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& 1. The ““Intractable Partition Function Problem”’

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

» The normalization constant of probabilistic models is a sum over too
many terms.

& 2. The “Deep Learning Problem”
» Training “Deep Belief Networks” is a necessary step towards solving
the invariance problem in vision (and perception in general).
» How do we train deep architectures with lots of non-linear stages?

& This talks addresses those two problems:

» The partition function problem arises with probabilistic approaches.
Non-probabilistic Energy-Based Models may allow us to get around
it.

» How far can we go with traditional deep learning methods (backprop)
» How unsupervised feature learning can help guide deep learning.
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KEnergy-Based Model for Decision-Making
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Complex Tasks: Inference is non-trivial

=SS . =

= e e o = = = _ - _ ___ |

!

B(Y,

X)
vl

xI vl

this ™

(d)

Yann LeCun

[-0.90 41.11 68.51 34.25 -0.10 0 0.05]
[0.84 109.62 109.62 34.25 0.37 0 -0.04]
[0.76 68.51 164.44 34.25-0.42 0 0.16]
[0.17 246.66 123.33 34.25 0.85 0 -0.04]
[0.16 178.14 54.81 34.25 0.38 0 -0.14]

(b) (0)
T T
E(Y,X) E(Y,X)
xI vl |

"This is easy"  (pronoun verb adj)

(e) (®)

& When the
cardinality or
dimension of Y is
large, exhaustive
search is

impractical.

¥ We need to use
“smart” inference
procedures: min-
sum, Viterbi, min
cut, gradient

decent.....
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Energy-Based Factor Graphs: Energy = Sum of *‘factors”
— | RS =l L

& Sequence Labeling V* — argminygy Sz E( 7)Y, X)
» Output is a sequence ’
Y1,Y2,Y3,Y4......

» NLP parsing, MT, @
speech/handwriting 1 \
recognition, biological
sequence analysis

» The factors ensure

grammatical consistency
» They give low energy to /
consistent sub-sequences of
output symbols Yl Y2 Y3 Y4
» The graph is generally simple

(chain or tree)

» Inference is easy (dynamic X
programming, min-sum)
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Sequence Labeling, OCR
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& Un-normalized hierarchical

Recognition
HMDMs a.k.a. Graph Transformer
Transformer Networks
» [LeCun, Bottou, Bengio, G seq o .
Haffner 1998] (342) (path )

X Y VA
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Energy-Based Factor Graphs: complex/loopy graphs
[ —— = = —_—

@ Image restoration Y™ = argminy-o, E(Y, X).
» The factors ensure local @
consistency on small
overlapping patches /T

» They give low energy to

“clean” patches, given -.l
the noisy versions

» The graph is loopy
when the patches
overlap.

» Inference is difficult,
particularly when the
patches are large,and
when the number of
greyscale values is
large
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; What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:

»“Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3. Conditional Density Estimation:

» “"What is the conditional distribution P(Y|X)?”
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun
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; Decision-M ling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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. Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S = {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L(FE,S ) LW,S )
» Measures the quality of an energy function on training

coat

@ Training W$ — min ﬁ(m S)
Wwew
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
£(Ea3) — F L(Y%aE(Wa«ya X%))_I_R(W)
izl/ \ ™ N
Energy surface Regularizer
Per-sample Desired ¢ . given Xi
loss answer

as Y varies
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Designing a L.oss Functional
[ —

Human T |— Human
Animal BT |3+ After Animal
Airplane I |—F  training  Airplane
Car B =% ==t Car
Truck HEET ] :=> Truck
E(Y, X)
A A
push down
< After S
:}i training %:n
= =
K S
>
Answer (Y) Answer (Y)

@ Correct answer has the lowest energy -> LOW LOSS

@ Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
[ —

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one
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rchitecture + Inference Algo + Loss Function =

B

E(W,Y.X) & 1. Design an architecture: a particular form for E(W,Y,X).
* ¥ 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

X —
~ —>

&P 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?
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Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

& Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer
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D(Gw(X),Y) ] [ -Y Gy (X) ] [ 4’.- - - --i }

T A 1 A ® ® ® :

|

go g1 g2 |

Gw(X) ] [ Gw(X) ] [ Gw (X) ] I

|

A i 3 |

|

X Y X Y X Y

@ Regression @ Binary Classification @ Multi-class

Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),
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E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture
» allows multiple answers to have low [||G1W1 (X) — Ga,, (y)||1]
energy.

