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. Two Big Problems in Machine Learning

& 1. The ““Intractable Partition Function Problem”’

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

» The normalization constant of probabilistic models is a sum over too
many terms.

& 2. The “Deep Learning Problem”
» Training “Deep Belief Networks” is a necessary step towards solving the
invariance problem in vision (and perception in general).
» How do we train deep architectures with lots of non-linear stages?

& This talks addresses those two problems:
» The partition function problem arises with probabilistic approaches.
Non-probabilistic Energy-Based Models may allow us to get around it.
» How far can we go with traditional deep learning methods (backprop)
» How unsupervised feature learning can help guide deep learning.
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Energy-Based Model for Decision-Making
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Complex Tasks: Inference is non-trivial
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[-0.90 41.11 68.51 34.25 -0.10 0 0.05]
[0.84 109.62 109.62 34.25 0.37 0 -0.04]
[0.76 68.51 164.44 34.25-0.42 0 0.16]
[0.17 246.66 123.33 34.25 0.85 0 -0.04]
[0.16 178.14 54.81 34.25 0.38 0 -0.14]

(b) (0)
T T
E(Y,X) E(Y,X)
xI vl |

"This is easy"  (pronoun verb adj)

(e) (®)

& When the
cardinality or
dimension of Y is
large, exhaustive
search is

impractical.

¥ We need to use
“smart” inference
procedures: min-
sum, Viterbi, min
cut, gradient

decent.....
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What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:

» “Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3, Detection:

» “Is this value of Y compatible with X”?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

@ 4. Conditional Density Estimation:

» “What is the conditional distribution P(Y|X)?"
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun * New York University




; Decision-Making versus Probabilistic Modeling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?

» We turn them into probabilities (positive numbers that sum to 1).
» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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_Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S —= {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L(FE,S ) LW,S )
» Measures the quality of an energy function on training set
& Training W$ — min ﬁ(m S)
Wew

& Form of the loss functional
» invariant under permutations and repetitions of the samples

P
1 : .
L(E,S) =2 ) L', EW,Y, X)) + R(W).
izl/ \ ™ N
Energy surface Regularizer
Per-sample Desired ¢ given Xi
loss answer

as Y varies
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Designing a L.oss Functional
[ —

Human T |— Human
Animal BT |3+ After Animal
Airplane I |—F  training  Airplane
Car B =% ==t Car
Truck HEET ] :=> Truck
E(Y, X)
A A
push down
< After S
:}i training %:n
= =
K S
>
Answer (Y) Answer (Y)

@ Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
[ —

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one
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rchitecture + Inference Algo + Loss Function =

B

E(W.,Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y ial 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?
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Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

@ Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer

Yann LeCun * New York University



D(Gw(X),Y) ] [ -Y Gy (X) ] [ 4’.- - - --i }
T A 1 A ® ® ® :
|
go g1 g2 |
Gw(X) ] [ Gw(X) ] [ Gw (X) ] I
|
A i 3 |
|
X Y X Y X Y
@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),
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E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture

» allows multiple answers to have low [IIG’1W1 (X) — Gay, (y)||1]
energy.

» Encodes a constraint between X and Y T T
rather than an explicit functional ( 1l
relationship Gy, (X) o, (V)

» This is useful for many applications

1 f

» Example: sentence completion: “The
cat ate the {mouse,bird,homework,...}" | |

» [Bengio et al. 2003]
» But, inference may be difficult.

X Y
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(Y%aE(ﬂ/ﬂ an%)) — E(I/Va Y%aX%)'
» Simply pushes down on the energy of the correct answer

\
\\o.
«33’ '
0* [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

A f \ \

Neural Net ( input X X output Y )
ZE-EE;I;en b) <
) ( %Q.

4 (§)

’ S

Nag
C input X X output Y ) \)
(a) N
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun * New York University
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| Perceptron Loss for Binary Classification
e IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Vi = argminy ¢y, gy 2y E(W, Y, X1). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)

Yann LeCun
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Linargin(W, Y, X') =

Qum (EW,Y' X", E(W,Y" X")).

