uperv1sed and Unsuperv1sed Methods
for Learning Invariant Feature
Hierarchies

" Yann LeCun
The Courant Institute of Mathematical Sciences
New York University
Collaborators:

Marc'Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, Sumit Chopra

: on Energy-
[Ranzato et al. AI-Stats 2()()7] [Ranzato et al. NIPS 2006]
http://yann.lecun.com/exdb/publis/

Yann LeCun * New York University



Challenges of Computer Vision (and Visual Neuroscience)
I ——— N ——— |

& How do we learn “invariant representations’?

» From the image of an airplane, how do we extract a
representation that is invariant to pose, illumination,
background, clutter, object instance....

» How can a human (or a machine) learn those

representations by just looking at the world?
& How can we learn visual categories from just a few examples?

» I don't need to see many airplanes beforel can v
recognize every airplane (even really weird ones) =

Yann LeCun * New York University



allenges of Visual Neuroscience (and Computer Vision)
R RO

& The recognition of everyday objects is a very fast process.

» Experiments by Simon Thorpe and others have shown that the
recognition of common object is essentially “feed forward.”

» Not all of vision is feed forward (what would all those feed-back
connection be there for?).

& How much of the visual system is the result of learning?

» How much prior structure must be built into the visual system to
enable it to learn to see?

» Are V1/V2/V4 neurons learned or hard-wired?

& If the visual system is learned, what is the learning algorithm?

» What learning algorithm can train neural network as “deep” as the
visual system (10 layers?).

» Much of the learning is unsupervised.

& Can we train an artificial vision system from end to end?

Yann LeCun * New York University



_Questions?

& Is there a magic bullet for visual learning?
» Is there a general principle, or should we just resort to clever
engineering (or to a large collection of tricks)?

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we need to accumulate a large repertoire of “modules”
to solve every specific problem an intelligent vision system
must solve. How would we assemble those modules?

& How far can we get by training a vision system end to end

» Let us train a complete vision system from raw pixels to
object categories, or to robot actions.

Yann LeCun

t New York University



& 1. The “Intractable Partition Function Problem”’

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

» The normalization constant of probabilistic models is a sum over too
many terms.

& 2. The *““Deep Learning Problem”
» Training “Deep Belief Networks” is a necessary step towards solving
the invariance problem in vision (and perception in general).
» How do we train deep architectures with lots of non-linear stages?

& This talks has four parts:

» supervised methods for deep visual learning: convolutional nets

» Energy-Based learning: circumventing the intractable partition
function problem.

» Unsupervised learning for energy-based models

» "Deep belief networks”: stacking unsupervised modules to learn
feature hierarchies

Yann LeCun

t New York University



Part 1: Deep Supervised Learning for Vision:

The Convolutional Network Architecture

& Convolutional Networks:

» [LeCun et al., Neural Computation, 1988]
» [LeCun et al., Proc IEEE 1998]

& Face Detection and pose estimation with convolutional networks:

» [Vaillant, Monrocq, LeCun, IEE Proc Vision, Image and Signal
Processing, 1994]

» [Osadchy, Miller, LeCun, JMLR vol 8, May 2007]

& Category-level object recognition with invariance to pose and lighting

» [LeCun, Huang, Bottou, CVPR 2004]
» [Huang, LeCun, CVPR 2005]

& autonomous robot driving
» [LeCun et al. NIPS 2005]

Yann LeCun

t New York University



_The Traditional Architecture for Recognition

Pre-processing / , .
—| Trainable Classifier |—%

Feature Extraction

this part 1s mostly hand-crafted

& The raw input is pre-processed through a hand-crafted feature extractor

& The trainable classifier is often generic (task independent)

Yann LeCun * New York University
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_End-to-End Learning

trainable . .
_ —»| trainable classifier |1+
Feature Extraction

& The entire system is integrated and trainable “end-to-end”.

& In some of the models presented here, there will be no discernible
difference between the feature extractor and the classifier.

& We can embed general prior knowledge about images into the
architecture of the system.

Yann LeCun

t New York University
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An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun

t New York University



_The Multistage Hubel-Wiesel Architecture |

[ —— R ——————— |

m =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun 1988-2007]

& convolutional net

» [Poggio 2002-2006]
¢ HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

=]
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& QUESTION: How do we
find (or learn) the filters?

..

Yann LeCun

t New York University
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tion from Biology: Convolutional Networ

i@ Hierarchical/multilayer: features get progressively more global, invariant, and numerous
i dense features: features detectors applied everywhere (no interest point)
ia®@ broadly tuned (possibly invariant) features: sigmoid units are on half the time.

i@ Global discriminative training: The whole system is trained “end-to-end” with a gradient-
based method to minimize a global loss function

ia@ Integrates segmentation, feature extraction, and invariant classification in one fell swoop.

Yann LeCun

t New York University
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Convolutional Net Architecture

=

mﬁiiiij,, P

L 2 Layer 3 Layer 4 Layer >
input Laver | W 12@10x10 Y 100@1x1
1 @32x32 6@28x28 6@14x14 12@5x%5

Layer 6: 10
.. 10
2x2 5x5 2x2

/ .
5x5 convolution
i convolution ~
convolution pooling/ pooling/
subsampling subsampling

il Convolutional net for handwriting recognition (400,000 synapses)

i@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

i@ Supervised gradient-descent learning using back-propagation

ia@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun

t New York University
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Results on MNIST Handwritten Digits
RO

CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU
3-layer NN, 500+150 HU
3-layer NN, 500+150 HU
3-layer NN, 5004300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Conv. net LeNet-5,

