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The Challenges of Pattern Recognition,

_Computer Vision, and Visual Neuroscience

@ How do we learn “invariant representations’’?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those
representations by just looking at the world?

& How can we learn visual categories from just a few examples?

» I don't need to see many airplanes before I can [
recognize every airplane (even really weird ones) =~

Yann LeCun
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Two Big Problems in Learning and Recognition

& The ‘“Normalization Problem” (aka Partition Function Problem)

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

» The normalization constant of probabilistic models is a sum over too
many terms.

@ 2. The “Deep Learning Problem”
» Training “"Deep Belief Networks” is a necessary step towards solving the
invariance problem in visual recognition (and perception in general).
» How do we train deep architectures with lots of non-linear stages?

& This talks has three parts:
» Energy-Based learning: circumventing the intractable partition function
problem.
» Supervised methods for deep visual learning: convolutional nets
» Unsupervised methods to learn deep, invariant feature hierarchies:
“"Deep belief networks”.

Yann LeCun
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Part 1: Energy-Based Learning.

circumventing the intractable partition function problem

@ Highly popular methods in the Machine Learning and Natural Language

Processing Communities have their roots in Handwriting Recognition

» Conditional Random Fields, and related learning models with
“structured outputs” are descendants of discriminative learning
methods for word-level handwriting recognition.

@ A Tutorial and Energy-Based Learning:
» [LeCun & al., 2006]

& Discriminative Training for “Structured Output’ models

» The whole literature on discriminative speech recognition [1987-]

» The whole literature on neural-net/HMM hybrids for speech [Bottou
1991, Bengio 1993, Haffner 1993, Bourlard 1994]

» Graph Transformer Networks [LeCun & al. Proc IEEE 1998]
» Conditional Random Fields [Lafferty & al 2001]
» Max Margin Markov Nets [Altun & al 2003, Taskar & al 2003]

Yann LeCun
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KEnergy-Based Model for Decision-Making

=SS . =

Human
Atifial W Model: Measures the compatibility
Airpl?:ne between an observed variable X and
ar
Tl a variable to be predicted Y through
T B(Y. X) an energy function E(Y,X).
E Function E(Y, X * ;
nergy Function ( ) ) Y p— ‘a,I'gHHHYEJ)ET(};j X)
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Complex Tasks: Inference is non-trivial

=SS . =
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; Converting Energies to Probabilities

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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Handwriting recognition feoery

& Un-normalized hierarchical
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& The energy includes “hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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. What can the latent variables represent?

@ Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun
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Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = J:ez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
* . —(BFE(z,Y,X
Y" = argminy 4, — E log e PE( ).
zEZ
& Reduces to traditional minimization when Beta->infinity
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_Training an EBM

@ Training an EBM consists in shaping the energy function so that the
energies of the correct answer is lower than the energies of all other

answers.
» Training sample: X = image of an animal, Y = “animal”

E(animal, X)<E(y, X)¥ y#animal

Human R |—F Human T ]
Animal BT |3+— After Animal B
Airplane I =%  training  Airplane T ]
Car ] = = Car H R |
Truck R ]— Truck R ]
. >
E(Y, X) E(Y,X)
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. Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S = {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L(FE,S ) LW,S )

» Measures the quality of an energy function on training
set s« .
& Trainin W*" = min L(W.S).
5 Wew (W, 5)
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
£(Ea3) — F L(Y%aE(Wa«ya X%))_I_R(W)
izl/ \ ™ N
Energy surface Regularizer
Per-sample Desired ¢ . given Xi
loss answer

as Y varies
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Designing a L.oss Functional
[ —

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one

Yann LeCun * New York University




rchitecture + Inference Algo + Loss Function =

B

E(W,Y.X) & 1. Design an architecture: a particular form for E(W,Y,X).
* ¥ 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

X —
~ —>

&P 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(yiaE(ﬂ/ﬂ an%)) — E(I/Va Y%aXz)

» Simply pushes down on the energy of the correct answer

energy
E(W,Y,X)

\\o.
‘i%.
oi [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

A f \ \

e (Comx Jomr )
B o
r &
D ED J
(a) 0\)
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Negative Log-Likelihood Loss

m&_@. —_—

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

La(W.8) = 53 (E(W, Y4X) + S log [

i=1 yey

6—6E(Way,Xi)> .

