistic Unsupervised Model
[ —

& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y, W) OE(Y,W OF(y, W
(1) _ OBCLW) _ [ py ) 22 )
oW oW ” oW
Y
& Gradient descent: AE(Y)
OL(Y, W) l
AT
Pushes down on the Pulls up on the Ay ' >~
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P

Yann LeCun




. The Normalization problem

& The “Intractable Partition Function Problem” a.k.a. the

Normalization Problem

» Give high probability (or low energy) to training samples
» Give low probability (or high energy) to everything else
» There are too many “everything else”!

» The normalization constant of probabilistic models is a sum
over too many terms.

» Making the energies of everthing else large is very hard

Yann LeCun

t New York University



_The Intractable Partition Function Problem
[ ——

& Example: Image Denoising

& Learning:

» push down on the energy of training samples
» push up on the energy of everything else

Ay

V<
}Y)
<

o—BE(Y.W)

P(Yﬂ ”) — [y c—BE(y,W)

Yann LeCun
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Lhe Two Biggest Challenges in Machine Learning

& 1. The ““Intractable Partition Function Problem”’

» Complicated probability distributions in high dimensional spaces are
difficult to normalize

- —BE(Y.W)
E':T/\f\ v PY,W) = ._[;J,e_'BE(y’LV)

>

» Example: what is the PDF of natural images?
» Question: how do we get around this problem?

@ 2. The “Deep Learning Problem”
» Complex tasks (vision, audition, natural language understanding....)
require appropriate internal representations.

» With most current approaches to learning, the internal
representation (and the similarity metric on it) are assumed to be
given (or hand-engineered).

» Question: how do we learning internal representations?

Yann LeCun

t New York University
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_Contrastive Divergence Trick [Hinton 2000]

[ —————

@ push down on the energy of the training

sample Y

@ Pick a sample of low energy Y' near the

» this digs a trench in the energy

training sample, and pull up its energy -
Y'T
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ —————

@ push down on the energy of the training

sample Y

@ Pick a sample of low energy Y' near the

training sample, and pull up its energy

» this digs a trench in the energy
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

W —W—n

Yann LeCun

t New York University
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Problems in CD in High Dimension
S

& If the energy surface is highly flexible and high-dimensional, there are

simply too many points whose energy needs to be pulled up.
& It becomes very difficult to make it non-flat.

@ We need a more ‘“wholesale” way of making the energy surface non-flat.

OE(Y,W)  OE(Y',W)

W — W — |
T ow T ow

Pushes do.vw-w on the energy pulls up on the energy Y’
of the training sample Y

Yann LeCun * New York University




_Unsupervised Feature Learning: Encoder/Decoder Architecture

R — ———————————.- |

@ Learns a probability density

function of the training data
& Generates Features in the process

@ The feature space is akin to an
embedding of the manifold

containing regions of high- FEATURES

(CODE)
Z

density of data.

& Learning Algorithms:

DECODER
ENCODER

» contrastive divergence

» constraints on the information Y

content of the features BV W e~ BE(Y,W)
(Y. W) [ e—BE(wW)
Jy

Yann LeCun
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The Deep Encoder/Decoder Architecture

@ Each stage is composed of [Hinton 2005, Bengio 2006, LeCun 2006]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ (Restricted Boltzmann Machines are a special case)

& Each stage is trained one after the other
» the input to stage k+1 is the feature vector of stage k.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY

Yann LeCun
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& Decoder:
» Linear

&@ Optional encoders of

different types:

» None

» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

@ Optional sparsity penalty
» None, L1, Log Student-T

& Feature Vector Z

» continuous
» binary stochastic
» discrete (e.g. 1-of-N)

Yann LeCun

*. General Encoder/Decoder Architecture

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

ZYZargminZE(Y,Z, W)

Sparsity

FEATURES
(CODE)

Z

E(Y,W)=min E(Y,Z,W)

t New York University



/ Encoder/Decoder Architecture: PCA

Mﬁm“ === ‘LMM

& PCA:

» linear encoder and decoder
» no sparsity

RECONSTRUCTION ENERGY
E(Y,W) = llY-W'WYII"2

. . FEATURES
» low-dimensional code Z LINEAR
- (CODE)
» E(Y) = |]Y-W'WY]|? DECODER
Z

LINEAR
ENCODER

Yann LeCun

t New York University



@ Restricted Boltzmann Machines:

» [Hinton et al. 2005]

» symmetric encoder/decoder

» E(Y,Z,W)=-Y'WZ

» Z: binary stochastic vector

» Learning: contrastive
Divergence

» It seems that the energy
surface becomes non flat
because Z is binary and noisy
(not just because of
contrastive divergence).

FEATURES
(CODE)

Z

& Sampling is expensive Y

P(Z =11Y ,W)=1/(1+exp(B ), W Y,
P(Y=UZ,W)=1/(1+exp(B), W, Z
Yann LeCun E(Y’W):_I/BIOg ZZ eXp _BE( ’Z’W))

t New York University



& K-Means:

» no encoder, linear decoder
» Z is a one-of-N binary code
> E(Y) = []Y-ZW]]|?

FEATURES
(CODE)

Z

& Sparse Overcomplete Bases:

» [Olshausen & Field]

» no encoder

» linear decoder

» log Student-T sparsity

& Basis Pursuit
» [Chen & Donoho]
» no encoder

» linear decoder E(Y,W)=min E(Y,Z,W)
» L1 sparsity

Y Z =argmin E(Y ,Z,W)

@ Problem: computing Z from Y involves running a minimization algorithm

Yann LeCun

t New York University



Main New Idea in This Talk!

& Contrastive divergence doesn't work too

well when the dimension of the input is very RECONSTRUCTION ENERGY

DECODER
ENCODER

content in the feature vector Z Z =argmin E(Y ,Z,W)
» by making it sparse
» by making it low dimensional
» by making it binary
» by making it noisy

Yann LeCun

FEATURES
(CODE)
Z

large (> a few hundred)

» because the space of “everything else”
is too large

@ We need a more efficient way to ensure that

the energy surface takes the right shape

» with a groove around the manifold
containing the training samples

@ Main Idea: Restrict the information

E(Y,W)=min E(Y,Z,W)

[Ranzato et al. AI-Stats 2007]

t New York University
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@ If the information content of the feature
vector is limited (e.g. by imposing sparsity
constraints), the energy MUST be large in

most of the space.

» pulling down on the energy of the
training samples will necessarily make
a groove

& The volume of the space over which the
energy is low is limited by the entropy of

the feature vector
» Input vectors are reconstructed from
feature vectors.

» If few feature configurations are
possible, few input vectors can be
reconstructed properly

Yann LeCun

e Main Insight [Ranzato et al. 2007 ]

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

FEATURES
(CODE)
Z

E(Y,W)=min E(Y,Z,W)

t New York University



_Why sparsity puts an upper bound on the partition function

@ Imagine the code has no restriction on it

» The energy (or reconstruction error) can be zero everywhere,
because every Y can be perfectly reconstructed. The energy is
flat, and the partition function is unbounded

& Now imagine that the code is binary (Z=0 or Z=1), and that the

reconstruction cost is quadratic E(Y) = l[lY-Dec(Z)I*2

» Only two input vectors can be perfectly reconstructed:
» YO=Dec(0) and Y1=Dec(1).
» All other vectors have a higher reconstruction error

& The corresponding probabilistic model lias a bounded partition
function: E(Y)
e—EY)

f e~

P(Y) =

>
YO Yl Y

Yann LeCun
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. Restricting the Information Content of the Code
D ——————— e ———

@ Restricting the information content of the code alleviates the need to

push up of the energy of everything.

@ Hence, we can happily use a simple loss function that simply pulls

down on the energy of the training samples.

& We do not need a contrastive term that pulls up on the energy

everywhere else.