Boosted LeNet-4

Conv. net, CE

Comv net, CE

Yann LeCun

DEFORMATION PREPROCESSING

Affine

Affine

Affine

Affine
Elastic
Elastic

Affine
Affine
Affine
Elastic

none
deskewing

deskewing

none

deskewing

deskew, clean, blur
deskew, clean, blur
shape context feature
none

none

subsamp 16x16 pixels
none

deskewing

deskewing

none

none

deskewing

none

none

deskewing

none

none

none

none

none

none

none

subsamp 16x16 pixels
none

none

none

none

none

none

ERROR (%)
12.00
8.40
7.60
3.09
2.40
1.80
1.22
0.63
3.30
3.60
1.10
1.40
1.10
1.00
0.80
0.68
0.56
4.70
3.60
1.60
2.95
2.45
1.53
1.60
1.10
0.90
0.70
1.70
1.10
0.95
0.80
0.70
0.60
0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. IEEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, ML) 2002
DeCoste and Scholkopf, ML) 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003

t New York University



-Some Results on MNIST (from raw images: no preprocessing)

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simardetal., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 040  Simard et al., ICDAR 2003

Note: some groups have obtained good results with various amounts of preprocessing
such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf])

hand-designed feature representations (e.g. 0.63% with “shape context” and nearest neighbor [Belongie]

Yann LeCun * New York University
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‘ Recognizing Multiple Characters with Replicated Nets
|

Yann LeCun
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Handwriting Recognition
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Face Detection and Pose Estimation with Convolutional N ets
Ms - IS S — -

& Training: 52,850, 32x32 grey-level images of faces, 52,850 non-faces.

& Each sample: used 5 times with random variation in scale, in-plane rotation, brightness
and contrast.

& 2" phase: half of the initial negative set was replaced by false positives of the initial
version of the detector .

Cl: feature
maps 8@ 28x.28

C3: f. maps
Input | 20@10x10

. 20@5x5 C5: 120
- B@1ldx14 @ @5x5 atout:

CoR—T | % - X
_'“:==—--_—_;: | = | |:| ‘ _—:Ll_ !
= O = %
—_ _- -_- rl' == e — | — I
. L | — ; Full
Convolutions Subsampling ~ Subsampling  connection
Canvalutions Convolutions

Yann LeCun

t New York University



Face Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X
Jones & Viola (profile) 70% 83%




Face Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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plying a ConVNet;1\Sliding Winfd;\—vsis Very Cheap! .

=

=
m&};;;; .

S =

output: 3x3

96x96

input: 120x120

@ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

i@ Convolutional nets can replicated over large images very
cheaply.

@ The network is applied to multiple scales spaced by 1.5.

Yann LeCun

t New York University



Replicated Convolutional Nets

SS==——==—=————

i Computational cost for replicated convolutional net:
il 96x96 -> 4.6 million multiply-accumulate operations
il 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
i 480x480 -> 232 million multiply-accumulate operations

i@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

il 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
il 480x480 -> 5,083 million multiply-accumulate operations

<— 96x96 window
< ]2 pixel shift

84x84 overlap




Geneﬂric"\()bject Detection and Recognition

with Invarlance to Pose and Illumlnatlon

e e e ESESS=S—————————————

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
@ 10 instance per category: 5 instances used for training, 5 instances for testing

i@ Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

gl 18 azimuths il % S ‘ﬁ. D *@ = - o m
I;g et;rzeSé) degrees every 20 3"_ & ’3 & /ﬁ % g @ ﬁ, /‘E

gl 9 elevations

i 30 to 70 degrees from W ét 1% ‘A x,% 7? ‘ré & 4 —jL'..u %

horizontal every 5 degrees

il 6 illuminations % M w - W \ - ‘ ~ P

il on/off combinations of 4

lights %ttt%\a%x\*%

gl 2 cameras (stereo)

i 7.5 cm apart

il 40 cm from the object Training instances Test instances

Yann LeCun * New York University
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Data Collection, Sample Generation
| SN

Image capture setup

Objects are painted green so that:
- all features other than shape are removed
- objects can be segmented, transformed,

and composited onto various backgrounds

Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University



‘ extured and Cluttered Datasets

Yann LeCun

t New York University
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Convolutlonal Network

L 3
et Layer 6
24@18x18 Layer 4
Stereo Layer 1 YA @6x6 Layer 5 Fully
input 8@92x92 Layer 2 100 connected
2@96x96 8@23x23 (500 weights)

/v

6x6
5x5 4x4

. subsampling convolution 3x3 .
convolution convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

i 90,857 free parameters, 3,901,162 connections.

ial The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

i@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun * New York University



et EEEE——— * -E. :'animal
Alternated Convolutions and Subsampling s T [P
e ——— e e— A i == -
L I -
g 1 =K
“Simple cells” b L g -.g.““‘
“Complex cells” E ;E
o iy
LA,

Averaging
Multiple subsampling
convolutions

1 & :
P i = 2
il & y

O NErE oo

i@ Local features are extracted
everywhere.

= 1 &
| \

ML
e

Foom= 0.6, Thres=-1.0, f on , 05=40, mv

=
r

=

H
T

i@ averaging/subsampling layer
builds robustness to variations in
feature locations.

i@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun



Normalized-Uniform Set: Error Rates

B

el o’ e =

@@ Linear Classifier on raw stereo images: 30.2% error.
@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@ K-Nearest-Neighbors on PCA-95: 16.6% error.
@ Pairwise SVM on 96x96 stereo images: 11.6% error
@ Pairwise SVM on 95 Principal Components: 13.3% error.

@@ Convolutional Net on 96x96 stereo images:  5.8% error.

-k g =g g D
s+ 3 61358 &%
20 eI S S PR
C e COC R PV S

Training instances Test instances

Yann LeCun * New York University




_Ndrmalized-Uniform Set: Learning Times

wjlil; NE—
SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
i 291,600 tereo pairs for training, 58,320 for testing

@ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

- 291 600 training samples, 58 320 test samples

& SVM with Gaussian kernel

@ Convolutional Net with binocular input:
& Convolutional Net + SVM on top:

@@ Convolutional Net with monocular input:
@@ Smaller mono net (DEMO):

@ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University



\J ittered-Cluttered Dataset

e ==

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
C'=40 C=1
OU CH!/ The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

don't seem to help it works!

