"Who is afraid of non-convex

loss functions?

The Courant Institute of Mathematical Sciences

New York University

Yann LeCun

- Convex Shmonvex

@ The NIPS community has suffered of an acute convexivitis epidemic
» ML applications seem to have trouble moving beyond logistic
regression, SVMs, and exponential-family graphical models.

» For a new ML model, convexity is viewed as a virtue
» Convexity is sometimes a virtue
» But it is often a limitation

» ML theory has essentially never moved beyond convex models
¢ the same way control theory has not really moved beyond linear systems

» Often, the price we pay for insisting on convexity is an
unbearable increase in the size of the model, or the scaling
properties of the optimization algorithm [O(n"2), O(n™3)...]

» SDP-based manifold learning, QP-based kernel method, CRF.
MMMN,

Yann LeCun

t New York University

& Other communities aren't as afraid as we are of non-convex

optimization

» handwriting recognition
¢ HMMs and Graph-Transformer-Network-based systems are non-convex

» speech recognition
& discriminative HMMs are non convex

& This is not by choice: non-convex models simply work better
» have you tried acoustic modeling in speech with a convex loss?

Yann LeCun

t New York University

0 solve complicated Al taks, ML will have to go non-convex

& paraphrasing the deep learning satellite session: Ultimately, complex
learning tasks (e.g. vision, speech, language) will be implemented with

““deep”’ hierarchical systems.

» To learn hierarchical representations (low-level features, mid-
level representations, high-level concepts....), we need “deep
architectures”.

» These inevitably lead to non-convex loss functions

& But wait! don't we have theorems that ‘“‘shallow” (and convex) kernel

methods can learn anything?
» Yes. But that says nothing about the efficiency of the
representation.

» For example: there is empirical and theoretical evidence that
shallow architectures cannot implement invariant visual
recognition tasks efficiently

» see [Bengio & LeCun 07] “scaling learning algorithms towards AI”

Yann LeCun

t New York University

— — e e — = — —

: Best Results on MNIST (from raw images: no preprocessi)
[——— e e I

CLASSIFIER DEFORMATION ~ ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60 Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53 Hinton, in press, 2005

SVM, Gaussian Kernel 1.40 Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95 Hinton, in press, 2005
Convolutional nets

Convolutional net LeNet-5, 0.80 LeCun 2005 Unpublished

Convolutional net LeNet-6, 0.70 LeCun 2006 Unpublished

Conv. net LeNet-6- + unsup learning 0.60 LeCun 2006 Unpublished
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10 Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80 Scholkopf

Convolutional net, CE Affine 0.60 Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70 Simard et al., ICDAR 2003

Convolutional net, CE Elastic 040 Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.38 LeCun 2006 Unpublished

Yann LeCun * New York University

Conyvexity is Overrated

& Using a suitable architecture (even if it leads to non-convex loss
functions) is more important than insisting on convexity

(particularly if it restricts us to unsuitable architectures)
» e.g.: Shallow (convex) classifiers versus Deep (non-convex)

classifiers
@ Even for shallow/convex architecture, such as SVM, using non-

convex loss functions actually improves the accuracy and speed

» See “trading convexity for efficiency” by Collobert, Bottou,
and Weston, ICML 2006 (best paper award)

Yann LeCun

t New York University

m

B

ANormalized-Uniform Set: Error Rates

el

& Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images: 5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
20 eI S S PR
WNNaASR VENRWY X
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun

t New York University

Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University

Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
&® Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3 %
7.8 %
5.9%

20.8 %

26.0%

error

error

error

error

error

t New York University

Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun

‘_ Optimization algorithms for learning

& Neural nets:

» conjugate gradient, BFGS, LM-BFGS, don't work as well as
stochastic gradient

& SVM:

» “batch” quadratic programming methods don't work as well as SMO.
SMO don't work as well as recent on-line methods

& CRF:

» Iterative scaling (or whatever) doesn't work as well as stochastic
gradient (Schraudolph et al ICML 2006)

» The discriminative learning folks in speech and handwriting
recognition have known this for a long time

& Stochastic gradient has no good theoretical guarantees

» That doesn't mean we shouldn't use them, because the empirical
evidence that it works better is overwhelming

Yann LeCun * New York University

>

Theoretical Guarantees are overrated
m—ﬁﬁgﬂ_# —

& When Empirical Evidence suggests a fact for which we don't have

theoretical guarantees, it just means the theory is inadequate.
& When empirical evidence and theory disagree, the theory is wrong.