Yann LeCun

t New York University



Learning Sparse Features

& If the feature vector is larger than the input, the system can learn the

identity function in a trivial way
RECONSTRUCTION

ERROR
DECODER
ENCODER

@ To prevent this, we force the feature

Sparsity

vector to be sparse

& By sparsifying the feature vector, we

limit its information content, and we
FEATURES
(CODE)

Z

prevent system from being able to

reconstruct everything perfectly

» technically, code sparsification
puts an upper bound on the
partition function of P(Y) under

the model [Ranzato AI-Stats 07]
INPUT Y

Yann LeCun

t New York University



Sparsifying with a high-threshold logistic function

@ Algorithm: Energy of decoder

@ 1. find the code Z (reconstruction error)

that minimizes the
) IIWd £(Z)-XII
reconstruction

error AND is close ..
to the encoder DECODER Sparsifying

output Logistic f

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to

decrease the
. Energy of encoder
prediction error 7

(prediction error)

Yann LeCun

t New York University
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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)

ANSE

reconstructed

original without minimization
()
? R ? = 1 + 1 +1
4
+1 +1 + 0.8
+1 F +1 + 0.8
reconstructed
original without minimization difference
. .. | forward propagation through
oS
— - -F-
:" ; . encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

7 - |7

after training there is no need to

minimize in code space
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RBM: filters trained on MNIST

& ‘“‘bubble” detectors

Yann LeCun * New York University
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Sparse Encoder/Decoder Architecture on Natural Image Patches

[ — —

& Orientation-sensitive feature detectors

Yann LeCun * New York University
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RBM.: filters trained on natural images WITH SPARSITY

——
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noisy image: PSNR 14.15dB denoised image
PSNR 26.50dB
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Denoising

s.d./ PSNR Lena Barbara Boat House Peppers

350/ 1415 N86 2861 7079|2649 || 2346 2548|2547 315 || 2600 2638 2595 | M53 || 785 2826 795 | 2674 | 2635 1590 2613 | 132
75/10.63 1597 2684 2580 2413 || 2246 2365 2300 2136 || 431 479 2398 248 | 2577 2641 522 W13 || U6 100 369 2168
100/8.13 2449 2564 2446 2087 || 2177 2261 2189 1977|2309 | 2375|2281 2080 || 2420 2511 70 266 | 2304 | 2266 2075 1960

Comparison between:

@ our method [first column]

@ Portilla et al. IEEE Trans. Image Processing (2003) [second column]
@ Elad and Aharon CVPR 2006 [third column]

@ Roth and Black CVPR 2005 [fourth column]
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Unsupervised Training of Convolutional Filters

BSSSSui i —— —— S ASRRSNSN I )

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)
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? The baseline: lenet6 initialized randomly
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Test error rate: 0.70% . Training error rate: 0.01%.
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, unsupervise
@ Experiment 1 B

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

FHIT
I e I
LTI
S Hura
Nk Bk
KLEFINN -
1HYaN
T
LI Ll
EMLAE

Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]
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: Best Results on MNIST (from raw images: no preprocessi)
[ ——— e e I

CLASSIFIER DEFORMATION ~ ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39  Ranzato et al. NIPS 2006

Yann LeCun * New York University




Sparse Features with ‘“‘Predictable Basis Pursuit”

& Linear Decoder with normalized
RECONSTRUCTION ENERGY

E(Y,W) = min_z E(Y,Z,W)

& But the encoder learns to

“predicts’ the optimal feature Z_Y =argmin E (Y,Z, W)
codes

basis functions

Sparsity

FEATURES
(CODE)

Z

& L1 Sparsity penalty

& Encoder of different types

» Linear
» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

@ The decoder+sparsity is identical

to Chen & Donoho's basis pursuit

E(Y,W)=min E(Y,Z,W)

Yann LeCun

t New York University



& Decoder:
» Linear |ly—®z[s+a,|z]|;

@ Encoders of different types:

» None

» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

& Sparsity penalty
» L1

& Main Idea:

» find basis functions such
that the coefficients that
reconstruct any vector can
be predicted by the
encoder.