Yann LeCun




What's h K-NN and SVMs?

m&‘xii, e,

g Both are “shallow” architectures

@ K-NN and SVM with Gaussian kernels are based on matching global templates

i@ There is now way to learn invariant recognition tasks with such naive architectures
(unless we use an impractically large number of templates).

i@ The number of necessary templates grows
exponentially with the number of dimensions
of variations.

i@ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background
texture, background clutter, .....

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




Examples (Monocular Mode)
\77 S N

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal
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human

human
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plane

truck truck

car

car

I S

ol

ks
(A HEEE
LAEHEEGE E

vl |

Yann LeCun




Learned Features
m‘ e e

Yann LeCun * New York University
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xamples (Monocular Mode)
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Examples (Monocular Mode)
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Examples (Monocular Mode)
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Yann LeCun
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Examples (Monocular Mode)

S . = —=

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun

t New York University
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Examples (Monocular Mode)

k&x&xs; ==

Foom= 0.7, Threshold= -1.8, filter on

Yann LeCun * New York University
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Thrs= 0.5, f on , 05=40, nwin=23616

animal
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Visual Navigation for a Mobile Robot

[LeCun et al. NIPS 2005]

sssssisssiiididl

i Mobile robot with two cameras

i@ The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

il The network maps stereo images to steering
angles for obstacle avoidance




‘Supervised Convolutional Nets: Pros and Cons

& Convolutional nets can be trained to perform a wide variety of visual
tasks.
» Global supervised gradient descent can produce parsimonious
architectures
& BUT: they require lots of labeled training samples

» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition

& Since low-level features tend to be non task specific, we should be able to
learn them unsupervised.

& Hinton has shown that layer-by-layer unsupervised ‘‘pre-training”’ can be
used to initialize ‘“‘deep” architectures
» [Hinton & Shalakhutdinov, Science 2006]

& Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun * New York University
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VMOdels Similar to ConvNets

m‘z;—h

& HMAX

» [Poggio &
Riesenhuber
2003]

» [Serre et al.
2007]

» [Mutch and Low
CVPR 2006]

& Difference?
» the features are

small Scale

Large Scale
not learned
. Input Image 51 (o 52 c2
' HMAX 1S Very gray-value Apply battery of Gabor Lacal maximum over Filter (L2 RBF) with N previously The C2 values
filters. Here we see position and scale. seen patches {Pi | i=1.NL These are computed by
° ° filtration at 8 scales and patches are in C1 format. Each taking a max
Slmllal' tO 4 arientations (c olor orientation in the patch is matched | overall 52
. , indicates arientation), to the corresponding arientation in | associated with
m The full model uses 16 C1. The result is one image per C1 | a given patch.
FUkuShl a S scales, band per patch. Thus, the C2
° response has
Neocognitron A s |enain

[from Serre et al. 2007]

Yann LeCun * New York University




Part 2: Deep Unsupervised Learning for Dimensionality

Reduction and Feature Extraction

& Unsupervised Learning with “energy-based models”

» Contrastive Divergence, Product of Experts [Hinton, Neur Comp 2002]
» Restricted Boltzmann Machines [Hinton et al 2003-]
» General Encoder-Decoder model [Ranzato & al., Al-stats 2007]

& Sparse-Overcomplete Feature Learning

» Sparse-Overcomplete Feature Learning [Olshausen & Fields 1997]
» Feature Learning with PoE [Teh et al. JMLR 2003]
» Sparse Features with Encoder-Decoder [Ranzato et al. NIPS 2006]

& Convolutional image models

» Conditional Convolutional Product of Experts [Ning & al IEEE-TIP 2005]
» Field of Experts [Roth and Black, CVPR 2005]

Yann LeCun

t New York University



j What is Unsupervised Learning?

@ Probabilistic View:
» Produce a probability density AP(Y)
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

=<V

& Energy-Based View:
» produce an energy function A
E(Y) that: E(Y)
» has low value in regions of high
sample density

» has high(er) value everywhere
else

=<V

Yann LeCun

t New York University
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_What is Unsupervised Learning?
| —

o —BE(Y,W)
VY
BE(Y,W) = —log P(Y, W)

Yann LeCun




e
Training a Probabilistic Unsupervised Model

| —— NN |

& Minimize the negative log-likelihood of the data:
» Training set S = {Y*',Y%Y>,...Y}

L(W,S)= Z E(Y' , W)+ %logfy g FELW)
P

& Gradient of the negative log-likelihood loss:

OL(W,S) 1~<? OE(Y'\W OE(y, W
W.S)_1sr QEWLW) [ ) O£ W)
oW P / oW Y r oW
Pushes down on the Pushes up on the
energy of the samples energy of everything

Yann LeCun * New York University




_Training an Energy-Based Unsupervised Model
[ e —————

& Design an architecture E(Y) and a loss function L(W,T) so that
minimizing L(W,T) will:
» make the energy around training samples small
» make the energy everywhere else larger

& Question: how do make the energy everywhere else larger?

Yann LeCun * New York University



& Use an energy function such that contrastive term in the loss is either
constant or easy to compute

» e.g. Energy is quadratic: convex (inference is easy), integral of
exponential is easily computable or constant.

& Approximate the derivative of the contrastive term in the loss with a
variational approximation

& Simple sampling approximation:
» Pull down on the energy of the training samples

» Pull up on the energies of other configurations that have low
energy (that are threatening)

» Question: how do we pick those configurations?
» One idea: contrastive Divergence

Yann LeCun
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. Contrastive Dirgence [Hinton 2000]

& To generate the ‘“bad’ configurations:
& 1. Start from the correct value of Y
& 2. Pull down the energy of the correct value

& 3. To obtain a *““bad” configuration, go down the energy surface
with ‘‘some noise”’

& 4. pull up the energy of the obtained configuration

A A
push down
S \NAL After <0
>i i training %
= =
= K
= — o . — a
Y? Y* Y* Y*
Answer (Y) Answer (Y')

Yann LeCun
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& To generate the ‘“bad” configurations:

& Hybrid Monte-Carlo Sampling: simulate a ball rolling down the
energy surface in Y space.