» Encodes a constraint between X and T T
Y rather than an explicit functional ( 1
relationship Gy, (X) Gay, (V)

» This is useful for many applications

» Example: sentence completion: “The 4 4
cat ate the | |
{mouse,bird,homework,...}” D% v

» [Bengio et al. 2003]

» But, inference may be difficult.
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(yiaE(ﬂ/ﬂ an%)) — E(I/Va Y%aXz)

» Simply pushes down on the energy of the correct answer

energy
E(W,Y,X)

\\o.
‘i%.
oi [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

A f \ \

e (Comx Jomr )
B o
r &
D ED J
(a) 0\)
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y = argminy ¢y 1y _yi > E(W, Y, X*). (9)
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Energy: EI

Linargin(W, Y, X') =

T T T T "I
— 2
ook EC + M = EI ,\»
3 A
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Energy: E_

Yann LeCun

Qum (EW,Y' X", E(W,Y" X")).

@ Generalized Margin Loss

» Qm increases with the
energy of the correct
answer

» Qm decreases with the
energy of the most
offending incorrect
answer

» whenever it is less
than the energy of the
correct answer plus a
margin m.

t New York University



Examples of Generalized Margin Losses

=

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2007 7 ..

» With the linearly-parameterized binary
classifier architecture, we get linear S\

Loss: L

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun
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Examples of Margin Losses: Square-Square Loss
e ———— _—

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

@ Square-Square Loss S m—
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)
[| Net(X) - Net(Y) ||L1

S

Neural Net Neural Net
1-6-6 1-6-6
param Wx param Wy
A [
\ \
( input X X output Y )
(b)
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_Other Margin-Like Losses

@ L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’

Yann LeCun
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' egative Log-Likelihood Loss

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

@ Reduces to the perceptron loss when Beta->infinity

Yann LeCun
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m =

Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW

Yann LeCun
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Negative Log-Likelihood Loss: Binary Classification

@ Binary Classifier Architecture:
P

1 . . i i i i
Laa(W,S) = —= —YiGw (XY +log (¥ EwX) 4 =Y Gw (X)) |
.51~ L [y o )
Lon(W,S) = § Tog (1 4 e G (X! >) |

?,—1

@ Linear Binary Classifier Architecture

Ln(W,S) Z log (1 e VWXt )>

z_l

@ Learning Rule: logistic regression

Yann LeCun * New York University




.Negative Log-Likelihood Loss

& A probabilistic model is an EBM in which:

» The energy can be integrated over Y (the variable to be predicted)
» The loss function is the negative log-likelihood

& Negative Log Likelihood Loss has been used for a long time in many

communities for discriminative learning with structured outputs

» Speech recognition: many papers going back to the early 90's
[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001 ]

» Lots more......

» In all the above cases, it was used with non-linearly parameterized
energies.

Yann LeCun
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at Makes a “Good” [

o EC + M = EI ,» s
° \/\ A
(Loss Function R— ost  [HP,
— — 0.7 R e ‘
|-_|J__ 0.6} ,\/‘, .
@ Good loss functions make the § o5} e E_=FE, -
c i e
machine produce the correct < ™ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat nt® g
energy su rfaces % 01 02 03 04 05 06 07 08 09 1
Energy: E.

Sufficient Condition on the Loss

Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

Yann LeCun
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‘ha Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun
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m

: Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use
a loss with a single point in the contrastive term

@ Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is to be developed

Yann LeCun * New York University




& The energy includes “hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y

Yann LeCun
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. What can the latent variables represent?

@ Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun
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Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = J:ez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
* . —(BFE(z,Y,X
Y" = argminy 4, — E log e PE( ).
zEZ
& Reduces to traditional minimization when Beta->infinity

Yann LeCun
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bad about probabilistic models?

e == == — e

¥ Why bother with a normalization since we don't use it for decision making?

¥ Why insist that P(YIX) have a specific shape, when we only care about the position of its
minimum?

¥ When Y is high-dimensional (or simply combinatorial), normalizing becomes intractable
(e.g. Language modeling, image restoration, large DoF robot control...).