& Let's not be afraid of methods for which we have no theoretical

guarantee, particularly if they have been shown to work well
& But, let's aggressively look to those theoretical guarantees.

&@ We should use our theoretical understanding to expand our creativity,

not to restrict it.

Yann LeCun * New York University

The visual system is “deep’ and learned

M

@ The primate's visual system is ‘“‘deep”
» It has 10-20 layers of neurons from the retina to the infero-
temporal cortex (where object categories are encoded).
» How does it train itself by just looking at the world?.

@ Is there a magic bullet for visual learning?

» The neo-cortex is pretty much the same all over

» The “learning algorithm” it implements is not specific to a
modality (what works for vision works for audition)

» There is evidence that everything is learned, down to low-
level feature detectors in V1

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we have to keep accumulating a large repertoire of
pre-engineered "modules” to solve every specific problem an
intelligent vision system must solve?

Yann LeCun

t New York University

& We can approximate any function as close as we want with shallow

architecture. Why would we need deep ones?

y=3Y aK(X, X y=FW'FW"X))

III
L]

» kernel machines and 2-layer neural net are “universa

& Deep learning machines
y=FW" FW L F(..FOW".X)..))

@ Deep machines are more efficient for representing certain classes of

functions, particularly those involved in visual recognition
» they can represent more complex functions with less

“hardware”
@ We need an efficient parameterization of the class of functions that

we need to build intelligent machines (the ‘“Al-set”)

Yann LeCun

t New York University

P ——————————

Why are Deep Architectures More Efficient?

M

& A deep architecture trades space for time

» more layers (more sequential computation),
» but less hardware (less parallel computation).
» Depth-Breadth tradoff

& Examplel: N-bit parity
» requires N-1 XOR gates in a tree of depth log(N).

» requires an exponential number of gates of we restrict ourselves to
2 layers (DNF formula with exponential number of minterms).

& Example2: circuit for addition of 2 N-bit binary numbers
» Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.

» Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).

» Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2”~N).....

Yann LeCun

t New York University

Strategies (after Hinton 2007)

& Defeatism: since no good parameterization of the Al-set is available, let's
parameterize a much smaller set for each specific task through careful

engineering (preprocessing, kernel....).

& Denial: kernel machines can approximate anything we want, and the VC-

bounds guarantee generalization. Why would we need anything else?
» unfortunately, kernel machines with common kernels can only

represent a tiny subset of functions efficiently
@ Optimism: Let's look for learning models that can be applied to the
largest possible subset of the Al-set, while requiring the smallest amount

of task-specific knowledge for each task.

» There is a parameterization of the Al-set with neurons.

» Is there an efficient parameterization of the Al-set with computer
technology?

@ Today, the ML community oscillates between defeatism and denial.

Yann LeCun

t New York University

—_——

=

Deep Learning is Hard?

& Example: what is the loss function for the simplest 2-layer neural net ever

» Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

y = tanh(W; tanh(Wy.z)) L = (0.5 — tanh(WW; tanh(W00.5)2

“impigraspdotier- 1 7 6C-TTetdan”
2
15

Yann LeCun

t New York University

m

_Deep Learning is Hard?
[—

4

& For large networks, it will be horrible!
& It will be horrible if the network is tall and skinny.

& It won't be too bad if the network is short and fat.

T A very large first layer
I |

Yann LeCun

t New York University

| Shallo odels |

& 1957: perceptron: fixed/random first layer. Trainable second layer

& 1985: backprop: both layers are trained. But many people are afraid of
the lack of convergence guarantees

@ 1992: kernel machines: large first layer with one template matcher for
each training sample. Trainable second layer

» sparsity in the second layer with hinge loss helps with efficiency,
but not with accuracy

if your first layer is very large

you don't need to train it

Yann LeCun

t New York University

The Problem with Non-Convex Learning

& None of what you read in the optimization literature applies
» (see Leon Bottou's tutorial at NIPS 2007)

@ You need to use stochastic methods to take advantage of the redudancy in
the data

& stochastic methods have horrible asymptotic properties, but that is
irrelevant
» they converge very quickly to the “best solution” as measured by
the test error

& the optimization literature does not talk about stochastic methods
» forget about conjugate gradient, LM-BFGS, BFGS, Quasi-Newton...