& Kick the ball in the a random direction (with a random
momentum), and run the simulation for a few iterations.

& The final configuration is quite likely to have lower energy than

the starting point.
A A
push down
‘N \L\Nl After S
>i i training %:n
= =
K K
= — > . — >
Y* Y’ Y’ Y?
Answer (Y) Answer (Y')
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A common architecture: the encoder/decoder architecture
m—.‘__n__.__,_,A — R ———— ]

& Many unsupervised learning algorithms use the
encoder/decoder architecture.

» The energy has a hidden “code” variable Z:

E(Y ,W)=min E(Y,Z,W)

Z, =argmin E(Y ,Z,W)

Yann LeCun

t New York University



j A common architecture: the encoder/decoder architecture
[ — = - —— R——

code prediction

ZYZargminZE(Y,Z, W)

Yann LeCun




_Encoder/decoder architecture: Examples

& PCA

» encoder and decoder are linear projections
» code is compact and dense

& K-Means

» no encoder. Decoder is linear (matrix of prototypes times code
vector)

» code is 00001000, where the 1 is for the prototype that is
closest to the input vector (very sparse binary code).
& Auto-encoder neural net

» encoder and decoder can be non-linear
» code is compact and dense

& Sparse/Overcomplete representations (Olshausen, Pearlmutter...)

» no encoder. Decoder is linear (matrix of basis vectors times
code vector)

» code is sparse, and larger than the input

Yann LeCun
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j Restricted Boltzmann Machine [Hinton]
[ — = - PR— R——

E(Y,Z W)= —Y W, Z

94

E(Y,W)=—1/Blog >, exp(—BE(Y,Z,W))

& W is a symmetric matrix ‘ 7

& 7 is a binary (stochastic) vector

» the distribution on Z can be approximated
by sampling

| Y

P(Z.=1/Y ,W)=1/(1+exp (B > W, Y,))

P(Yi=1/Z,W):1/(1—I—exp(BZj W,.Z))

Yann LeCun




_Restricted Boltzmann Machine: Learning Procedure
il - f e * , . . ,

@ 1. Clamp y with observed data vector ‘

ilZ.SampleZ from P(ZIY,W) A
nil3.SampleI—/ from P(Y/Z, W) / W
nil4.SampleZ from P(ZIY.W) ‘ v

& update W with

W..<—WZ.J.—I—)7(YZ.ZJ,—I71,Z_J,)

74

The learning rule minimizes the loss:
L(W,Y)=E(Y,Z,W)—E(Y,Z,W)

which can be seen a sampled approximation of

_ 1 —BE(y, W)
L(W,Y)—E(Y,W)+3logfye

Yann LeCun
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RBM: filters trained on MNIST

& ““bubble’ detectors

Yann LeCun
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Common Feature of Encoder/Decoder Models

& All encoder/decoder models have one thing in common: they restrict
the information content of the code

» by making it compact (PCA, auto-encoders)
» by making it sparse (K-Means, sparse/overcomplete bases)
» by making it binary (K-Means)

& When the information content in the code is restricted:

» there are fewer possible code configurations than input vectors
» each code configuration produces a single reconstructed vector

» an input vector is exactly reconstructed only if it is equal to one
of those reconstructed code vectors.
» every other vector is imperfectly reconstructed.

» since the energy is the reconstruction error, this means that
only a few (perfectly reconstructed) input vectors can have low
energy. All others have high energy.

» Hence, restricting the information content of the code
alleviates the need to push up of the energy of
everything.

Yann LeCun
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_Restricting the Information Content of the Code
[ R ———— |

@ Restricting the information content of the code alleviates the need to
push up of the energy of everything.

& Hence, we can happily use a simple loss function that simply pulls
down on the energy of the training samples.

& We do not need a contrastive term that pulls up on the energy
everywhere else.

Yann LeCun

t New York University



: xample: A Toy Problem. The Spiral

[ ——

+ Dataset

> 10’000 random points along a y The data: Randomly sampled from a spiral
spiral in a 2D plane

* The spiral fits in a square with
opposite corners (-1,1), (1,-1)

+ The spiral is designed so that no
function can predict a single
value of  from

+ Goal

+ Learn an energy surface with low
energies along the spiral and high
energy everywhere else

Yann LeCun
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PCA (Principal Component Analysis)

\m‘__n—;_,_,A — |

+ Can be seen as encoder-decoder architecture that minimizes mean
square reconstruction error (energy loss)

+* Optimal code 1s constrained to be equal to the value predicted by
encoder

*+ Flat surfaces are avoided by using a code of low dimension
Enc(Y)=WY
Dec(Z)=W"Y ,where WeR™"
C(Y,Z)=|lwy-Z|
C,\Y.Z)=[w"Z-Y]|

* For large value of y energy
reduces to

EY,w)=|lw'wy-Y|/

Yann LeCun




* In this architecture the code Z is a binary vector of size N (N being
the number of prototypes)

* For any sample Y, only one component 1s active (equal to 1) and
all the others are inactive (equal to 0).

* This 1s a one-of-N sparse binary code

* The energy 1is:
E(Y,Z)=2, Z|Y-w|’

W .isthei " prototype

* Inference involves finding Z
that minimizes the energy

Yann LeCun

t New York University



Auto-encoder neural net (2-100-1-100-2 architecture)

. ——

+ A neural network autoencoder that learns a low dimensional
representation.