Yann LeCun

Encoder/Decoder: Predictable Basis Pursuit

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

Sparsity

FEATURES
(CODE)

Z

E(Y,W)=min E(Y,Z,W)

t New York University



. Training The Predictable Basis Pursuit Model

@ Algorithm: Energy of decoder

@ 1. find the code Z
that minimizes the
reconstruction error
AND is close to the
encoder output

@ 2. Update the
weights of the
decoder to decrease
the reconstruction
error

@ 3. Update the
weights of the
encoder to decrease
the prediction error

(reconstruction error) 4

Sparsity

DECODER

ENCODER

¥
Y
> IEEmE

Energy of encoder

Liy,z,®,¥)=y-ozlh+a [zl +eclz-¥(y)[3 .
(prediction error)

Yann LeCun

t New York University



p—— e — Linear (L)

’ Encoder Architectures

| R |

& L.: Linear

@ FD: Linear + Sigmoid + Gain + Bias

@ FL: Linear + Sigmoid + Linear

Z'=MY+b

Non-Linear — Individual gains (FD)
Non-Linear — 2 Layer NN (FL)

iale

|

?0 ooo OOOTT

Z'=0(MY+b,)xdiag(g)+b, Z'=M,o(M,Y +b,)+b
=, 1 1 2

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

| SSSSEEECE .

Yann LeCun

York University



Classification Error Rate on MNIST
m—ﬁ—sﬁﬁﬁm’_l_ — =

& Supervised Linear Classifier trained on 200 trained sparse features

. 10 Samples 100 Samples 1000 Samples
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Yann LeCun

t New York University
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Classification Error Rate on MNIST
Mﬁaﬁ‘m

& Supervised Linear Classifier trained on 200 trained sparse features

[ RAW trsin
A RAI tast
n o PCA Irin
A FOh I
it SEER Tl
== SESN foef
-+ REM: trsin
4 RRM: Ll
= (i LML Lrin)
== LOML st

Yann LeCun
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e

10 samples

ERROA AATE %

100 samples

ERRCH AFATE =&

=1

=

1000 samples

t New York University
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j Learned Features: like V1 receptive fields

[ S——

Yann LeCun

t New York University
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Iraining

[

on Natural

Image

%tches

t New York University
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Learned Features: like V1 receptive fields

Yann LeCun

t New York University
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Learned Features: like V1 receptive fields

[“— —

t New York University



Learned Features: like V1 receptive fields
————

-2 0 2
aFilter 482, D =1 6351

x 10

2

i

U 2] 0 2 4
. 10 Filter 294, D =0.9921

2

i I

% 7] 0 2 4

« 10° Filter 181, D = 0655

2_L
i ]
=2 0 2 4

0
")

i Filter 22, D =1.1796

EL} -2 0 2 4

Yann LeCui




: Noise out versus Noise in (1024 code units)

2sl --LDEM | |/
5 - = =FD DEM
Q
s, 4+ FLDEM |  f
= ~==L BP
2. -~ =FD BP
S ~+ FL BP
S, -==L SEP
()]
2, - = =FD SEP
54 ' FL SEP
© : : : ' ’
10~ 10°

Yann Le: average error per pixel at the input University



_Denoising
M@@y)

& PBP trained on natural image patches
256 Code Umts logistic

Origin\a\l Noisy Reconstruction

100 ; . ! ! i /
_e- L DEM : : : : L /
=3 =FDDEM| | | | . ’-.1

80r ot FLDEM| ................ ,,,,,,,,,,,,,,,, ................. o95dB l ‘ ‘
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Yann LeCun

t New York University



DECODER

DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



_Example of Reconstruction

el Rconirucios a

& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

"
BASIS FUNCTIONS |

(in feed-back layer)

I
|l

|
L

red squares: decoder bases

t New York University

Yann LeCun



Sparse Enc/Dec on Object Images

& 9x9 filters at the first level

LB sl 1NN b N
Al ENFANFal 2 i3
o= AN F o™
MRS kT I AT

& 9x9 filters at the second level (like V4?)
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Yann LeCun



j Recognition Rate on Caltech 101

background
— —3%

Great Satisfaction

~lE

100%

Yann LeCun

1 479,

t New York University
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AGR: Learning Applied to Ground Robotics