@ Reduces to the perceptron loss when Beta->infinity
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Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW
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.Negative Log-Likelihood Loss

& A probabilistic model is an EBM in which:

» The energy can be integrated over Y (the variable to be predicted)
» The loss function is the negative log-likelihood

& Negative Log Likelihood Loss has been used for a long time in many

communities for discriminative learning with structured outputs

» Speech recognition: many papers going back to the early 90's
[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001 ]

» Lots more......

» In all the above cases, it was used with non-linearly parameterized
energies.

Yann LeCun
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A Simpler Loss Functions:Perceptron Loss

Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

» This is often called “"discriminative Viterbi training” in the
speech and handwriting literature

Yann LeCun
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_A Better Loss Function: Generalized Margin Losses
[ = —

e ————

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)

Yann LeCun

t New York University



m%&_‘

Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003]

» With the linearly-parameterized binary
classifier architecture, we get linear SVMs

Loss: L

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun
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Examples of Margin Losses: Square-Square Loss
e ———— _—

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

@ Square-Square Loss S m—
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)
[| Net(X) - Net(Y) ||L1

S

Neural Net Neural Net
1-6-6 1-6-6
param Wx param Wy
A [
\ \
( input X X output Y )
(b)
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_Other Margin-Like Losses

@ L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’

Yann LeCun

t New York University



‘ha Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0
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: Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use
a loss with a single point in the contrastive term

@ Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is to be developed

Yann LeCun * New York University




Energy-Based Factor Graphs: Energy = Sum of *‘factors”
— | RS =l L

& Sequence Labeling V* — argminygy Sz E( 7)Y, X)
» Output is a sequence ’
Y1,Y2,Y3,Y4......

» NLP parsing, MT, @
speech/handwriting 1 \
recognition, biological
sequence analysis

» The factors ensure

grammatical consistency
» They give low energy to /
consistent sub-sequences of
output symbols Yl Y2 Y3 Y4
» The graph is generally simple

(chain or tree)

» Inference is easy (dynamic X
programming, min-sum)

Yann LeCun
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Simple Energy-Based Factor Graphs with “Shallow” Factors

@ Linearly Parameterized Factors

& with the NLL Loss : EW,Y, X)

» Lafferty's Conditional
Random Field / A \
& with Hinge Loss:

» Taskar's Max Margin
Markov Nets

& with Perceptron Loss
» Collins's sequence /m\

labeling model Y, ) Ys Y,

& With Log Loss:

» Altun/Hofmann

sequence labeling
model X

Yann LeCun
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; Deep/non-linear Factors for Speech and Handwriting

& Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or

other ‘‘deep” classifiers) with dynamic time warping, Hidden Markov Models, or

other graph-based hypothesis representations

& Training the feature
extractor as part of the

whole process.

& with the LVQ2 Loss :

» Driancourt and
Bottou's speech
recognizer (1991)

«¥ with NLL:

» Bengio's speech
recognizer (1992)

» Haffner's speech
recognizer (1993)

Yann LeCun

@ With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

& with NLL:

» Bengio (1992), Haffner (1993), Bourlard
(1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized

HMM)

» Bottou pointed out the label bias
problem (1991)

» Denker and Burges proposed a solution
(1995)

t New York University
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Graph Transformer Networks f
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» Trained with NLL loss
[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]

o
(342") (path )

@ Latent variable = segmentation X vy oz

Yann LeCun

@ Answer = sequence of symbols
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bad about probabilistic models?

e == == — e

¥ Why bother with a normalization since we don't use it for decision making?

¥ Why insist that P(YIX) have a specific shape, when we only care about the position of its
minimum?

¥ When Y is high-dimensional (or simply combinatorial), normalizing becomes intractable
(e.g. Language modeling, image restoration, large DoF robot control...).

¥ A tiny number of models are pre-normalized (Gaussian, exponential family)
¥ A very small number are easily normalizable

¥ A large number have intractable normalization

¥ A huuuge number can't be normalized at all (examples will be shown).

¥ Normalization forces us to take into account areas of the space that we don't actually care
about because our inference algorithm never takes us there.

i@ If we only care about making the right decisions, maximizing the likelihood solves a

much more complex problem than we have to.