¥ A tiny number of models are pre-normalized (Gaussian, exponential family)
¥ A very small number are easily normalizable

¥ A large number have intractable normalization

¥ A huuuge number can't be normalized at all (examples will be shown).

¥ Normalization forces us to take into account areas of the space that we don't actually care
about because our inference algorithm never takes us there.

i@ If we only care about making the right decisions, maximizing the likelihood solves a

much more complex problem than we have to.

Yann LeCun
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¥ Unlike traditional classifiers, EBMs can represent multiple alternative outputs

¥ The normalization in probabilistic models is often an unnecessary aggravation,
particularly if the ultimate goal of the system is to make decisions.

¥ EBMs with appropriate loss function avoid the necessity to compute the partition
function and its derivatives (which may be intractable)

¥ EBMs give us complete freedom in the choice of the architecture that models the
joint “incompatibility” (energy) between the variables.

& We can use architectures that are not normally allowed in the probabilistic
framework (like neural nets).

@@ The inference algorithm that finds the most offending (lowest energy)

incorrect answer does not need to be exact: our model may give low energy to
far-away regions of the landscape. But if our inference algorithm never finds those
regions, they do not affect us. But they do affect normalized probabilistic models

Yann LeCun

t New York University



TN S I B R Bl & (W, X) = ming||Gw (X) — F(Z))||

° ° * M
with a Convolutional EBM B 7" = argming||Gw (X) — F(2)]
) E (Y,Z,X)
@ Training: 52,850, 32x32 grey-level images of -
faces, 52,850 non-faces.
& Each training image was used 5 times with switch oVe <
random variation in scale, in-plane rotation, Pl \\
brightness and contrast. VA T
X)—F(Z
il 2™ phase: half of the initial negative set was ‘ IG,,(X)=F(Z)
replaced by false positives of the initial version G, ( XV F(Z)
of the detector . Ivtical
convolutional ana.ytlca
Small E*(W,X): face network o ol
94\ ). W(p aram) Y face rilamfold
Large E*(W,X): no face r N\ N\ w
X 7 Y
[Osadchy, Miller, LeCun, NIPS 2004] L(image) ) L(POSG) | |tabel)

Yann LeCun
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Face Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill — e G(X)

o
Face Manifold = o)

—p
parameterized by pose L\

Apply =) Mapping: G
t




Probabilistic Approach: Density model of joint P(face,pose)

mﬁ;‘ - - — S

Probability that image exp(—E(W, Z, X))

: : P(Xa Z) =
X 1s a face with pose Z fX,ZEimages,poses exp(—E(W, Z, X))
Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Energy-Based Contrastive Loss Function
e

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convyolutional Network Architecture

m —

Cl: feature

8@ 2 Bx.2 8
LR AR C3: f. maps

Input , 20@10x10
32x32 51: f. maps S4: f. maps

. 20@5x5 C5: 120
8@14x14 F @5x5 RN
— - —

- Subsamplin el :
Convolutions Lt el ~ subsampling  oapection
Convolutions Convolutions

Hierarchy of local filters (convolution kernels),

sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University



“Simple cells”

‘Alternated Convolutlons “Complex cells”
,, and Poollng/Subsampll ng
i@ Local features are extracted _
pooling

everywhere. Multiple subsampling

convolutions

@@ pooling/subsampling layer builds

robustness to variations in feature

=]

locations.

Hm! Wil
.,

@ Long history in neuroscience and

computer vision:

& Hubel/Wiesel 1962,

'l Fukushima 1971-82,

\al LeCun 1988-06

il Poggio, Riesenhuber, Serre 02-06
'l Ullman 2002-06

il Triggs, Lowe,....

.
[

| u'M{.'ltﬁ

= B
PRl
5.-“1 u,t:I-‘

=rﬂh'

Yann LeCun

t New York University
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: ilding a Detector/Recognizer: Replicated Cony. Nets
SRS S— R l—

= output: 3x3

96x96

input:120x120

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun

t New York University



Replicated Convolutional Nets

—

@ Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

i 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap
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Facke Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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t New York University
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_How do we Handle Lots of Classes?
[ —

& Example: face recognition
» We do not have pictures of every person

@ We must be able to learn something without seeing all the classes
& Solution: learn a similarity metric

& Map images to a low dimensional space in which

» Two images of the same person are mapped to nearby
points

» Two images of different persons are mapped to distant
points

Yann LeCun

t New York University



Comparlng ObJectS' Learning an Invariant Dissimilarity Metrlc

miif_‘l S

— e e

[Chopra, Hadsell, LeCun CVPR 2005]

& Training a parameterized, invariant dissimilarity metric

may be a solution to the many-category problem.