=

SIS SRE— R ———— —

¥ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

¥ Our team (NYU/Net-Scale Technologies

Inc.) is one of 8 participants funded by
DARPA

@ All teams received identical robots and can
only modify the software (not the hardware)

¥ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun * New York University




Long Range Vision: Distance Normalization

¥ Pre-processing (125 ms)

* Ground plane estimation

* Horizon leveling

Conversion to YUV + local
contrast normalization

* Scale invariant pyramid of

29

12,3m to IHF, =scale: 1,0

1.4

_m 5,8m to 17,6m, scalet 5,0
iy
_m_ 4,1m to 11,3m, scalet &,7

net@SCALE Page 77

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional Net Architecture

4 Operates on 12x25 YUV windows from the pyramid

Logistic regression 100 features -> 5 classes
100 features per

3x12x25 input window m

Convolutions with 6x5 kernels

Pooling/subsampling with 1x4 kernels

Convolutions with 7x6 kernels

20-36 pixels tall,

36-500 pixels wide
net(®SCALE bage 76

Technologies, Inc.

NEW YORK UNIVERSITY



Convolutional
Net Architecture

100@25x121

o, | e

CONVOLUTIONS (6x5)

20@30x125

20@30x484

3@36x484

YUYV input

net(®)SCALE o oo

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision: 5 categories

Online Learning (52 ms)

* Label windows using stereo information — 5 classes

super-ground ground footline obstacle super-obstacle

net@SCALE Page 80

Technologies, Inc.

NEW YORK UNIVERSITY



Trainable Feature Extraction

4 “Deep belief net” approach to unsupervised feature learning

4 Two stages are trained in sequence

@ each stage has a layer of convolutional filters and a layer of
horizontal feature pooling.

@ Naturally shift invariant in the horizontal direction

dFilters of the convolutional net are trained so that the input can
be reconstructed from the features
@ 20 filters at the first stage (layers 1 and 2)
@ 300 filters at the second stage (layers 3 and 4)

4 Scale invariance comes from pyramid. NN EELEF
@ for near-to-far generalization i!ii!i!uuﬁ

0 o O
1 0 A 56 4
119 1 v 5
1 5 s 6
I 3 30 G |
1 5 5 P 5 5 o 5 O
150 0 1
1

net@SCAL Page 81 NEW YORK UNIVERSITY

oooooooo gies, Inc.




Long Range Vision: the Classitier

Online Learning (52 ms)

* Train a logistic regression on every frame, with cross entropy loss function

D_(RIY) Minimize 4 5 categories are learned
A Loss 4 750 samples of each class
Y=F(WX): 5x1 T are kept in a ring buffer:
short term memory.
Logistic .
. W 4 Learning “snaps” to new
Regression . .
environment in about 10
Weights frames
X: 100x1 _ _ _
4 Weights are trained with
Feature Extractor (CNN) stochastic gradient descent
T 4 Regularization by decay to
R: 5x1 default weights
Pyramid Window Input: Label from Stereo
3x12x25
QSCALE Page 82 NEW YORK UNIVERSITY

Technologies, Inc.



Long Range Vision Results

net@SCALE Page 83

Technologies, Inc.

NEW YORK UNIVERSITY



Long Range Vision Results

net(SCALE



Long Range Vision Results

Stereo Labels Classifier Output

nputimage. _ Stereolgbels | .  Classifier Oufput.

net(SCALE



net(3>)SCALE

Technologies, Inc.




» Vehicle Map (Hyperbolic Polar map)
Legend {jpm Cost Map - = - RGB Map

() Goal " (FastOD T - (FarOD Only)
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

Uncertain

Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen

r FarOD Stereo:

NEW YORK UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend %Eﬁﬂ} Cost Map

"I Goal "™ (FastOD

Path Planning 25m & FarQD
= Trajectories /
Traversible 15m

Uncertain
10m
Quasi-Lethal
M Lethal
M Bumper/Stuck
M Unseen 5m

-10m

-15m

-25m

-50m
-100m
-200m

RGE Map
(FarOD Only)