* Architecture used
* Input layer: 2 units
* First hidden layer: 100 units
* Second hidden layer (the code): 1 unit
* Third hidden layer: 100 units
* Output layer: 2 units
* Similar to PCA but non-linear
* Energy is

E(Y)=|Dec(Enc(Y))-Y[

Yann LeCun
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j Wide auto-encoder neural net with energy loss

" = . 7 ,

* The energy loss simply pulls down on the energy of the training samples (no
contrastive term).

+ Because the dimension of the code is larger than the input, nothing prevents the
architecture from learning the identity function, which gives a very flat energy
surface (a collapse): everything is perfectly reconstructed.

+ Simplest example: a multi layer neural network with 1dentical input and output
layers and a large hidden layer.

* Architecture used
* Input layer: 2 units
+ Hidden layer (the code): 20 units
+ Output layer: 2 units

+ Energy loss leads to a collapse

+ Tried a number of loss functions

Yann LeCun

t New York University
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_Wide auto-encoder with negative-log-likelihood loss

* Negative Log Likelihood Loss

* Pull down on the energy of
training (observed) samples

* Pull up on the energies of all the
other (unobserved) samples

* Approximate the log of partition
function through dense sampling.

* Energy surface is very “stiff”
because of small number of
parameters.

* Hence the energy surface is not
perfect.

Yann LeCun

t New York University
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_Wide auto-encoder with energy-based contrastive loss
* Linear-Linear Contrastive Loss
* Avoid the cost associated with
minimizing negative log likelihood
* Idea 1s to pull up on unobserved points
in the vicinity of training samples
* We use Langevin dynamics to
generate such points

Pey-p?Ll

+ The loss function 1s

+€

LY, W)=xE(Y,W)+max(0,m—E(Y ,W))

Yann LeCun
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Wide auto-encoder with sparse code
| ——

* Sparse Codes

* Limiting the information
content of the code prevents flat
energy surfaces, without the
need to explicitly push up the
bad points

* Idea 1s to make the high
dimensional code sparse by
forcing each variable to be zero
most of the time

Yann LeCun

t New York University



j Encoder-Decoder Architecture for Unsupervised Training

Mﬁﬁﬁéﬁéﬁe—;f

@ A principle on which
unsupervised algorithms can be
built is reconstruction of the
input from a code (feature
vector)

» reconstruction from compact
feature vectors (e.g. PCA).

» reconstruction from sparse
overcomplete feature vectors
(Olshausen & Field 1997)

Yann LeCun

RECONSTRUCTION ERROR

DECODER

FEATURES
(CODE)

Z
ENCODER

t New York University



"~ Encoder/Decoder Architecture for

learning Sparse Feature Representations
mﬁﬁm%gz’_k — —

. . Energy of decoder
& Algorithm: Code 7,

(reconstruction error)

@ 1. find the code Z

that minimizes the
reconstruction

error AND is close DECODER Sparsifying
to the encoder
output

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to
decrease the Energy of encoder
prediction error 7

Logistic f

(prediction error)

Yann LeCun * New York University




Berkeley data set

H.HE‘EH_ M * 100,000 12x12 patches
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200 decoder filters (reshaped columns of matrix W¢)




Forest data set

ﬂ“ﬁ:ﬁ?aﬂ * 100,000 12x12 patches

""h: L1%: M7 .l * 200 units in the code

NErRERCETT , 7900

LENS EENEE 3
“Remnn

- . + learning rate 0.001
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MEYE @& - * L1, L2 regularizer 0.001

SEEEFEEEE , fast convergence: < 30min.
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200 decoder filters (reshaped columns of matrix W¢)
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reconstructed

original without minimization

7\ 7]

difference
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[
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7
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+1
+1
reconstructed
original without minimization
reconstructed reconstructed
minimizing without minimization

difference

+1

+1

forward propagation through

encoder and decoder

+1

+ 0.8

+ 0.8

after training there is no need to

minimize in code space
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Unsupervised Training of Convolutional Filters

BSSSSui i —— —— S ASRRSNSN I )

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training supervised filters in first conv. layer

with the unsupervised method (*) T s L e

sparse representations & lenet6 (1->50->50->200->10) “

@ The baseline: lenet6 initialized randomly

LT P
wE kM
Sy
EALTE
AT e
gl
il
Pied ¥

Test error rate: 0.70% . Training error rate: 0.01%.

o

fil

H
]
w2
[a—y
=
=
-
2]
=
(@)
@)
=
<
[E—
o
<

unsupervise e

@ Experiment 1

+ Train on 5x5 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

FHIT
I e I
LTI
S Hura
M=k Bk
KL'FINN
1HYaN
T
S
EMLIK ¢

Test error rate: 0.60 % . Training error rate: 0.00%.

@ FExperiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).

Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets’ Neural Computaton 2006]



CLASSIFIER
Knowledge-free methods

2-layer NN, 800 HU, CE

3-layer NN, 5004300 HU, CE, reg

SVM, Gaussian Kernel

Unsupervised Stacked RBM + backprop
Convolutional nets

Convolutional net LeNet-5,

Convolutional net LeNet-6,

Conv. net LeNet-6- + unsup learning
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine
Virtual SVM deg-9 poly Affine
Convolutional net, CE Affine
Training et augmented with Elastic Distortions
2-layer NN, 800 HU, CE Elastic
Convolutional net, CE Elastic

Conv. net LeNet-6- + unsup learning Elastic

Yann LeCun

DEFORMATION

ERROR

1.60
1.53
1.40
0.95

0.80
0.70
0.60

1.10
0.80
0.60

0.70
0.40
0.39

Reference

Simard et al., ICDAR 2003
Hinton, in press, 2005

Cortes 92 + Many others
Hinton, Neur Comp 2006

Ranzato et al. NIPS 2006
Ranzato et al. NIPS 2006
Ranzato et al. NIPS 2006

Simard et al., ICDAR 2003
Scholkopf
Simard et al., ICDAR 2003

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Ranzato et al. NIPS 2006

t New York University
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o noisy imagePSNR 14.15dB ~ denoised image
origial image (std. dev. noise 50) PSNR 27.88dB
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- noisy image: PSNR 14.15dB denoised image
original 1mmage
. . (std. dev. noise 50) PSNR 26.50dB