T e & Generalized Margin Loss

09r Eerm=F Pl L » Qm increases with the

0.8} HP. e energy of the correct

0.7F R ’\1‘ answer
Wi~ ogh e » Qm decreases with the
= It = e energy of the most
o s c™ offending incorrect
w4 e ' answer

>3 \,\"' \ » whenever it is less than

02t 7 HP,| I~ the energy of the

0.1} correct answer plus a
m$ oz margin m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Energy: E_
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Examples of Generalized Margin Losses

=

m-m&‘

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003] é

» With the linearly-parameterized binary
classifier architecture, we get linear SVM

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss
» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun
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| Examples of Margin Losses: Square-Square Loss
h—-———.—._._.__A -

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

& Square-Square Loss P st
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

Learning Y = X2
[| Net(X) - Net(Y) ||L1
S
Neural Net Neural Net
1-6-6 1-6-6
A [
\ \
( input X X output Y )
(b)
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_Other Margin-Like Losses

& L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’

Yann LeCun * New York University



’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity

Yann LeCun * New York University
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Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
(r_)W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW
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Negative Log-Likelihood Loss: Binary Classification

& Binary Classifier Architecture:
P

1 . . i i i i
La(W,S) = 5> [—Y%GW(X%) + log (eY Gw(X") | o—Y'Gw(X >)} .

=1

[.’-HH(W 3 = Zlog (1 —+ 6_2Y GW(X )) ,

?,—1

@ Linear Binary Classifier Architecture

Lny(W,S) Z log (1 e YW (X! )>

z_l

@ Learning Rule: logistic regression

Yann LeCun

t New York University



at Makes a “Good” [

0.9 EC +m= EI ,~» ’
; . R A
i Loss Function 1 o |HP -
s — 0.7 R ,/,
|-_|J__ 0.6} ,\/" .
@ Good loss functions make the S os| e E_=E,
c _ ,/\
machine produce the correct Y+ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat m¢°-1 -
energy Su rfaces O0 011 0i2 Oi3 0i4 0i5 016 0i7 0i8 0i9 1

Energy: E.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

Yann LeCun

t New York University



| What Make a ‘“Good’’ Loss Function

M&b

@@ Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun

t New York University



( Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use a
loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is to be developed

Yann LeCun * New York University



@ The energy includes ‘“hidden’ variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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& Variables that would make the task easier if they were known:

» Face recognition: the gender of the person, the orientation of the
face.

» Object recognition: the pose parameters of the object (location,
orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence into
syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun * New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = Jzez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

& Reduces to traditional minimization when Beta->infinity

Yann LeCun * New York University



bad about probabilistic models?

e == == — e

¥ Why bother with a normalization since we don't use it for decision making?

¥ Why insist that P(YIX) have a specific shape, when we only care about the position of its
minimum?

¥ When Y is high-dimensional (or simply conbinatorial), normalizing becomes intractable
(e.g. Language modeling, image restoration, large DoF robot control...).

¥ A tiny number of models are pre-normalized (Gaussian, exponential family)
¥ A very small number are easily normalizable

¥ A large number have intractable normalization

¥ A huuuge number can't be normalized at all (examples will be shown).

¥ Normalization forces us to take into account areas of the space that we don't actually care
about because our inference algorithm never takes us there.

&P If we only care about making the right decisions, maximizing the likelihood solves a

much more complex problem than we have to.

Yann LeCun * New York University



¥ Unlike traditional classifiers, EBMs can represent multiple alternative outputs

¥ The normalization in probabilistic models is often an unnecessary aggravation,
particularly if the ultimate goal of the system is to make decisions.

¥ EBMs with appropriate loss function avoid the necessity to compute the partition
function and its derivatives (which may be intractable)

¥ EBMs give us complete freedom in the choice of the architecture that models the
joint “incompatibility” (energy) between the variables.

¥ We can use architectures that are not normally allowed in the probabilistic
framework (like neural nets).