@ the optimization literature deals with problems where O(N*2) is OK
» when you have 1076 parameters, O(N) is all you can afford.

Yann LeCun

t New York University

Back-pr

& oradient descent is unreliable when the network is small, particularly

when the network has just the right size to learn the problem

& the solution is to make the network much larger than necessary and
regularize it (SVM taught us that).

& Although there are lots of local minima, many of them are equivalent

» it doesn't matter which one you fall into
» with large nets, back-prop yields very consistent results

& Many local minima are due to symmetries in the system

@ Breaking the symmetry in the architecture solves many problems
» this may be why convolutional nets work so well

Yann LeCun

t New York University

T ————— —

| Convolutional Networks

k‘ﬁtt

Yann LeCun

t New York University

| Dee

@ Supervised Convolutional nets work

very well for:
» handwriting recognition(winner on
MNIST)
» face detection

» object recognition with few classes
and lots of training samples

4

il
Nl &

LSk S

;

|,,:

Yann Le t New York University

“Only Yann can do it” (NOT!)

m‘z;—h

& What about Mike O'Neill?

& http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

Yann LeCun

t New York University

The Basic Idea for Training Deep Feature Hierarchies

& Each stage is composed of

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ (RBM is a special case)

& Each stage is trained one after the other
» the input to stage i+1 is the feature vector of stage i.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY

Yann LeCun

t New York University

.Sparsifying with a high-threshold logistic function

@ Algorithm: Energy of decoder

@ 1. find the code Z (reconstruction error)

that minimizes the
) IIWd £(Z)-XII
reconstruction

error AND is close ..
to the encoder DECODER Sparsifying

output Logistic f

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to

decrease the
. Energy of encoder
prediction error 7

(prediction error)

Yann LeCun

t New York University

,WM

“The Multistage Hubel-Wiesel Architecture

m—:——ﬁﬁﬁg_“ =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]

W, -!ll .
e P B S
|
il “

..

Yann LeCun

t New York University

35 e T

Unsupervised Training of Convolutional Filters

BSSSSui i —— —— S ASRRSNSN I)

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)

<
[
=h
S—
H
a
-
2]
[y
=
g
—
2]
H
(@)
o
=
<
[
o
<
a
-

»
=
;=
o
-

? The baseline: lenet6 initialized randomly

EEDITE
EREGN:
T ER
LAEEE
FENYE
EENIE:
AEETE
DREE
FRNES
WidmaF,

Test error rate: (.70 % . Training error rate: 0.01%.

o

fil

H
a
-
2]
[y
=
=h
g}
w2
H
(@)
@)
=
<
[E—
o
<
a
-

, unsupervise
@ Experiment 1 B

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

FHIT
I e I
LTI
S Hura
L~ W |
KLEFINN -
1HYaN
T
LI Ll
EMLAE

Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]

— — e e — = — —

: Best Results on MNIST (from raw images: no preprocessi)
[——— e e I

CLASSIFIER DEFORMATION ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60 Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53 Hinton, in press, 2005

SVM, Gaussian Kernel 1.40 Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95 Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80 Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70 Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60 Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10 Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80 Scholkopf

Convolutional net, CE Affine 0.60 Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70 Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40 Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39 Ranzato et al. NIPS 2006

Yann LeCun * New York University

S

Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)

with 600K digits.
Ya._._ _____

t New York University

—

mm,mf,

Influence of Number of Training Samples
I ———

R e Supenised baining of the whole netwark 7
= P - “\\ .. —&#— Unsupervised fraining of the feature axtractarsg.
Th e "‘u,\\ .. — + — Random feature exfractars

i

&

% Classification error

0.5
200 1000 2000 5000 10000 20000 40000 0000

Size of labelled training set

Yann LeCun * New York University

The right tools: Automatic Differentiation

mﬁmk‘___ — — NS

& Object-Oriented, module-based AD

» [Bottou & Gallinari 1991]

» Implemented in Lush [Bottou & LeCun]

» Implemented in Torch [Collobert]

» Implemented in Monte Python [Memisevic]

module.fprop(input,output)
module.bprop(input,output)
module.bbprop(input,output)

[

Yann LeCun

t New York University

SQUARE JACOBIAN APPROXIMATION
FOR GAUSS-NEWTON AND
LEVENBERG-MARQUARDT ALGOS.