Yann LeCun
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¥ Unlike traditional classifiers, EBMs can represent multiple alternative outputs

¥ The normalization in probabilistic models is often an unnecessary aggravation,
particularly if the ultimate goal of the system is to make decisions.

¥ EBMs with appropriate loss function avoid the necessity to compute the partition
function and its derivatives (which may be intractable)

¥ EBMs give us complete freedom in the choice of the architecture that models the
joint “incompatibility” (energy) between the variables.

& We can use architectures that are not normally allowed in the probabilistic
framework (like neural nets).

@@ The inference algorithm that finds the most offending (lowest energy)

incorrect answer does not need to be exact: our model may give low energy to
far-away regions of the landscape. But if our inference algorithm never finds those
regions, they do not affect us. But they do affect normalized probabilistic models

Yann LeCun

t New York University



Part 2: Deep Supervised Learning for Vision:

The Convolutional Network Architecture

& Convolutional Networks:

» [LeCun et al., Neural Computation, 1988]
» [LeCun et al., Proc IEEE 1998]

@ Face Detection and pose estimation with convolutional networks:

» [Vaillant, Monrocq, LeCun, IEE Proc Vision, Image and Signal
Processing, 1994]

» [Osadchy, Miller, LeCun, JMLR vol 8, May 2007]

& Category-level object recognition with invariance to pose and lighting

» [LeCun, Huang, Bottou, CVPR 2004]
» [Huang, LeCun, CVPR 2005]

@ autonomous robot driving
» [LeCun et al. NIPS 2005]

Yann LeCun
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“The Traditional Architecture for Recognition
| — |

Pre-processing / . o
—®| Trainable Classifier |—®

Feature Extraction

/

this part 1s mostly hand-crafted

& The raw input is pre-processed through a hand-crafted feature extractor

& The trainable classifier is often generic (task independent)

Yann LeCun * New York University
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"End-to-End Learning

trainable . o
. —®| trainable classifier |[T7%
Feature Extraction

& The entire system is integrated and trainable ‘“‘end-to-end”.

& In some of the models presented here, there will be no discernible
difference between the feature extractor and the classifier.

@ We can embed general prior knowledge about images into the

architecture of the system.

Yann LeCun
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]: architecture of the cat's visual cortex

» simple cells detect local features

» complex cells “"pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun
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“The Multistage Hubel-Wiesel Architecture

m—:——ﬁﬁﬁg_“ =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]

L} ] q
i

) .
!I-“‘l O

E?ﬂh'

& QUESTION: How do we

find (or learn) the filters?

..

Yann LeCun
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Convolutlonal N etwork
| SEN—

@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i@ dense features: features detectors applied everywhere (no interest point)
i@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-

based method to minimize a global loss function

i@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun
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Convolutlonal Net Architecture

| S
Layer 3 Layer 5
. Layer 1 Layer 2 Y Layer 4
input oo 12@10x10 > @5x5 100@1x1
X 6@14x14 X
H@32x32 Layer 6: 10
% .10
/V 2/2'
5x35 x convolution
' convolution -
convolution pooling/ pooling/
subsampling subsampling

@ Convolutional net for handwriting recognition (400,000 synapses)
i Convolutional layers (simple cells): all units in a feature plane share the same weights

il Pooling/subsampling layers (complex cells): for invariance to small distortions.
il Supervised gradient-descent learning using back-propagation

@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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Results on MNIST Handwritten Digits
RSSO~

CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU

3-layer NN, 500+150 HU
3-layer NN, 5004150 HU
3-layer NN, 5004300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Conv. net LeNet-5,

Boosted LeNet-4

Conv. net, CE

Comv net, CE

Yann LeCun

DEFORMATION PREPROCESSING

Affine

Affine

Affine

Affine
Elastic
Elastic

Affine
Affine
Affine
Elastic

none
deskewing

deskewing

none

deskewing

deskew, clean, blur
deskew, clean, blur
shape context feature
none

none

subsamp 16x16 pixels
none

deskewing

deskewing

none

none

deskewing

none

none

deskewing

none

none

none

none

none

none

none

subsamp 16x16 pixels
none

none

none

none

none

none

ERROR (%)
12.00
8.40
7.60
3.09
2.40
1.80
1.22
0.63
3.30
3.60
1.10
1.40
1.10
1.00
0.80
0.68
0.56
4.70
3.60
1.60
2.95
2.45
1.53
1.60
1.10
0.90
0.70
1.70
1.10
0.95
0.80
0.70
0.60
0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. IEEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, ML 2002
DeCoste and Scholkopf, ML) 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003

t New York University



_Some Results on MNIST (from raw images: no preprocessing)