@ Find a mapping Gw(X) such that the Euclidean distance

IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

@ Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of
training samples (used as prototypes).

& This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to
models that can be normalized over the space of input pairs.

@ With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

i Application: face verification/recognition

E(W.X1.X2)

uFW(Xl) Gwo’(J

E(W.X1.X2)

|1Fw(X1)-Gw(>’<ﬂ
‘ Gw(X1) ‘ ‘ Gw(X2) \
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ts: AT&T/ORL

* The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset



Internal state for genuine and impostor pairs
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Classification Examples

. —— =

i@ Example: Correctly classified genuine pairs

KP8K

energy: 0.3159 energy: 0.0043 energy: 0.0046
& Example: Correctly classified impostor pairs

£28AER

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs




1
szmjjar:%DzW Ldjssjmj]arzz{max(ol m_DW)}Z
Margin
n'y
[Hadsell, Chopra, LeCun, CVPR 2006]
D, A DWA
@ Loss function: 1G, (x,) =G, (x,)]] IG,, (x)—G (Xl
» Pay quadratically A A A A
for making outputs G, (x,) G, (x,) G, (x,) G, (x,)
of neighbors far

apart

!
J

» Pay quadratically
for making outputs N
of non-neighbors ' . é -;:\,{
smaller than a -‘T

margin m

Yann LeCun

t New York University



A Manifold with Invariance to Shifts

= === —

@@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in

Euclidean distance, and
shifted versions of self and

nearest neighbors
i Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

Yann LeCun * New York University
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Automatic Discovery of the Viewpoint Manifold

with Invariant to Illumination

. e

o?-.

W

o

. 7
k> .

o

- -
¢ :
., &

Yann LeCun * New York University



Non-Probabilistic rgy-Based Factor Graphs

——————————

& When the energy is a sum of partial energy functions (or when the

probability is a product of factors):

» An EBM can be seen as an unnormalized factor graph in the log
domain

» Our favorite efficient inference algorithms can be used for inference
(without the normalization step).

» Min-sum algorithm (instead of max-product), Viterbi for chain
graphs

» (Log/sum/exp)-sum algorithm (instead of sum-product), Forward
algorithm in the log domain fonpchain graphs

E1xzD) | |E2z1.22)| |E3(22.23)| |EBAZ3Y)

/N NV VN

/71 /72

Yann LeCun

t New York University



; Example of EBFG: “Shallow” Factors

@ Linearly Parameterized Factors

& with the NLL Loss : EW,Y, X)

» Lafferty's Conditional
Random Field / A \
& with Hinge Loss:

» Taskar's Max Margin
Markov Nets

& with Perceptron Loss
» Collins's sequence /m\

labeling model Y, ) Ys Y,

& With Log Loss:

» Altun/Hofmann

sequence labeling
model X

Yann LeCun

t New York University



; Deep/non-linear Factors: ASR with TDNN/DTW

& Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or
other ‘‘deep” classifiers) with dynamic time warping, Hidden Markov Models, or
other graph-based hypothesis representations

@ With Minimum Empirical Error loss

» Ljolje and Rabiner (1990)

& Training the feature

extractor as part of the

whole process. @ with NLL:
] » Bengio (1992), Haffner (1993), Bourlard
& with the LVQ2 Loss : (1994)
» Driancourt and .
Bottou's speech @ With MCE
recognizer (1991) » Juang et al. (1997)
& with NLL: & Late normalization scheme (un-normalized
» Bengio's speech HMM)

recognizer (1992) » Bottou pointed out the label bias
» Haffner's speech problem (1991)

recognizer (1993) » Denker and Burges proposed a solution

Yann LeCun ( 1 9 9 5) t New York University
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eally Deep Factors & S

» > iterbi D e T R
yimplicit graphs: GIN __ [ 2
3 2
N

@ Handwriting Recognition with . A

Graph Transformer Networks f

. . . Path Selector 1"/ ““““““ i

& Un-normalized hierarchical ?