Assume the cost function is the Mean Square Error:
B(®) = 1725, (Dp = N(@%,))" (Dp = N(@.x;,))

Gradient: ? E
JE(w) _ _ » ON(W, X p) .
) X (Dp— Ny)) 20e LT ;

D

Hessian: o

_ y IN(@,xp) IN(®.xp)
H(w) =% Sher Sramil + —~ N(®,%)
Y (Dp—N(w,y)) 9*N(@,xp)
ID(p— N(®,x)) P o 1‘
Simplified Hessian (square of the Jacobian): X
ON(m,%p) IN(w,
H(w) =% d(u()D Xp) d(cf)” xp) Jacobian: NxO matrix
P | (O: number of outputs)

- the resulting approximate Hessian is positive semi-definite
- dropping the second term is equivalent to assuming that
the network is a linear function of the parameters

RECIPE for computing the k-th column of the Jacobian:
for all training patterns {

forward prop

set gradients of output units to 0;

set gradient of k—-th output unit to 1;

back propagate; accumulate gradient;

Yann LeCun

* New York University

Yann LeCun

BACKPROPAGATING SECOND DERIVATIVES

Y

A multilayer system composed of 1‘
functional blocs. Consider one of
the blocs with | inputs, O outputs, o B(w)y)
and N parameters

: J9°E : 1
Assuming we know (OxO matrix) X

oY 2
3°E 9’E

what are vl (NxN matrix) and W (IxI matrix)

2 ,
Chain rule for d°E _ oY 82E oY
2nd derivatives: 0®2 0® JY2 0w

/o

NxN NxO OxO OxN

The above can be used to compute a
bloc diagonal subset of the Hessian

OE 9%Y

dY 0m2

4 AN

1x0O OxNxN
ighore this!

If the term in the red square is dropped, the resulting
Hessian estimate will be positive semi-definite

If we are only interested in the diagonal terms, it reduces to:

9’E v o°E (aYkk
7607 ~% vz o

2
) (and same with X instead of @)

New York University

BACKPROPAGATING THE DIAGONAL
HESSIAN IN NEURAL NETS

(with the square Jacobian approximation)
[LeCun 87, Becker&LeCun 88, LeCun 89]

Sigmoids (and other scalar functions) ? Z
razE - 2B (p(y))’ f0
Yl% 52k2 .
: 1 Y
Weighted sums
9’E _9’E 5> O o
o2 ~IYZ
i K 1 X
9°E -y 9°E o>
xuz Yk2 | ? Y
e 2 o o
2 —»t —
Jw2 dY2 7 ¥
Ki Kk X
J3’E _ 9°E (. —® .)2 (the 2nd derivatives with
o2 ; §Yk2 i K respect to the weights
i

should be averaged over
the training set)

SAME COST AS REGULAR BACKPROP

the "OBD" network pruning techniques uses
this procedure [LeCun,Denker&Solla 90]

Yann LeCun

New York University

Yann LeCun

COMPUTING THE PRODUCT OF THE
HESSIAN BY A VECTOR

(without computing the Hessian itself)

Finite difference:

H¥~ }7 (g—g (+oF) — g—g (0)))

fE

RECIPE for computing the product I—T
of a vector ¥ by the Hessian:

1- compute gradient 0

2- add oY to the parameter vector o N((,),X)

3- compute gradient with perturbed
parameters

4- subtract result of 1 from 3,

divide by « 1* X

This method can be used to compute the principal

eigenvector and eigenvalue of H by the power method.

By iterating W « HY/ ||¥|| Y

will converge to the principal eigenvector of H
and [|'V|| to the corresponding eigenvalue
[LeCun, Simard&Pearimutter 93]

A more accurate method which does not use finite
differences (and has the same complexity) has
recently been proposed [Pearimutter 93]

New York University

Yann LeCun

ANALYSIS OF THE HESSIAN

IN MULTILAYER NETWORKS

-What does the Hessian of a multilayer network
look like?

- How does it change with the architecture and
the details of the implementation?