MEQ-

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)
2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003
3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005
SVM, Gaussian Kernel 1.40  Cortes 92 + Many others
m 0.95
Convolutional nets
Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006
Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006
m 0.60
Training set augmented with Affine Distortions
2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003
Virtual SVM deg-9 poly Affine 0.80  Scholkopf
Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions
2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003
Convolutional net, CE Elastic 040  Simard et al., ICDAR 2003
m 0.39

Note: some groups have obtained good results with various amounts of preprocessing: [deCoste and Schoelkopf]
get 0.56% with an SVM on deskewed images; [Belongie] get 0.63% with “shape context” features;
[CENPARMI] get below 0.4% with features and SVM; [Liu] get 0.42% with features and SVM.

Yann LeCun * New York University
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Handwriting Recognition
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Face Detection and Pose Estimation with Convolutional Nets
| S TS, S S— I ——

@ Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness

and contrast.

- 2% phase: half of the initial negative set was replaced by false positives of the initial

version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
_'“:==—--_—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling  connection
Canvalutions Convolutions

Yann LeCun

t New York University
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Facke Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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pplying a ConvNet on Sliding Windows is Very Cheap!

=
m&};;;; . e e

= output: 3x3

96x96

input:120x120

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun

t New York University



Replicated Convolutional Nets

—

@ Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

i 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap




TV sport categorization (with Alex Niculescu, Cornell)

@ Classifying TV sports snapshots into 7 categories: auto racing, baseball,

basketball, bicycle, golf, soccer, football.
& 123,900 training images (300 sequence with 59 frames for each sport)
& 82,600 test images (200 sequences with 59 frames for each sport)

@ Preprocessing: convert to YUYV, high-pass filter the Y component, crop,

subsample to 72x60 pixels

& Results:

» frame-level accuracy: 61% correct
» Sequence-level accuracy 68% correct (simple voting scheme).

Yann LeCun * New York University
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. Elegans Embryo Phenotyping

m;f,i, =

[Ning et al. IEEE Trans. Image Processing, Nov 2005]

& Analyzing results for Gene Knock-Out Experiments




+000:01:27.519




C Elegans Embryo Phenotyping

kﬁﬁn

ConvNet
labeling

CCPoE
Cleanup
N

Elastic

L (2} (3) (4) (5) 7) (3} (9) (10)
CCPoE = Convolutional Conditional Product of Experts [Ning et al, IEEE TIP 2003]

(similar to Field of Experts [Roth & Black, CVPR 2005])




. isual Navigation for a Mobile Robot

sssssisssiiididl

[LeCun et al. NIPS 2005]

i@ Mobile robot with two cameras

il The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

@ The network maps stereo images to steering

angles for obstacle avoidance
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AGR: Learning Applied to Ground Robotics

=

SIS SRE— R ———— —

¥ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

¥ Our team (NYU/Net-Scale Technologies

Inc.) is one of 8 participants funded by
DARPA

@ All teams received identical robots and can
only modify the software (not the hardware)

¥ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun * New York University




‘ Training a ConvNet On-line to detect obstacles
R— S— SR

[Hadsell et al. Robotics Science and Systems 2007]

Traversability labels Traversability labels

Raw image

from stereo (12 meters)  from ConvNet (30 meters

LI

Yann LeCun * New York University
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Training a ConvNet On-line to detect obstacles
S S— S

[Hadsell et al. Robotics Science and Systems 2007]

Traversability labels Traversability labels

Raw image

from stereo (12 meters from ConvNet (30 meters

Yann LeCun * New York University



Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

o 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 s 4 ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
il on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
Ia 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University
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Data Collection, Sample Generation
| -

Image capture setup ,, Objects are painted green so that:

- all features other than shape are removed

- objects can be segmented, transformed,

and composited onto various backgrounds
Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University
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Convolutlonal Network

L 3
ayet . A Layer 6
24@18x18 ayer
Stereo Layer 1 . Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 (500 weights)

/v

4x4
5x5 .
, subsampling convolution 3x3 .
convolution ~convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

& 90,857 free parameters, 3,901,162 connections.

il The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
@ The entire network is trained end-to-end (all the layers are trained simultaneously).

i A gradient-based algorithm is used to minimize a supervised loss function.
Yann LeCun * New York University
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i@ Local features are extracted
Foom= 0.6, Thres=-1.0, f on , 05=40, mv

=
r
=
H
s o

everywhere.

A N

@ averaging/subsampling layer

builds robustness to variations in

Bl

feature locations.

@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun
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ANormalized-Uniform Set: Error Rates

el

& Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
20 eI S S PR
WNNaASR VENRWY X
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun

t New York University



Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
& 291,600 tereo pairs for training, 58,320 for testing

¥ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
&® Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3 %
7.8 %
5.9%

20.8 %

26.0%

error

error

error

error

error

t New York University



Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun




‘What's wrong with SVMs? they are shallow!

B

| R e———

& SVM with Gaussian kernels is based on matching global templates
@ It is a “shallow” architectures

@ There is now way to learn invariant recognition tasks with such naive architectures

(unless we use an impractically large number of templates).
i@l The number of necessary templates grows

exponentially with the number of dimensions Linear

of variations. .
Combinations

@@ Global templates are in trouble when the
variations include: category, instance shape, Features (similarities)

configuration (for articulated object),

position, azimuth, elevation, scale, Global Template Matchers

illumination, texture, albedo, in-plane (each training sample is a template

o o Pacharount i inance, background
npu
texture, background clutter,

SVM is glorified template matching‘




[Examples (Monocular Mode)

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal

i3
1
1

human

human

upla“e

plane

truck truck

car

car
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Yann LeCun




JLearned Features
| S —_—

- —

Yann LeCun * New York University



Examples (Monocular Mode)

Yann LeCun * New York University
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Examples (Monocular Mode)
| S

Yann LeCun

t New York University
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Examples (Monocular Mode)

Yann LeCun * New York University



Examples (Monocular Mode)

=SS . =

Yann LeCun

t New York University
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Examples (Monocular Mode)

=SS . =

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University
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xamples (Monocular Mode)

ENE

Foom= 0.7, Threshold= -1.8, filter on

Yann LeCun * New York University



Natural Images (Monocular Mode)

Thrs= 0.3, f on , 05=40, nwin=Z3616 Thrs= 0.3, f on , 05=40, hwin=Z3616 Thrs= 0.3, f on , 05=40, nwin=Z3616

Thrs= 0.3, f on , 05=40, nwin=23616 Thrs= 0.3, f on , 05=40, nwin=23616

-
nn |

Yann LeCun




Coercially Deployed applications of Convolutional Ne
e ——————————— ]

@ Faxed form reader

» Developed at AT&T Bell Labs in the early 90's
» Commercially deployed in 1994

& Check Reading system:

» Developed at AT&T Bell Labs in the mid 90's

» Commercially deployed by NCR in 1996

» First practical system for reading handwritten checks

» Read 10 to 20% of all the checks in the US in the late 90's

& Face detector / Person detector / Intrusion detector

» Developed at NEC Research Institute in 2002/2003
» Commercially deployed in 2004 by Vidient Technologies
» Used at San Francisco Airport (among others).

Yann LeCun

t New York University



Supervised Convolutional Nets: Pros and Cons

@ Convolutional nets can be trained to perform a wide variety of visual

tasks.

» Global supervised gradient descent can produce parsimonious
architectures

& BUT: they require lots of labeled training samples

» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition

& Since low-level features tend to be non task specific, we should be able to

learn them unsupervised.

@ Hinton has shown that layer-by-layer unsupervised “pre-training” can be

used to initialize ‘“deep” architectures
» [Hinton & Shalakhutdinov, Science 2006]

@ Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun

t New York University
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Models Similar to ConvNets

m‘z;—h

& HMAX

» [Poggio &
Riesenhuber
2003]

» [Serre et al.
2007]

» [Mutch and Low
CVPR 2006]

& Difference?