HMMs 2

:

:

|

G mn l

» Trained with Perceptron loss fint UOl/‘f. i
[LeCun, Bottou, Bengio, i
Haffner 1998] !
|

:

|

|

|

|

|

|

:

» Trained with NLL loss
[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]

o
(342") (path )

@ Latent variable = segmentation X vy oz

Yann LeCun

@ Answer = sequence of symbols

t New York University



1.1 discrdminant cost

DS b
. Check Reader . -
[ —— S — negative log-likellhood 4.3 3.2 negatlve log-llkellhood
Forwand Forward
' e ! =5-c2 all possible
& Graph transformer network corect Interpretation oQay,e -4} ﬁ o1 Interpretations
. + * - Grammar
trained to read check amounts. Compose Compose |~ .9
° ° ‘-__‘—\‘_‘—‘\_‘——_ ,—--"‘E:Ej'
& Trained globally with ‘ Recognition Graph S
q BT 238
Negative-Log-LikelihOOd loss. correct Character
answer Recognlzer
& 50% percent corrent, 49 % Segmentation Graph .,;d_éx; =
: i
reject, 1% error (detectable Segmenter
later in the process. Fleld Graph b lsmsss
oo HRAE
i 45 |
& Fielded in 1996, used in many Field Locator
banks in the US and Europe. Check Graph oL
@ Processes an estimated 10% of A

all the checks written in the
UJS.

Yann LeCun

t New York University



earning Problem

Generic Object Detection and Recognition

with Invariance

llumination and Clutter

[Huang, LeCun, CVPR 2006, CVPR 2004]



riance

ito Pose, Illumination and Clutter

¥ Computer Vision and Biological Vision are getting back together

R 4

again after a long divorce (Hinton, LeCun, Poggio, Ullman,

Lowe, Triggs, S. Geman, Itti, Olshausen, Simoncelli, ....).
¥ What happened? (1) Machine Learning, (2) Moore's Law. }g&, ﬁf'
¥ Generic Object Recognition is the problem of detecting and .
classifying objects into generic categories such as “cars”, “trucks”, i
66 2 y g” “J b 29 g (13 ’g 29 5# ﬂ.
airplanes”, “animals”, or “human figures '

P Appearances are highly variable within a category because of

\ -

& Learning invariant representations is key. e

shape variation, position in the visual field, scale, viewpoint,
illumination, albedo, texture, background clutter, and occlusions.

o Understanding the neural mechanism behind invariant

recognition is one of the main goals of Visual Neuroscience.



M

Why do we need “Deep” Architectures?

[Bengio & LeCun 2007]
@ Conjecture: we won't solve the perception problem without solving the

problem of learning in deep architectures [Hinton]

» Neural nets with lots of layers
» Deep belief networks
» Factor graphs with a “"Markov” structure

@ We will not solve the perception problem with kernel machines

» Kernel machines are glorified template matchers

» You can't handle complicated invariances with templates (you would
need too many templates)

& Many interesting functions are ‘“deep”

» Any function can be approximated with 2 layers (linear combination
of non-linear functions)

» But many interesting functions a more efficiently represented with
multiple layers

» Stupid examples: binary addition

Yann LeCun * New York University




Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

o 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 s 4 ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
il on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
Ia 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University




Yann LeCun

t New York University
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Convolutlonal Network

L 3
ayet . A Layer 6
24@18x18 ayer
Stereo Layer 1 . Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 (500 weights)

/v

4x4
5x5 .
, subsampling convolution 3x3 .
convolution ~convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

& 90,857 free parameters, 3,901,162 connections.

il The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
@ The entire network is trained end-to-end (all the layers are trained simultaneously).

i A gradient-based algorithm is used to minimize a supervised loss function.
Yann LeCun * New York University
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Alternated Convolutions and Subsampling 'EESERS .

human

e =

o
b
s
0
=

0
pil)
E

n .amw
gl
—
a
=
i)
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.

“Simple cells” G870 At
“Complex cells”

o
b
™~
=
L
P

e
&

Nl |
=l

NErEE o

Averaging X

Multiple
convolutions

subsampling

| i e 3
‘AR ER
"l b ™

E A

i@ Local features are extracted
Foom= 0.6, Thres=-1.0, f on , os=40, ny

=
r
=
H
s o

everywhere.