- Typically, the distribution of eigenvalues of a
multilayer network looks like this:

a few small eigenvalues, a large
number of medium ones,

and a small number of very
large ones

These large ones are the killers

They come from:

- hon-zero mean inputs or neuron states

- wide variations second derivatives from
layer to layer

- correlations between state variables

for more details see [LeCun, Simard&Pearimutter 93]
[LeCun, Kanter&Solla 91]

New York University

EIGENVALUE SPECTRUM

Network: 256-128-64-10 with local connections and
shared weights (around 750 parameters)
Data set: 320 handwritten digits

0.5 § <@—————— the ratio between the 1st and
. the 11th eigenvalues is 8
() -1.5
=
[0 -2
>
s -2.5
e
L -3
S -3
(®)]
o -4
—
-4.5
-5
20 -5.5
19
18 -6
17 0 100 200 300 400 500 600 700 800
i Eigenvalue order
14
13
11 Big killers

Y
(@]

Number of Eigenvalues

HISTOGRAM

O R NWN OO~

0 2 4 [8 10 12 14 16

Eigenvalue magnitude
Yann LeCun New York University

MULTILAYER NETWORKS HESSIAN

Vo— 4R

The second derivative is often smaller in
lower layers. The first layer weights learn
very slowly, while the last layer weights
change very quickly.

This can be compensated for using the
diagonal 2nd derivatives (more on this later)

Yann LeCun

New York University

GAUSS-NEWTON AND
LEVENBERG-MARQUARDT METHODS

These methods only apply to Mean-Square Error
objective functions (nhon-linear least square).

Gauss-Newton algorithm:

like Newton but the Hessian is L‘ |
approximated by the square of the jacobian T
(which is always positive semidefinite) D

, —1 Q)
_ [y IN(®.xp) IN(®.Xp) - N(w.))
Ao =(E) Tokel) VE@)

dJdn

Levenberg-Marquardt algorithm: 1 X

like Gauss-Newton, but has a safeguard parameter to
prevent it from blowing up if some eigenvalues are small
-1

AG = zp: angDaXp) ang()D,Xp) + U I) VE(®)

— Both are O(NA3) algorithms

- they are widely used in statistics for regression

- they are only practical for small numbers of
parameters.

- they do not require a line search, so in principle
they can be used in stochastic mode (although
that has not been tested)

Yann LeCun New York University

Yann LeCun

A STOCHASTIC DIAGONAL
LEVENBERG-MARQUARDT
METHOD

[LeCun 87, Becker&LeCun 88, LeCun 89]

THE MAIN IDEAS:

- use formulae for the backpropagation of
the diagonal Hessian (shown earlier) to keep
a running estimate of the second derivative
of the error with respect to each parameter.

— use these term in a "Levenberg-Marquardt"
formula to scale each parameter’s learning rate

Each parameter (weight) ®y; has its own
learning rate 1] ;computed as:

€ 1s a global "learning rate"

82E is an estimate of the

_ €)02 diagonal second derivative
N aZE (0;% with respect to weight (ki)
o7 tR
(Dkzi L is a "Levenberg-Marquardt"

parameter to prevent T .
form blowing up if the 2nd
derivative is small

New York University

A STOCHASTIC DIAGONAL
LEVENBERG-MARQUARDT

METHOD

2
The second derivatives ?mr]iz can be computed using
|
a running average formula over a subset of the training
set prior to training:

82E ’E 9°EP
«— (1 v) o + Y r
instantaneous

new estimate previous small 2nd der. for
of 2nd der. estimate constant pattern p

The instantaneous second derivatives are computed using
the formula in the slide entitled:
"BACKPROPAGATING THE DIAGONAL HESSIAN IN NEURAL NETS"

Since the second derivatives evolve slowly, there is no need

to reestimate them often.

They can be estimated once at the beginning by sweeping
over a few hundred patterns.

Then, they can be reestimated every few epochs.

The additional cost over regular backprop is negligible.

Is usually about 3 times faster than carefully tuned
Yann LeCun stochastic gradient.

New York University

Stochastic Diagonal Levenberg-—Marquardt

data set: set-1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
2 weights, 1 bias.

Weight space

Learning Ny N
rates: - \
n0=0.12
nl =0.03 '
n2=0.02
Hessian '
largest s
eigenvalue: »
A =084 .
max 1
Maximum Log MSE (dB)
admissible o,
Learning
rate (batch): -

N mac 2.38) \

-20

5 10
epochs ..
Yann LeCun New York University

o
=
N
Wik
=y
o
[e))
~

Yann LeCun

Stochastic Diagonal Levenberg-—Marquardt

data set: set-1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
2 weights, 1 bias.