Z00M ->
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Denoising

s.d./ PSNR Lena Barbara Boat House Peppers

50/ 1415 N8 2861 7079|2649 || 2346 2548|2547 315 || 2600 2638 2595 | M53 || 85 2826 795 2674 | 2635 1590 2613 | 13
75110.63 1597 2684 2580 2413 || 2246 2365 2301 2136 || 431 79 2398 248 || 2577 2641 522 W13 || U6 400 369 2168
100/8.13 2449 2564 2446 2087 || 2077 2261 2189 1977|2309 | 2375|2281 2080 || 2420 2501 71 266 | 2304 | 2266 2175 1960

Comparison between:

@ our method [first column]

@ Portilla et al. IEEE Trans. Image Processing (2003) [second column]
@ Elad and Aharon CVPR 2006 [third column]

@ Roth and Black CVPR 2005 [fourth column]




Part 3: Training “Deep Belief Networks”,

Learning Invariant Feature Hierarchies

& Why do we need Deep Learning?
» “scaling learning algorithms towards AI” [Bengio and LeCun 2007]

& Deep Belief Networks, Deep Learning

» Stacked RBM [Hinton, Osindero, and Teh, Neural Comp 2006]
» Stacked autoencoders [Bengio et al. NIPS 2006]
» Stacked sparse features [Ranzato & al., NIPS 2006]

& Unsupervised Learning of Invariant Feature Hierarchies
» learning features for Caltech-101 [Ranzato et al. CVPR 2006]

Yann LeCun

t New York University
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Why do we need “Deep’’ Architectures?

[Bengio & LeCun 2007]

& Conjecture: we won't solve the perception problem without solving the
problem of learning in deep architectures [Hinton]

» Neural nets with lots of layers
» Deep belief networks
» Factor graphs with a “"Markov” structure

& We will not solve the perception problem with kernel machines

» Kernel machines are glorified template matchers
» You can't handle complicated invariances with templates (you would
need too many templates)

& Many interesting functions are “deep”

» Any function can be approximated with 2 layers (linear combination
of non-linear functions)

» But many interesting functions a more efficiently represented with
multiple layers

» Stupid examples: binary addition

Yann LeCun * New York University



‘Non-Linear Dimensionality Reduction
[

& [Hinton and Salakhutdinov, Science 2006]

Yann LeCun

, - R A r SEE - Decoder!
| 50] | |
i w : =
; : Top | i
| 500 | -
R REM | i
U SO SIS d 2000 ]
1 1 i T
[ ; 5 Twi-
| W, | i | 1000 |
L1000 1 new i
i
i | 1000 l | i
s [ s
L LT E— 1
| |
I | P l
i
i
REM i Encoder = . _E
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the "data” for training the next RBM in the stack. After the pretraining, the RBMs are
"unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.




& [Hinton and Salakhutdinov, Science 2006]

Fig. 2. (A) Top to bottom: A N
Random samples of curves from '
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by “logistic PCA” (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions

by the 30-dimensional autoen- ‘_
coder; reconstructions by 30- 'q
dimensional logistic PCA and

standard PCA. The average
squared errors for the last three . ‘ ; F !
rows are 3.00, 8.01, and 13.87. |

(C) Top to bottom: Random 4

samples from the test data set;

reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

Yann LeCun




Non-Linear Dimensionality Reduction
——————

& [Hinton and Salakhutdinov, Science 2006]

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

o0

Lo B L I T L R i

Yann LeCun

¢ New York University



Non-Linear Dimensionality Reduction
|

& [Hinton and Salakhutdinov, Science 2006]

Fig. 4. (A) The fracton of A .. >

retrieved documents in the T T R

same class as the query when o4

a query document from the _ ;s Eurcpean Community
test set is used to retrieve other & o1 Intsrbank markets ISR HEaON O

test set documents, averaged 3 oss )

over all 402,207 possible que- < o2 P

ries. (B) The codes produced 0.15

by two-dimensional LSA. (C) LR Disasters and

The codes produced by a 2000- 006 sl ncitonis
500-250-125-2 autoencoder. Py 8 7 18 3 84 127 255 A1 1eea i<
Number of retrieved documents 7 : oy
.l ; 2
-t - 1 Hy " i .1.1
B o w 1 _-.‘+_ b s e
s 4 - " . & =i o Tel " jly, =
Leading economic” = - o }1; e .'.':”ﬁ Legaljudicial
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- “'._ '_I-'l' -1_' » .:‘...:l
o B g '-%-# Government
o L A 5
Accounts’ | "E;.;;'ﬁjﬁ borrowings
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Tralnlng a Feature Hlerarchy on_ ;

NS Fx7 = SRR

|EW1(X7Z) |EVV2(ZNS)
1t FEATURE 2nd FEATURE @ Each super-code unit in S represents a digit prototype
EXTRACTOR EXTRACTOR NOTE: no label was used, fully unsupervised system
Q: What do the super-units in S represent?
A
f rectified code
X image Z code super—code | S

reconstruction of super-code units

O f — + activate only one unit in S
— + propagate the code S through
.

decoder in second machine -> get 7

": + propagate the code Z through
.

decoder in first machine -> get image



Training The Layers of a Convolutional Net Unsupervised

Mﬂ—a&;_“A I ——————S |

& Extract windows from the MNIST images
& Train the sparse encoder/decoder on those windows

& Use the resulting encoder weights as the convolution kernels of a
convolution network

& Repeat the process for the second layer

& Train the resulting network supervised.