» the features are
not learned

small Scale

Large Scale

Input Image 51 (o 52 c2
R gray-value Apply battery of Gabor Lacal maximum over Filter (L2 RBF) with N previously The C2 values
' HMAX lS Very filters. Here we see position and scale. seen patches {Pi | i=1.NL These are computed by
filtration at 8 scales and patches are in C1 format. Each taking a max
R R 4 arientations (c olor orientation in the patch is matched |overall 52
Slmll ar tO indicates arientation), to the corresponding arientation in | associated with
The full model uses 16 C1. The result is one image per C1 | a given patch.
. ' scales, band per patch. Thus, the C2
Fukushima's y
4 i nxnxd) Iength M.
n

Neocognitron
[from Serre et al. 2007]

Yann LeCun * New York University




Part 3:

Unsupervised Training of ‘“Deep’’ Energy-Based Models,

Learning Invariant Feature Hierarchies

& Why do we need Deep Learning?
» “scaling learning algorithms towards AI” [Bengio and LeCun 2007]

& Deep Belief Networks, Deep Learning

» Stacked RBM [Hinton, Osindero, and Teh, Neural Comp 2006]
» Stacked autoencoders [Bengio et al. NIPS 2006]

» Stacked sparse features [Ranzato & al., NIPS 2006]

» Improved stacked RBM [Salakhutdinov & Hinton, AI-Stats 07]

@ Unsupervised Learning of Invariant Feature Hierarchies

» learning features for Caltech-101 [Ranzato et al. CVPR 2006]
» learning features hierarchies for hand-writing [Ranzato et al ICDAR'07]

[See Mar'cAurelio Ranzato's poster on Wednesday|]

Yann LeCun

t New York University
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Why do we need “Deep” Architectures?

[Bengio & LeCun 2007]
@ Conjecture: we won't solve the perception problem without solving the

problem of learning in deep architectures [Hinton]

» Neural nets with lots of layers
» Deep belief networks
» Factor graphs with a “"Markov” structure

@ We will not solve the perception problem with kernel machines

» Kernel machines are glorified template matchers

» You can't handle complicated invariances with templates (you would
need too many templates)

& Many interesting functions are ‘“deep”

» Any function can be approximated with 2 layers (linear combination
of non-linear functions)

» But many interesting functions a more efficiently represented with
multiple layers

» Stupid examples: binary addition

Yann LeCun * New York University
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The Basic Idea of Deep Learning

[Hinton et al. 2005 - 2007]

& Unsupervised Training of Feature Hierarchy [Hinton et al. 2005 — 2007]
» Each layer is designed to extract higher-level features from
lower-level ones
» Each layer is trained unsupervised with a reconstruction criterion
» The layers are trained one after the other, in sequence.

RECONSTRUCTION ERROR

DECODER
ENCODER

RECONSTRUCTION ERROR

DECODER
ENCODER
LEVEL 1 LEVEL 2

FEATURES FEATURES

INPUTY

Yann LeCun

t New York University



& A principle on which
unsupervised algorithms can be
built is reconstruction of the
input from a code (feature

vector)

» reconstruction from compact
feature vectors (e.g. PCA).

» reconstruction from sparse
overcomplete feature vectors
[Olshausen & Field 1997],
[Ranzato et al NIPS 06].

» approximation of data
likelihood: Restricted
Boltzmann Machine [Hinton
2005-...]

Yann LeCun

_Encoder-Decoder Architecture for Unsupervised Learning

RECONSTRUCTION ENERGY
E(Y,W) = min_z E(Y,Z,W)

DECODER
ENCODER

E(Y,W)=min E(Y,Z,W)

FEATURES
(CODE)

Z
Y

ZYZargminZE(Y,Z, W)

t New York University



: What is Energy-Based Unsupervised Learning?