A N

@ averaging/subsampling layer

builds robustness to variations in

Bl

feature locations.

@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun
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ANormalized-Uniform Set: Error Rates

el

& Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
20 eI S S PR
WNNaASR VENRWY X
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun

t New York University



Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
& 291,600 tereo pairs for training, 58,320 for testing

¥ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun

t New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
&® Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3 %
7.8 %
5.9%

20.8 %

26.0%

error

error

error

error

error

t New York University



Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun




What's wrong with K-NN and SYVMs?

m&‘xii, e,

i@ Both are “shallow” architectures

& K-NN and SVM with Gaussian kernels are based on matching global templates

@ There is now way to learn invariant recognition tasks with such naive architectures

(unless we use an impractically large number of templates).

il The number of necessary templates grows
exponentially with the number of dimensions

of variations.

¥ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background

texture, background clutter, .....

Output

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




[Examples (Monocular Mode)

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal

i3
1
1

human

human

upla“e

plane

truck truck

car

car

I S

ol

ks
(A HEEE
LAEHEEGE E

vl |

Yann LeCun




JLearned Features
| S —_—

- —

Yann LeCun * New York University



Examples (Monocular Mode)

Yann LeCun * New York University
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Examples (Monocular Mode)
| S

Yann LeCun

t New York University
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Examples (Monocular Mode)

Yann LeCun * New York University
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‘ Application "

’olutional Nets:

@ Analyzing Biological Images:

» Subcellular structur
classification

» Cancer cell detection\

@ Classifying sports TV

snapshots

» 7 categories: auto racing,
baseball, basketball,
bicycle, golf, soccer,
football.

» 61% correct frame by
frame

& RF signal processing

@ Face Recognition

Yann LeCun * New York University
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Visual Navigation for a Mobile Robot

i

s ssasisssididdl

i@ Mobile robot with two cameras

il The convolutional net is trained to emulate
a human driver from recorded sequences of
video + human-provided steering angles.

@ The network maps stereo images to steering

angles for obstacle avoidance

Yann LeCun * New York University



: Supervised Convolutional Nets: Pros and Cons
il * > - . , po—

@ Convolutional nets can be trained to perform a wide variety of visual

tasks.

» Global supervised gradient descent can produce parsimonious
architectures

& BUT: they require lots of labeled training samples
» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition
@ Since low-level features tend to be non task specific, we should be able to

learn them unsupervised.

& Hinton has shown that layer-by-layer unsupervised “pre-training” can be

used to initialize ‘“‘deep’ architectures
» [Hinton & Shalakhutdinov, Science 2006]

& Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun * New York University




Sparse-Overcomplete

Features

[Ranzato, Poultney, Chopra, LeCun, NIPS 2006]
[Ranzato et al. CVPR 2007]

Yann LeCun




_Layer-by-

mﬁééﬁeﬁ

& A principle on which

unsupervised algorithms can be
RECONSTRUCTION ERROR

built is reconstruction of the
input from a code (feature

vector)

» reconstruction from compact
feature vectors (e.g. PCA).

» reconstruction from sparse
overcomplete feature vectors
(Olshausen & Field 1997)

DECODER

FEATURES
(CODE)

Z
ENCODER

Yann LeCun

t New York University



Encoder/Decoder Architecture for

learning Sparse Feature Representations

@ Algorithm: Energy of decoder

@ 1. find the code 7 (reconstruction error)

that minimizes the
reconstruction

error AND is close DECODER Sparsifying
to the encoder
output

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to

decrease the Energy of encoder
prediction error 7

Logistic f

(prediction error)

Yann LeCun * New York University




Berkeley data set

EIEE=E?E" = * 100,000 12x12 patches
ﬁ E%EE iﬂ%g + 20)%) units in the code

NS N SEE ° 5002
HAEE =8 8, 1

ol aFiS | kN
%
P
e |

B ¥ learning rate 0.001
k-
===H==$i * L1 regularizer 0.001

* fast convergence: < 30min.