Yann LeCun

t New York University



. Learning Invariant Feature Hierarchies

@ Learning Shift Invariant Features

RECONSTRUCTION ERROR RECONSTRUCTION ERROR

DECODER DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University



& Learning Shift Invariant Features

encoder shift-invariant decoder (d)

filter bank representation basis functions

input
image

feature
maps

" maps .
switch convolutions

UOIJINLIISUOIII

convolutions max : :
pooling IIIIIIIIIIIIIIIIIIIIIIII - upsamplin
enco d er transformation je C Ode r

parameters

Yann LeCun

t New York University
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Shift Invariant Global Features on MNIST

M_,

& Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



_Example of Reconstruction

soph ol Rcoicuin e a

& Any character can be reconstructed as a
linear combination of a small number of
basis functions.

ORIGINAL RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

BASIS FUNCTIONS
(in feed-back layer)

red squares: decoder bases

t New York University
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Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)

with 600K digits.
Ya._ . _____

t New York University
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Influence of Number of Training Samples
I ———

R e Supenised baining of the whole netwark 7
= P - “\\ .................................................... —&#— Unsupervised fraining of the feature axtractarsg.
Th e "‘u,\\ ................................................ — + — Random feature exfractars

i

&

% Classification error

0.5
200 1000 2000 5000 10000 20000 40000 0000

Size of labelled training set

Yann LeCun * New York University
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Generic Object Recognition: 101 categories + background

& Caltech-101 dataset: 101 categories

» accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

& Only 30 training examples per category!

& A convolutional net trained with backprop (supervised) gets 20 %
correct recognition.

& Training the filters with the sparse invariant unsupervised method

Yann LeCun

t New York University



_Training the 1* stage filters

& 12x12 input windows (complex cell receptive fields)
& 9x9 filters (simple cell receptive fields)

& 4x4 pooling

64 33x33
feature maps

simp le-cell layer

complex-cell
F layer
input image L
140x140 Cdllee Al o
B u P r
B ad -
R e T2 |
: l- a-o b

- -0 L
l} 4x4 pooling
convolution mgueshing
&4 9x9 filters

Yann LeCun * New York University
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_Training the 2" stage filters

& 13x13 input windows (complex cell receptive fields on 1% features)

& 9x9 filters (simple cell receptive fields)
& Each output feature map combines 4 input feature maps

& 5x5 pooling

64 33x33
feature maps complex-cel e oe
layer feature maps
oo k| © .
&0 |/ :
a0 [A|H -
@ |
oo M| k]
5x5 pooling
convolution squashing
2048 9x9 filters

second level feature extraction

Yann LeCun

t New York University



_Generic Object Recognition: 101 categories + background

@ 9x9 filters at the first level

LB sl 1NN b N
Al ENFANFal 2 i3
o= AN F o™
MRS kT I AT

@ 9x9 filters at the second level

LA | AN P

REESHRENGE A==




: Shift-Invariant Feature Hierarchies on Caltech-101

& 2 layers of filters input 8 among the 64 33x33 feature maps

2 among the 512

trained image
unsupervised 140x140

& supervised
classifier on top.

& 54% correct on
Caltech-101 with
30 examples per
class

& 20% correct with
purely supervised
backprop

max-poolin

[ | max-poolin

4x4 window

nd squashin

BEEE EEES

convolution convolution

5x5 window

5x5

featlire maps

_-J_>

. Las

ind squashin‘

64 9x9 filters 2048 9x9 filters

first level second level

feature extraction feature extraction

Yann LeCun

t New York University



Recognition Rate on Caltech 101

bonsai

ewer 65%

w. chair
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background
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atisfaction

Yann LeCun

t New York University



_Caltech 256

Yann LeCun * New York University
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: Network: Learned Filters

Output Feature Maps
EhEHEH N AR A RE S RN .

Input Feature
Maps
= C =<

Yann LeCun * New York University
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Caltech 256: Results
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_Conclusion

& Unsupervised Learning methods for Energy-Based Model

» Encoder-only model with contrastive divergence

& PoE, CCPoE, FoE
» Decoder-only models with sparsity (Olshausen and Fields)
» Encoder-Decoder model with Contrastive Divergence (RBM)

» Encoder-Decoder model with sparsity (Ranzato et al)

Yann LeCun

t New York University
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. Conclusion (continued)

& Invariant vision tasks require deep learning
» shallow models can't handle complicated invariances.

& Deep Supervised Learning works well with lots of samples
» Convolutional nets have record accuracy on handwriting
recognition and face detection.
& Unsupervised Learning can reduce the need for labeled samples
» Stacks of sequentially-trained RBMs or sparse encoder-decoder
layers learn good feature without requiring labeled samples
& Learning invariant feature hierarchies

» Each encoder (and decoder) stage contains a layer of trainable
feature extractors and a layer of feature pooling. The feature
pooling separates the “what” from the “where”.

Yann LeCun

t New York University
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C. El mbyo Phenotyping

wi‘ii S

[Ning, Delhome, LeCun, Piano, Bottou, Barbano
IEEE Trans. Image Processing, October 2005]

&P Analyzing results for Gene Knock-Out
Experiments

@ Automatically determining if a
roundworm embryo is developing
normally after a gene has been knocked
out.

Time-lapse movie
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rchitecture
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&P Region Classification with a convolutional network
i Local Consistency with a Conditional Product of Experts

i@ Embryo classification with elastic model matching

. . X Local Consistency
Region L.abehng Satisfaction
Convolutional Conditional E(Y,X)
Network Convolutional PoE

Classification

Elastic Model
Matching

Elastic model

of embryo




&P Supervised training fromhand-labeled images
i 5 categories:

¥ nucleus, nuclear membrane, cytoplasm, cell wall, external medium

+000:01:27.519

e
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| Image Segmentation with Local Consistency Constraints
[ =
[Teh, Welling, Osindero, Hinton, 2001], [Kumar, Hebert 2003], [Zemel 2004 ]

& Learn local consistency constraints with an Energy-Based Model so as to
clean up images produced by the segmentor.