& Probabilistic View:

» Produce a probability density function that: ,

» has high value in regions of high sample
density

» has low value everywhere else (integral=1)
» Training: maximize the data likelihood

P(Y)

3

(intractable)
PV W e—,BE(Y_,Hf’)
» P W) [ e—BE(W)
Jy
@ Energy-Based View: 4 E(Y)

» produce an energy function E(Y) that:

» has low value in regions of high sample \/\/
density

» has high(er) value everywhere else

Yann LeCun

t New York University



Unsupervised Training of Energy-Based Models

R RO

& Basic Idea:

» push down on the energy of training samples
» pull up on the energy of everything else
» but this is often intractable

& Approximation #1: Contrastive Divergence [Hinton et al 2005]

» Push down on the energy of the training samples

» Pull up on the energies of configuration that have low energy near
the training samples (to create local minima of the energy
surface)

@ Approximation #2: Minimizing the information content of the code

[Ranzato et al. AI-Stats 2007]

» Reduce the information content of the code by making it sparse

» This has the effect of increasing the reconstruction error for non-
training samples.

Yann LeCun

t New York University
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A Deep Learning for Non-Linear Dimensionality Reduction

i = Dacndﬂri
| —~ |
| W | |
& Restricted Boltzmann I = A g
Machine. R [ ] . [ 2000 ]
- : | 500 ; . Twi-,
» simple energy function | ?wg ; | | i [ ]
g - P !
EY,ZW)=) -YWZ Tt
I l Jj ] i | 000 | i ; | 30 | Code layer i
s Iw. i
» code units are binary \L—— ot asul |
stochastic ' o ' '
» training with contrastive| | [ I |
divergence
REM H Eni::_gda-r s L . _i
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Yann LeCun &@ From: [Hinton and Salakhutdinov, Science 2006]

t New York University
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RBM: filters trained on MNIST

& ‘“‘bubble” detectors

Yann LeCun

t New York University
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Non-Linear Dimensionality Reduction: MNIST
| — T

& [Hinton and Salakhutdinov, Science 2006]

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Lo R s R I L R

& [Salakhutdinov and Hinton, AI-Stats 2007]:

» < 1.00% error on MNIST using K-NN on 30 dimensions:
» BEST ERROR RATE OF ANY KNOWEDGE-FREE METHODS!!!

Yann LeCun

t New York University



' der/Decoder Architecture for

learning Sparse Feature Representations

Energy of decoder

@ Algorithm:

@ 1. find the code Z
that minimizes the
reconstruction
error AND is close Sparsifying
to the encoder
output

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to

decrease the Energy of encoder
prediction error 7

(reconstruction error)

Logistic f

(prediction error)

Yann LeCun * New York University
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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)

ANSE

reconstructed

original without minimization
()
? R ? = 1 + 1 +1
)
+1 +1 + 0.8
+1 F +1 + 0.8
reconstructed
original without minimization difference
. .. | forward propagation through
oS
— - -F-
:" ; . encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

7 - |7

after training there is no need to

minimize in code space




Training The Layers of a Convolutional Net Unsupervised

Mﬂ—a&;_“A I ——————S |

& Extract windows from the MNIST images
@ Train the sparse encoder/decoder on those windows

& Use the resulting encoder weights as the convolution kernels of a

convolution network
& Repeat the process for the second layer

& Train the resulting network supervised.

Yann LeCun

t New York University



35 e T

Unsupervised Training of Convolutional Filters

BSSSSui i —— —— S ASRRSNSN I )

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)

<
[
=h
S—
H
a
-
2]
[y
=
g
—
2]
H
(@)
o
=
<
[
o
<
a
-

»
=
;=
o
-

? The baseline: lenet6 initialized randomly
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Test error rate: (.70 % . Training error rate: 0.01%.
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, unsupervise
@ Experiment 1 B

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

FHIT
I e I
LTI
S Hura
L~ W |
KLEFINN -
1HYaN
T
LI Ll
EMLAE

Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]
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: Best Results on MNIST (from raw images: no preprocessi)
[ ——— e e I

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39  Ranzato et al. NIPS 2006

Yann LeCun * New York University
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Berkeley data set

EIEE=E?E" = * 100,000 12x12 patches
ﬁ E%EE iﬂ%g + 20)%) units in the code

NS N SEE ° 5002
HAEE =8 8, 1

ol aFiS | kN
%
P
e |

B ¥ learning rate 0.001
k-
===H==$i * L1 regularizer 0.001

* fast convergence: < 30min.
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200 decoder filters (reshaped columns of matrix W¢)