-
e
i
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»




200 decoder filters (reshaped columns of matrix W¢)
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Forest data set

AESESLSE. Tl .
1ﬂ R~ el 100,000 12x12 patches
i DG aTW . HN - 200 units in the code
HEr-NER ETT
RN BENEE ° BO-O2
EEN 5N 8,
x xS | RN
ﬂl B s B * learning rate 0.001
el
e | [

i
<)
ol
- - ¥
ﬂ B =l -

BEFEMEEE * L1, L2 regularizer 0.001

* fast convergence: < 30min.




200 decoder filters (reshaped columns of matrix W¢)
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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PP s SRS

)

ANSE

reconstructed

original without minimization
()
? R ? = 1 + 1 +1
)
+1 +1 + 0.8
+1 F +1 + 0.8
reconstructed
original without minimization difference
. .. | forward propagation through
oS
— - -F-
:" ; . encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

7 - |7

after training there is no need to

minimize in code space
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original image noisy image denoised image
PSNR 14.15dB PSNR 26.50dB
(std. dev. ngis 4

Z00M ->
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Denoising

s.d./ PSNR Lena Barbara Boat House Peppers

30/ 14.15 186 2861 7179|2649 || 2346 2548|2547 315 || 2600 2638 2595 | M53 || 785 2826 795 2674 | 2635 1590 2613 | 132
75/10.63 1597 2684 2580 2413 || 2246 2365 2301 2136 || 431 479 2398 248 | 2577 2641 522 W13 || U6 100 369 2168
100/8.13 2449 2564 2446 2087 || 2177 2261 2189 1977|2309 | 2375 2281 2080 || 2420 2511 70 266 | 2304 | 2266 275 1960

Comparison between:

@ our method [first column]

@ Portilla et al. IEEE Trans. Image Processing (2003) [second column]
@ Elad and Aharon CVPR 2006 [third column]

@ Roth and Black CVPR 2005 [fourth column]
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Training The Layers of a Convolutional N
S e

et Unsupervised

& Extract windows from the MNIST images
@ Train the sparse encoder/decoder on those windows

& Use the resulting encoder weights as the convolution kernels of a

convolution network
& Repeat the process for the second layer

& Train the resulting network supervised.

Yann LeCun

t New York University
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: Best Results on MNIST (from raw images: no preprocessi)
[ ——— e e I

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39  Ranzato et al. NIPS 2006

Yann LeCun * New York University
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Tralnlng Convolutlonal Fllters
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CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)
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? The baseline: lenet6 initialized randomly
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Test error rate: 0.70%. Training error rate: 0.01%.

filters in first conv. 1

o
@
-

@ Experiment 1 )

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer
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Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]
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.Learning Invariant Feature Hierarchies

@ Learning Shift Invariant Features

RECONS*UCTION ERROR RECONSTRUCTION ERROR

DECODER DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun

t New York University



encoder shift-invariant decoder (d)

filtehak

input
image

feature

feature

maps

UOT)INIJSUOIIT

convolutions max : switch ™Maps convolutions
pooling tf ----------- t ------ upsampliﬁ
ransformation
encoder ecoder

parameters

Yann LeCun

t New York University
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



_Example of Reconstruction

nplel Kconicucios e a

& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL  RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

"
BASIS FUNCTIONS |

(in feed-back layer)

I

|
L

red squares: decoder bases

t New York University

Yann LeCun
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Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)

with 600K digits.
Ya._._ _____

t New York University
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Influence of Number of Training Samples
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R e Supenised baining of the whole netwark 7
= P - “\\ .................................................... —&#— Unsupervised fraining of the feature axtractarsg.
Th e "‘u,\\ ................................................ — + — Random feature exfractars
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% Classification error
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Size of labelled training set

Yann LeCun * New York University
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Generic Object Recognition: 101 categories + background

& Caltech-101 dataset: 101 categories

» accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

@ Only 30 training examples per category!

& A convolutional net trained with backprop (supervised) gets 20 %

correct recognition.

