The Courant Institute of Mathematical Sciences
New York University
Collaborators:

elio Ranzato, Y-Lan Boureau, Fu-Jie Huang, Sumi

See: [Ranzato et al. NIPS 2007], [Ranzato et al. CVPR 2007],
[Ranzato et al. AI-Stats 2007], [Ranzato et al. NIPS 2006]
Bengio & LeCun “Scaling Learning Algorithms towards Al, 2007]

http://yann.lecun.com/exdb/publis/

Yann LeCun

t New York University



-

Challenges of Computer Vision (and Visual Neuroscience)
[ —— ——

@ How do we learn “invariant representations’’?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

& How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can
recognize every airplane (even really weird ones)
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The visual system is “deep’ and learned

M

@ The primate's visual system is ‘“‘deep”
» It has 10-20 layers of neurons from the retina to the infero-
temporal cortex (where object categories are encoded).
» How can it train itself by just looking at the world?.

@ Is there a magic bullet for visual learning?

» The neo-cortex is pretty much the same all over

» The “learning algorithm” it implements is not specific to a
modality (what works for vision works for audition)

» There is evidence that everything is learned, down to low-
level feature detectors in V1

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we have to keep accumulating a large repertoire of
pre-engineered "modules” to solve every specific problem an
intelligent vision system must solve?

Yann LeCun
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@ Supervised Convolutional nets work

very well for:
» handwriting recognition(winner on
MNIST)
» face detection

» object recognition with few classes
and lots of training samples
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. Learning Deep Feature Hierarchies
RO

@ The visual system is deep, and is learned
» How do we learn deep hierarchies of invariant features?

& On recognition tasks with lots of training samples, deep supervised

architecture outperform shallow architectures in speed and accuracy

& Handwriting Recognition:

» raw MNIST: 0.62% for convolutional nets [Ranzato 07]
» raw MNIST: 1.40% for SVMs [Cortes 92]
» distorted MNIST: 0.40% for conv nets [Simard 03, Ranzato 06]
» distorted MNIST: 0.67% for SVMs [Bordes 07]
@ Object Recognition
» small NORB: 6.0% for conv nets [Huang 05]
» small NORB: 11.6% for SVM [Huang 05]
» big NORB: 7.8% for conv nets [Huang 06]
» big NORB: 43.3% for SVM [Huang 06]

Yann LeCun
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: Learning Deep Feature Hierarchies

& On recognition tasks with few labeled samples, deep supervised

architectures don't do so well
» a purely supervised convolutional net gets only 20% correct on

Caltech-101 with 30 training samples/class
& We need unsupervised learning methods that can learn invariant

feature hierarchies

& This talk will present methods to learn hierarchies of sparse and

invariant features

& Sparse features are good for two reasons:

» they are easier to deal with for a classifier

» we will show that using sparsity constraints is a way to upper
bound the partition function.

Yann LeCun
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The Basic Idea for Training Deep Feature Hierarchies

& Each stage is composed of

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
¢ (RBM is a special case)

& Each stage is trained one after the other
» the input to stage i+1 is the feature vector of stage i.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY

Yann LeCun
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- Feature Learning with the Encoder-Decoder Architecture

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z =argmin E(Y ,Z,W)

& A principle on which

unsupervised algorithms can be FEATURES

(CODE)
Z

built is reconstruction of the
input from a code (feature

vector)

» RBM: E(Y,Z,W)=-Y'WZ

» PCA: EC(Y) = ||Y-W'WY]||"2

» K-means, Olshausen-Field,
Hoyer-Hyvarinen.....

E(Y,W)=min E(Y,Z,W)

Yann LeCun
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: Preventing “Flat” Energy Surfaces

@ If the dimension of Z is larger
than the input, the system can
reconstruct any input vector

exactly in a trivial way
@ This is BAD

@ We want low energies for
training samples, and high

energies for everything else

& Contrastive divergence is a nice
trick to pull up the energy of
configurations around the

training samples

Yann LeCun

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

Z, =argmin E(Y ,Z,W)

FEATURES
(CODE)
Z

E(Y,W)=min E(Y,Z,W)

t New York University



Learning Sparse Features

& If the feature vector is larger than the input, the system can learn the

identity function in a trivial way
RECONSTRUCTION

ERROR
DECODER
ENCODER

@ To prevent this, we force the feature

Sparsity

vector to be sparse

& By sparsifying the feature vector, we

limit its information content, and we
FEATURES
(CODE)

Z

prevent system from being able to

reconstruct everything perfectly

» technically, code sparsification
puts an upper bound on the
partition function of P(Y) under

the model [Ranzato AI-Stats 07]
INPUT Y

Yann LeCun
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_Why sparsity puts an upper bound on the partition function

& Imagine the code has no restriction on it

» The energy (or reconstruction error) can be zero everywhere,
because every Y can be perfectly reconstructed. The energy is
flat, and the partition function is unbounded

& Now imagine that the code is binary (Z=0 or Z=1), and that the

reconstruction cost is quadratic E(Y) = l[lY-Dec(Z)I*2

» Only two input vectors can be perfectly reconstructed:
» YO=Dec(0) and Y1=Dec(1).
» All other vectors have a higher reconstruction error

@ The corresponding probabilistic model l}as a bounded partition
function: E(Y)
e~ EY)

f e~

P(Y) =

>
YO Yl Y
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.Sparsifying with a high-threshold logistic function

@ Algorithm: Energy of decoder

@ 1. find the code Z (reconstruction error)

that minimizes the
) IIWd £(Z)-XII
reconstruction

error AND is close ..
to the encoder DECODER Sparsifying

output Logistic f

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to

decrease the
. Energy of encoder
prediction error 7

(prediction error)