“ NEW YORK

UNIVERSITY




Vehicle Map (Hyperbolic Polar map)

Legend fgom Cost Map RGB Map
(") Goal "M (FastOD (FarOD Only)

Path Planning 25m
= Trajectories
Traversible 15m

& FarQD

Uncertain
; Om
Quasi-Lethal
M Lethal
B Bumper/Stuck
B Unseen B FastoOD

-10m

S Ly W

FarOD Stereo: Input labels to Neural Network




+ Vehicle Map (Hyperbolic Polar map)
Legend fljifw,ﬁ'{ Cost Map

i 1Goal
Path Planning 25m & FarQD)

= Trajectories
Traversible 15m

RGE Map

"M (FastOD - (FarOD Only)

Uncertain
10m
Quasi-Lethal
M Lethal
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-100m
-200m
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- FarOD Stereo: Input labels to N

“ NEW YORK UNIVERSITY
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+ Vehicle Map (Hyperbolic Polar map)
Legend %ﬁ@'ﬁt Cost Map

i 1 Goal "™ (FastOD
Path Planning 25m

= Trajectories
Traversible 15m

Uncertain
Quasi-Lethal
M Lethal

M Bumper/Stuck
M Unseen Sm

-5m
-10m

-15m
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-200m
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FarOD Stereo: Input labels to Neural Network
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Videos

’

c#2008 Europa Technologies

net@SCALE Page 92 NEW YORK UNIVERSITY

Technologies, Inc.




_Application of Stacked Auto-Encoders to Text Retrieval
| N RSES———— S —————WSWSWWVSEE

@ [Ranzato et al. ICML 08]: semi-supervised stacked auto-encoders

| T N
.0“ LSl 2 | “@-shallow model: 2c.u. | -
.0 LSI: 32:: ‘O shallow model: 3c.u. | [ 0
ALSk 10 c.u 3‘ & shallow model: 10¢c.u.| : | - :
.q LSI: 40 clul 3 " shallow model: 40 c.u.| = :
-B-dee-p model: 2c.u. | : : ~©-deep model: 2c.u.
-E—deep model: 3 c.u. - L9 - 'E'dEEP madel: 3 c.u.
-A-deep model: 10 c.u. ¥ { = =& deep model: 10 c.u.
+deep model: 40 c.u. : T, , | +dEEP model: 40 c.u.
=Q=tf-idf Pl i —O—tf-idf
05— .
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wt 0’ 1w w0 10° RECALL
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Figure 5. Precision-recall curves of the Reuters dataset
comparing the model trained with only one layer (shal-
low architecture) to a deep model with the same number
of code units. The deep model outperforms the shallow
one overall when the features are extremely compact.

Figure 4. Precision-recall curves of the Reuters dataset
comparing a linear model (LSI) to the non-linear deep
model with the same number of code units (c.u.). Retrieval
is done using the k most similar documents according to
cosine similarity, with & € [1...2047].

Yann LeCun




_Application of Stacked Auto-Encoders to Text Retrieval
| TER S ———— = :

= _“M

& Ranzato et al. ICML 08

PRECISION

03

-©~deep model: 1,000 words |,
—9—deep model: 2,000 words
02 6 deep model: 5,000 words |
-5-deep model: 10,000 words |
-@-tf-idf: 1,000 words
|| “@-tf-idf: 2,000 words
- -tf-idf: 5,000 words
-3-tf-idf: 10,000 words

RECALL

Figure 6. Precision-recall curves of the 20 Newsgroups
dataset comparing the performance of the model (1 layer)
trained on documents with various number of words in the
dictionary (from 1000 to 10000).

Yann LeCun
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T 0.4- -©-binary (1000) |
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0.351 best compact (20)
0.3/ |-A-DBNgreedy (7) |
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0.2 R R R
107 102 107" 10°
RECALL

Figure 7. Precision-recall curves using very compact rep-
resentations and high dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.

t New York University
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Application of Stacked Auto-Encoders to Text Retrieval
| —— .