.Learning Invariant Feature Hierarchies

@ Learning Shift Invariant Features

RECONSTRUCTION ERROR RECONSTRUCTION ERROR

DECODER DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University



encoder shift-invariant decoder (d)

filtehak

input
image

feature

feature

maps

UOT)INIJSUOIIT

convolutions max : switch ™Maps convolutions
pooling tf ----------- t ------ upsampliﬁ
ransformation
encoder ecoder

parameters

Yann LeCun

t New York University
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



_Example of Reconstruction

nplel Kconicucios e a

& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

"
BASIS FUNCTIONS |

(in feed-back layer)

I
|l

|
L

red squares: decoder bases

t New York University

Yann LeCun
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Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)

with 600K digits.
Ya._._ _____

t New York University
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Influence of Number of Training Samples
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R e Supenised baining of the whole netwark 7
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Th e "‘u,\\ ................................................ — + — Random feature exfractars
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&

% Classification error

0.5
200 1000 2000 5000 10000 20000 40000 0000

Size of labelled training set

Yann LeCun * New York University
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Generic Object Recognition: 101 categories + background

& Caltech-101 dataset: 101 categories

» accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

@ Only 30 training examples per category!

& A convolutional net trained with backprop (supervised) gets 20 %

correct recognition.

@ Training the filters with the sparse invariant unsupervised method

Yann LeCun

t New York University



_Training the 1* stage filters

@ 12x12 input windows (complex cell receptive fields)
& 9x9 filters (simple cell receptive fields)

& 4x4 pooling

64 33x33
feature maps

simp le-cell layer

complex-cell
F layer
input image L
140x140 Cdllee Al o
B u P r
B ad -
R e T2 |
: l- a-o b

- -0 L
l} 4x4 pooling
convolution mgueshing
&4 9x9 filters

Yann LeCun * New York University




m

_Training the 2" stage filters

@ 13x13 input windows (complex cell receptive fields on 1* features)
& 9x9 filters (simple cell receptive fields)
& Each output feature map combines 4 input feature maps

& 5x5 pooling

64 33x33
feature maps complex-cel e oe
layer feature maps
oo k| © .
&0 |/ :
a0 [A|H -
@ |
oo M| k]
5x5 pooling
convolution squashing
2048 9x9 filters

second level feature extraction

Yann LeCun

t New York University



_Generic Object Recognition: 101 categories + background

@ 9x9 filters at the first level

LB sl 1NN b N
Al ENFANFal 2 i3
o= AN F o™
MRS kT I AT

@ 9x9 filters at the second level
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: Shift-Invariant Feature Hierarchies on Caltech-101

@ 2 layers of filters input 8 among the 64 33x33 feature maps 2 among the 512
trained image x5

unsupervised 140x140

featlire maps

_-J_>

& supervised

classifier on top.

&® 54% correct on
Caltech-101 with

30 examples per

N

© © g0 O O

class

¥ 20% correct with

purely supervised

max-poolin

[ )»-] max-pooling —a

4x4 window 5x5 window

BEEE EEES

backprop nd squashin and squashin
convolution convolution ‘
64 9x9 filters 2048 9x9 filters

first level second level

feature extraction feature extraction
Yann LeCun t New York University




j Recognition Rate on Caltech 101

background
— —3%

Great Satisfaction

~lE

100%

Yann LeCun

1 479,

t New York University



_Caltech 256

Yann LeCun * New York University



M

Conclusion

& Energy-Based Models is a general framework for probabilistic and non-

probabilistic learning

» Make the energy of training samples low, make the energy of
everything else high (e.g. Discriminant HMM, Graph Transformer
Networks, Conditional Random Fields, Max Margin Markov Nets,...)

@ Invariant vision tasks require deep learning
» shallow models such as SVM can't learn complicated invariances.

& Deep Supervised Learning works well with lots of samples

» Convolutional nets have record accuracy on handwriting recognition
and face detection, and can be applied to many tasks.

& Unsupervised Learning can reduce the need for labeled samples

» Stacks of sequentially-trained RBMs or sparse encoder-decoder
layers learn good feature without requiring labeled samples

& Learning invariant feature hierarchies
» yields excellent accuracy for shape recognition

Yann LeCun

t New York University
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