Yann LeCun
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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ANSE

reconstructed

original without minimization
()
? R ? = 1 + 1 +1
)
+1 +1 + 0.8
+1 F +1 + 0.8
reconstructed
original without minimization difference
. .. | forward propagation through
oS
— - -F-
:" ; . encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

7 - |7

after training there is no need to

minimize in code space
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RBM: filters trained on MNIST

& ‘“‘bubble” detectors

Yann LeCun * New York University
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Tralnlng the fllters of a Convolutional Network
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“The Multistage Hubel-Wiesel Architecture

m—:——ﬁﬁﬁg_“ =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX
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Unsupervised Training of Convolutional Filters
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CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)
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? The baseline: lenet6 initialized randomly
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Test error rate: (.70 % . Training error rate: 0.01%.
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, unsupervise
@ Experiment 1 B

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer
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Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]
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: Best Results on MNIST (from raw images: no preprocessi)
[ ——— e e I

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39  Ranzato et al. NIPS 2006

Yann LeCun * New York University




Berkeley data set

EIEE=E?E" = * 100,000 12x12 patches
ﬁ E%EE iﬂ%g + 20)%) units in the code

NS N SEE ° 5002
HAEE =8 8, 1

ol aFiS | kN
%
P
e |

B ¥ learning rate 0.001
k-
===H==$i * L1 regularizer 0.001

* fast convergence: < 30min.

-
e
i
s
ol -
-
»




200 decoder filters (reshaped columns of matrix W¢)
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Denoising

s.d./ PSNR Lena Barbara Boat House Peppers

30/ 14.15 186 2861 7179|2649 || 2346 2548|2547 315 || 2600 2638 2595 | M53 || 785 2826 795 2674 | 2635 1590 2613 | 132
75/10.63 1597 2684 2580 2413 || 2246 2365 2301 2136 || 431 479 2398 248 | 2577 2641 522 W13 || U6 100 369 2168
100/8.13 2449 2564 2446 2087 || 2177 2261 2189 1977|2309 | 2375 2281 2080 || 2420 2511 70 266 | 2304 | 2266 275 1960

Comparison between:

@ our method [first column]

@ Portilla et al. IEEE Trans. Image Processing (2003) [second column]
@ Elad and Aharon CVPR 2006 [third column]

@ Roth and Black CVPR 2005 [fourth column]




DECODER

DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor
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encoder shift-invariant decoder (d)

filtehak

input
image

feature

feature

maps

UOT)INIJSUOIIT

convolutions max : switch ™Maps convolutions
pooling tf ----------- t ------ upsampliﬁ
ransformation
encoder ecoder

parameters
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

7?7~ 7 =) |
ACTIVATED DECODER

___—
BASIS FUNCTIONS |

(in feed-back layer)

red squares: decoder bases

t New York University
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[Ranzato et al. NIPS 2007]

@ Encoder and Decoder are RECONSTRUCTION  Sparsifying

ERROR penalty

DECODER

0|/]|25456729

Yann LeCun

symmetric (they have the same

parameters

@ There is a log Student-T penalty

on components of the code

FEATURES
(CODE)

Z

t New York University
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Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)

with 600K digits.
Ya._._ _____

t New York University
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Influence of Number of Training Samples
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% Classification error

0.5
200 1000 2000 5000 10000 20000 40000 0000

Size of labelled training set
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Generic Object Recognition: 101 categories + background

& Caltech-101 dataset: 101 categories

» accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

@ Only 30 training examples per category!

& A convolutional net trained with backprop (supervised) gets 20 %

correct recognition.

@ Training the filters with the sparse invariant unsupervised method

Yann LeCun

t New York University



_Training the 1* stage filters

@ 12x12 input windows (complex cell receptive fields)
& 9x9 filters (simple cell receptive fields)

& 4x4 pooling

64 33x33
feature maps

simp le-cell layer

complex-cell
F layer
input image L
140x140 Cdllee Al o
B u P r
B ad -
R e T2 |
: l- a-o b

- -0 L
l} 4x4 pooling
convolution mgueshing
&4 9x9 filters

Yann LeCun * New York University
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_Training the 2" stage filters

@ 13x13 input windows (complex cell receptive fields on 1* features)
& 9x9 filters (simple cell receptive fields)
& Each output feature map combines 4 input feature maps

& 5x5 pooling

64 33x33
feature maps complex-cel e oe
layer feature maps
oo k| © .
&0 |/ :
a0 [A|H -
@ |
oo M| k]
5x5 pooling
convolution squashing
2048 9x9 filters

second level feature extraction

Yann LeCun
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_Generic Object Recognition: 101 categories + background

@ 9x9 filters at the first level

LB sl 1NN b N
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@ 9x9 filters at the second level

LA | AN P

REESHRENGE A==




: Shift-Invariant Feature Hierarchies on Caltech-101

@ 2 layers of filters input 8 among the 64 33x33 feature maps 2 among the 512
trained image x5

unsupervised 140x140

featlire maps

_-J_>

& supervised

classifier on top.

&® 54% correct on
Caltech-101 with

30 examples per

N

© © g0 O O

class

¥ 20% correct with

purely supervised

max-poolin

[ )»-] max-pooling —a

4x4 window 5x5 window

BEEE EEES

backprop nd squashin and squashin
convolution convolution ‘
64 9x9 filters 2048 9x9 filters

first level second level

feature extraction feature extraction
Yann LeCun t New York University




j Recognition Rate on Caltech 101

background
— —3%

Great Satisfaction

~lE

100%

Yann LeCun
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