Association Energy

Interaction Energies

Total Energy

Discrete 5-valued pixels

Yann LeCun

t New York University
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. Convolutional Conditional PoE

M@‘A,

E(Y, X, W) Z Cyij,xi; + Z > g > WhipgYiipig

k=1 1j lpg=(1,—2,—-2)

Fitting Energy

f

convolutions

=

£
|
.

+ | <
QI\J

Inference with Gibbs sampling

Yann LeCun
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C. Elegans Embryo Phenotyping

>

L”ﬂ“

&P Analyzing results for Gene Knock-Out Experiments

(2) (3) 4) (5)

Original Images

Segmentation #1

Segmentation #2

CCPoE
Cleanup

(1)




Lo Elegans Embryo Phenotyplng

| SSSS——

&P Analyzing results for Gene Knock-Out Experiments
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Example: Conditional Product of Experts

e

[Ning, Delhome, LeCun, Piano, Bottou, Barbano: “Toward Automatic Phenotyping of Developing
Embryos from Videos” IEEE Trans. Image Processing, September 2005]

Using Energy-Based Models for image “cleanup”

(segmentation, denoising,.....)

Input image
(N01SY) X e FITTING ENERGY

—> E(Y,X,W)

Output image
(clean) Y INTERNAL ENERGY

E(Y,W)

E(Y,X,W) = Ep(Y,X) + E/(Y,W)

MAP Inference: clamp X and find a Y that minimizes E(Y,X,W)



Condl PoE: Contrastive Divergence Training
| — I ———

=

Input
X - | FITTING ENERGY

—> E(Y,X,W)

output
Y INTERNAL ENERGY

E (Y, W)

Lan(Y', X", W) =E(Y", X", W) + % log [Z exp(—BE(y, X', W))
Yy

The negative log-likelihood loss has an intractable sum over all possible configurations of Y
Hinton's method:

- use MCMC to approximate the derivative of the log partition function
- realize it takes too long. Get bored waiting.

- decide to cut the number of iterations of MCMC.

- realize that it's a sensible thing to do, and call is Contrastive Divergence

- come up with a complicated justification for it.



Conditional PoE: Training with the Linear-Exponential Loss

]

Input
X - | FITTING ENERGY

output
Y INTERNAL ENERGY

E (Y, W)

PE(Y.X,W)
Energy-based loss: make the energy of the desired answer low, and make the energy of

the most offending undesired answer high (forget about likelihoods altogether)



Conditional Product of Experts: Training

FITTING ENERGY
E (Y.X)

—> E(Y,X,W)

INTERNAL ENERGY
E(Y.W)

L(Y%a X?:a W) = E(Y%: Xia W) — C. eXp(_ﬁminy,|y—Y’5|>5E(ya Xia W))



Conditional Product of Experts

Input Factor Graph

E(Y,W)

EY, X, W) = Z Ep(Yij, Xij) + Z Er(Y, W)
ij k

Fitting energy: summed over “sites” (e.g. pixels)

Internal energy: summed over “experts” (e.g. Features) and sites.



rchitecture

M;;;,»;; s

&P Region Classification with a convolutional network
i Local Consistency with a Conditional Product of Experts

i@ Embryo classification with elastic model matching

X ¢

Region Labeling Local Consistency

: 4 [Satisfaction
Convolutional a E(Y.X)
Network Conditional PoE

Classification

Elastic Model
Matching

Elastic model

of embryo
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| Image Segmentation with Local Consistency Constraints
[ =
[Teh, Welling, Osindero, Hinton, 2001], [Kumar, Hebert 2003], [Zemel 2004 ]

& Learn local consistency constraints with an Energy-Based Model so as to
clean up images produced by the segmentor.

Association Energy

Interaction Energies

Total Energy

Discrete 5-valued pixels

Yann LeCun

t New York University
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. Convolutional Conditional PoE

M@‘A,

E(Y, X, W) Z Cyij,xi; + Z > g > WhipgYiipig

k=1 1j lpg=(1,—2,—-2)

Fitting Energy

f

convolutions

=

£
|
.

+ | <
QI\J

Inference with Gibbs sampling

Yann LeCun
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C. Elegans Embryo Phenotyping

>

L”ﬂ“

&P Analyzing results for Gene Knock-Out Experiments

(2) (3) 4) (5)

Original Images

Segmentation #1

Segmentation #2

CCPoE
Cleanup

(1)




Convolutional Conditional PoE for Image Denoising

M&;;}‘r‘:: SIS

e o e s s s S

L(Y%a X?:a W) = E(Y%a X?:a W) +c. eXp(_ﬁminy,|y—Yi|>5E(ya Xia W))

Factor Graph

¥ | FITTING ENERGY |||

E(Y.W)
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& Somewhat similar to the Field of Experts [Roth & Black CVPR 2005]

Input ||
X mmmpy- | FITTING ENERGY | \

\»
[ S

Factor Graph

CCPoE output
Y

INTERNAL ENERGY
E(Y,W)

ﬁ ' :
INTERNAL ENERGY
E(Y.W)



Convolutional Conditional PoE for Image Denoising

e ===

T 5

SNR=22.10 CCPoE PSNR=30.40

v Ay o
] L _-'l:'-: Ay T
LR T L5 =T} .ﬂlh-'ﬂ.'?-r.-i- ]

Noisy peppers P
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Convolutlonal Condltmnal PoE for Image Denmsmg

FoE PSNR=30.41 CCPoE PSNR=30.40
(Roth & Black report 30.58)
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Convolutlonal Condltmnal PoE for Image Denmsmg

Random Kernels, PSNR= 29.70 CCPoE PSNR=30.40
(Gasp!)
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onvolutional Conditional PoE for Image Denoising
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M;;;iiz IS
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Random Kernels, PSNR= 29.70
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'Convolutional Conditional PoE for Image Denoising
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Roth & Black Kernels, PSNR= 30.58



Convolutional Conditional PoE for Image Denoising
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CCPoE Kernels, PSNR= 30.40
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