Weight space

Learning Ny N
rates: - \
n0=0.76
Nl =0.18 '
n2=0.12
Hessian '
largest s
eigenvalue: »
A =084
max 1
Maximum Log MSE (dB)
admissible o,
Learning
rate (batch): -
Nma= 2-38

-10
L

-15
L

-20

8 9 10

epochs

o
=
N
Wik
=y
o
[e))
~

New York University

Yann LeCun

COMPUTING THE PRINCIPAL
EIGENVALUE/VECTOR OF THE

HESSIAN

without computing the Hessian

IDEA #1 (the power method):

1 — Choose a vector lP at random

OLD ESTIMATE
YJ—=—" OF EIGENVECTOR

2 —iterate: YV «— H

NEW ESTIMATE f K ESTIMATE OF

OF EIGENVECTOR FEf,ﬁlAN . EIGENVALUE
will converge to the principal eigenvector

(or a vector in the principal eigenspace)

”\P” will converge to the corresponding
eigenvalue

* New York University

Yann LeCun

COMPUTING THE PRODUCT HVY

IDEA #2 (Taylor expansion):

OLD ESTIMATE
NEW ESTIMATE OF EIGENVECTOR
OF EIGENVECTOR

\ B, W
Y« —((oo+oc”\{,”) aw(m))

"SMALL") \

PERTURBED GRADIENT
CONSTANT GRADIENT

One iteration of this procedure requires
2 forward props and 2 backward props
for each pattern in the training set.

This converges very quickly to a good
estimate of the largest eigenvalue of H

* New York University

Yann LeCun

ON-LINE COMPUTATION OF Y

IDEA #3 (running average):
OLD ESTIMATE
OF EIGENVECTOR

NEW ESTIMATE
OF EIGENVECTOR (
1 { OEP [OEP
Y «— (1-v)YVW¥V+y — 4Ol e Q)
(I}()/}(a 81(0 (0+)~ aci) (@)
"SMALL" PERTURBED GRADIENT FOR
GRADIENT FOR
CONSTANTS CURRENT PATTERN SHRRERT

This procedure converges VERY quickly to the largest
eigenvalue of the AVERAGE Hessian.

The properties of the average Hessian determine the
behavior of ON-LINE gradient descent
(stochastic, or per-sample update).

EXPERIMENT: A shared-weight network with 5 layers
of weights, 64638 connections and 1278 free parameters.
Training set: 1000 handwritten digits.

Correct order of magnitude is obtained in less than
100 pattern presentations (10% of training set size)

The fluctuations of the average Hessian over the training
set are small.

t New York University

Yann LeCun

RECIPE

BE ¥ . OFP

1 - Pick initial eigenvector estimate at random

2 — present input pattern, and desired output.
perform forward prop and backward prop.
Save gradient vector G(w)

3-add ¥ to current weight vector

Il

4 - perform forward prop and backward prop with
perturbed weight vector. Save gradient vector G’(w)

5 - compute difference G’(w)-G(w). and divide by O
update running average of eigenvector
with the result

6 — goto 2 unless a reasonably stable result is obtained

: : : 1
7 - the optimal learning rate is =
1]l

* New York University

70 | \M‘"\/—‘W

60 |
50 |

40

eigenvalue

30 4

¥=0.003
1 v=0.01 T* >

- -

-\l

50 100 150 200 250 300 350 400

10

0
0

Y=O.1 ’Y:0.03 Number of pattern presentations

Yann LeCun

Network: 784x30x10 fully connected
Training set: 300 handwritten digits

MEAN SQUARED ERROR

—

0 0.250.50.75 1 1.251.51.75 2 2.252.52.75 3 3.253.53.75 4

LEARNING RATE

Yann LeCun * New York University

Yann LeCun

MEAN SQUARED ERROR

-5 _

Network: 1024x1568x392x400x100x10
with 64638 (local) connections
and 1278 shared weights

Training set: 1000 handwritten digits

/
e ————

0

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

LEARNING RATE

PREDICTED OPTIMAL LEARNING RATE

* New York University

. The En

—

Yann LeCun

t New York University