;M

Ohsumed dataset - deep model: 30689~100~10~5~2

= ~
()
- TR R -
& 52
(5 &
L XA [} ] . ,A
O & & % [ .
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= 2 [
O . O rLJ 2y O
bl § o o, o @
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L

Parasitic Diseases +n2
P ok

05—

Figure 8. The two-dimensional codes produced by the deep
model trained on the Ohsumed dataset (shown only the 6
most numerous classes). The codes have been computed by
propagating test documents through the 4-layer network.

Yann LeCun
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Yann LeCun
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xample: A Toy Problem. The Spiral

[ —

+ Dataset

> 10’000 random points along a y The data: Randomly sampled from a spiral
spiral in a 2D plane

* The spiral fits in a square with
opposite corners (-1,1), (1,-1)

+ The spiral is designed so that no
function can predict a single value
of from

+ Goal

* Learn an energy surface with low
energies along the spiral and high
energy everywhere else

Yann LeCun

t New York University
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PCA (Principal Component Analysis)

m—-ﬁ_‘__&___A

* Can be seen as encoder-decoder architecture that minimizes mean
square reconstruction error (energy loss)

* Optimal code 1s constrained to be equal to the value predicted by

encoder
* Flat surfaces are avoided by using a giimbadli -
Enc (Y )=WY

Dec(Z)=W"Y ,where WeR™"
C,(Y,zZ)=||wYy-Z|]
C,\Y,Z)=|\w'Z-Y|]

* For large value of Y energy

reduces to
E(Y,w)=|lw'wy-Y|/

Yann LeCun




* In this architecture the code Z is a binary vector of size N (N being
the number of prototypes)

* For any sample Y, only one component 1s active (equal to 1) and
all the others are inactive (equal to 0).

* This 1s a one-of-N sparse binary code

* The energy 1s:
E(Y,Z)=2, Z|Y-w|’

W .isthei " prototype

* Inference involves finding Z
that minimizes the energy

Yann LeCun

t New York University



Auto-encoder neural net (2-100-1-100-2 architecture)

. ——

* A neural network autoencoder that learns a low dimensional
representation.

* Architecture used
* Input layer: 2 units
* First hidden layer: 100 units
* Second hidden layer (the code): 1 unit
* Third hidden layer: 100 units
* Output layer: 2 units
* Similar to PCA but non-linear

* Energy is
E(Y)=|Dec(Enc(Y))-Y[

Yann LeCun

t New York University



j Wide auto-encoder neural net with energy loss

" = . 7 ,

* The energy loss simply pulls down on the energy of the training samples (no
contrastive term).

* Because the dimension of the code is larger than the input, nothing prevents the
architecture from learning the identity function, which gives a very flat energy
surface (a collapse): everything is perfectly reconstructed.

* Simplest example: a multi layer neural network with identical input and output
layers and a large hidden layer.

* Architecture used
* Input layer: 2 units
* Hidden layer (the code): 20 units
* Output layer: 2 units

* Energy loss leads to a collapse

* Tried a number of loss functions

Yann LeCun

t New York University
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_Wide auto-encoder with negative-log-likelihood loss

* Negative Log Likelihood Loss

* Pull down on the energy of
training (observed) samples

* Pull up on the energies of all the
other (unobserved) samples

* Approximate the log of partition
function through dense sampling.

* Energy surface 1s very “stiff”

because of small number of
parameters.

* Hence the energy surface 1s not
perfect.

Yann LeCun

t New York University
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_Wide auto-encoder with energy-based contrastive loss ,
* Linear-Linear Contrastive Loss
* Avoid the cost associated with
minimizing negative log likelihood
* Idea 1s to pull up on unobserved points
in the vicinity of training samples
* We use Langevin dynamics to
generate such points

Per-n2Ely

* The loss function is

LY, W)=xE(Y,W)+max(0,m—E(Y ,W))

Yann LeCun
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Wide auto-encoder with sparse code
| ——

* Sparse Codes

* Limiting the information
content of the code prevents flat
energy surfaces, without the
need to explicitly push up the
bad points

* Idea 1s to make the high
dimensional code sparse by
forcing each variable to be zero
most of the time

Yann LeCun

t New York University