@ Training the filters with the sparse invariant unsupervised method

Yann LeCun

t New York University



_Training the 1* stage filters

@ 12x12 input windows (complex cell receptive fields)
& 9x9 filters (simple cell receptive fields)

& 4x4 pooling

64 33x33
feature maps

simp le-cell layer

complex-cell
F layer
input image L
140x140 Cdllee Al o
B u P r
B ad -
R e T2 |
: l- a-o b

- -0 L
l} 4x4 pooling
convolution mgueshing
&4 9x9 filters

Yann LeCun * New York University
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_Training the 2" stage filters

@ 13x13 input windows (complex cell receptive fields on 1* features)
& 9x9 filters (simple cell receptive fields)
& Each output feature map combines 4 input feature maps

& 5x5 pooling

64 33x33
feature maps complex-cel e oe
layer feature maps
oo k| © .
&0 |/ :
a0 [A|H -
@ |
oo M| k]
5x5 pooling
convolution squashing
2048 9x9 filters

second level feature extraction

Yann LeCun

t New York University



_Generic Object Recognition: 101 categories + background

@ 9x9 filters at the first level
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@ 9x9 filters at the second level
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: Shift-Invariant Feature Hierarchies on Caltech-101

@ 2 layers of filters input 8 among the 64 33x33 feature maps 2 among the 512
trained image x5

unsupervised 140x140

featlire maps

_-J_>

& supervised

classifier on top.

&® 54% correct on
Caltech-101 with

30 examples per

N

© © g0 O O

class

¥ 20% correct with

purely supervised

max-poolin

[ )»-] max-pooling —a

4x4 window 5x5 window

BEEE EEES

backprop nd squashin and squashin
convolution convolution ‘
64 9x9 filters 2048 9x9 filters

first level second level

feature extraction feature extraction
Yann LeCun t New York University




j Recognition Rate on Caltech 101

background
— —3%

Great Satisfaction

~lE

100%

Yann LeCun

1 479,

t New York University



_Caltech 256

Yann LeCun * New York University
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Network: Learned Filters

Output Feature Maps
EhEHEH N AR A RE S RN .

Input Feature
Maps
= C =<

Yann LeCun * New York University



_Caltech 256: Results
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Practical Conclusion

& Deep architectures are better than shallow ones for vision

@ The Multi-stage Hubel-Wiesel Architecture can be trained to

recognize almost any set of objects.

» Supervised gradient descent learning requires too many
examples

» Unsupervised learning of each layer reduces the number of
necessary training samples

@ Invariant feature learning preserves the nature of each feature, but

throws away the instantiation parameters (position).

& Invariant feature hierarchies can be trained unsupervised

» on large training sets: the recognition rate is almost as good as
supervised gradient descent learning

» on small training sets: the recognition rate is much better.

@ We haven't solved the deep learning problem yet!

Yann LeCun

t New York University
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C. Elegans Embryo Phenotyping

wi‘,, S

[Ning, Delhome, LeCun, Piano, Bottou, Barbano
IEEE Trans. Image Processing, October 2005]

i@ Analyzing results for Gene Knock-Out

Experiments

¥ Automatically determining if a
roundworm embryo is developing
normally after a gene has been knocked

out.

Time-lapse movie
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i Region Classification with a convolutional network
i@ Local Consistency with a Conditional Product of Experts

&P Embryo classification with elastic model matching

X i

Region Labeling Local Consistency

1 . .
Convolutional Satisfaction E(Y,X)

Network Conditional PoE

Y & Classification
Elastic Model .
]
Matching
Elastic model

of embryo




=

il Supervised training fromhand-labeled images
i 5 categories:

¥ nucleus, nuclear membrane, cytoplasm, cell wall, external medium

+000:01:27.519
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Image Segmentation with Local Consiste
|

ncy Constraints
[Teh, Welling, Osindero, Hinton, 2001], [Kumar, Hebert 2003], [Zemel 2004]

& Learn local consistency constraints with an Energy-Based Model so as to
clean up images produced by the segmentor.

Association Energy

Total Energy

Discrete S-valued pixels

Yann LeCun

t New York University



————

: Convolutional Conditional PoE

M@‘A,

E(Y, X, W) Z Cyij,xi; + Z > g > WhipgYiipig

k=1 1j lpg=(1,—2,—-2)

Fitting Energy

S Convolutions U
/ g(u) =7 + u2
Inference with Gibbs sampling

Yann LeCun
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. Elegans Embryo Phenotyping

Lﬂ“

i Analyzing results for Gene Knock-Out Experiments

(2) (3) 4) (5)

Original Images

Segmentation #1

Segmentation #2

CCPoE
Cleanup

(1)




C Elegans Embryo Phenotyplng

i Analyzing results for Gene Knock-Out Experiments