@@ The inference algorithm that finds the most offending (lowest energy)
incorrect answer does not need to be exact: our model may give low energy to
far-away regions of the landscape. But if our inference algorithm never finds those
regions, they do not affect us. But they do affect normalized probabilistic models

Yann LeCun * New York University



IO S I B N N Bl il & (W, X) = ming||Gw (X) — F(Z))||

° ° * 3
\with a Convolutional EBM B 7" = argming||Gw (X) — F(2)]
E (Y,Z,X)
@@ Training: 52,850, 32x32 grey-level images of -
faces, 52,850 non-faces.
& Each training image was used 5 times with switch oVe <
random variation in scale, in-plane rotation, Pl \\
brightness and contrast. L T
G (X)—-F(Z
il 2" phase: half of the initial negative set was ‘ IG,,(X)-F(Z)
replaced by false positives of the initial version G, ( XV F(Z)
of the detector . Ivtical
convolutional ana.ytlca
Small E*(W,X): face network ?lappmg ?fnio
, . (p aram) y ace Iilanl old
Large E*(W,X): no face r N\ N\ w
X 7 Y
[Osadchy, Miller, LeCun, NIPS 2004] L(image) ) L(]P()Se) J |(tabel)

Yann LeCun * New York University



KFace Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill = e G(X)

£
Face Manifold = o)

—p
parameterized by pose L\

Apply =) Mapping: G
1




Probabilistic Approach: Density model of joint P(face,pose)

mﬁ;‘ - - — S

Probability that image exp(—E(W, Z, X))

: : P(Xa Z) =
X 1s a face with pose Z fX,ZEimages,poses exp(—E(W, Z, X))
Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Energy-Based Contrastive Loss Function
I

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convyolutional Network Architecture

m —

Cl: feature

8@ 2 Bx.2 8
LR AR C3: f. maps

Input , 20@10x10
32x32 51: f. maps S4: f. maps

. 20@5x5 C5: 120
8@14x14 F @5x5 RN
— - —

- Subsamplin el :
Convolutions Lt el ~ subsampling  oapection
Convolutions Convolutions

Hierarchy of local filters (convolution kernels),

sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University



“Simple cells”

‘Alternated Convolutlons “Complex cells”
,, and Poollng/Subsampll ng
@ Local features are extracted _
pooling

everywhere. Multiple subsampling

convolutions

@@ pooling/subsampling layer builds

robustness to variations in feature

i

locations.

Hmﬂ (B0
.,

@ Long history in neuroscience and

computer vision:

i Hubel/Wiesel 1962,

'l Fukushima 1971-82,

il LeCun 1988-06

il Poggio, Riesenhuber, Serre 02-06
'l Ullman 2002-06

i Triggs, Lowe,....

s MMl colRher

= .
"o ."
5.-m A

=rﬂh'
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: ilding a Detector/Recognizer: Replicated Conyv. Nets
| S — AR lad—

= output: 3x3

96x96

input:120x120

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun * New York University



Replicated Convolutional Nets

—

@ Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap




Wm

Facke Detection: Results

1

S

Yann LeCun

DataSet->] TILTED PROFILE MIT+CMU
False positives per image-> 442 | 26.9 | 0.47 3.36 0.5 1.28
Our Detector 90% | 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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_How do we Handle Lots of Classes?
[ — —

& Example: face recognition
» We do not have pictures of every person

& We must be able to learn something without seeing all the classes
& Solution: learn a similarity metric

& Map images to a low dimensional space in which

» Two images of the same person are mapped to nearby points
» Two images of different persons are mapped to distant points

Yann LeCun

t New York University



Comparlng ObjECtS’ Learning an Invariant Dissimilarity Metrlc

miif_‘l S

— e e

[Chopra, Hadsell, LeCun CVPR 2005]

& Training a parameterized, invariant dissimilarity metric

may be a solution to the many-category problem.

& Find a mapping Gw(X) such that the Euclidean distance

IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of
training samples (used as prototypes).

& This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to
models that can be normalized over the space of input pairs.

@ With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

il Application: face verification/recognition

E(W.X1.X2)

uFW(Xl) Gwo’cJ

E(W.X1.X2)

|1Fw(X1)-Gw(>’<ﬂ
‘ Gw(X1) ‘ ‘ Gw(X2) \
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ts: AT&T/ORL

® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset



Internal state for genuine and impostor pairs
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Classification Examples

. —— =

& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
i@ Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs




'similar idea szmﬂaf%DZW Ldjssjmﬂaf%{max(o, m-D,) )
Mor Learning

a Manifold Margin

\with Invariance = n'y

[Hadsell, Chopra, LeCun, CVPR 2006]

DWA DWA
@ Loss function: IG, (x) =G ()] IG, (x,) =G ()]
» Pay quadratically A A A A
for making outputs G (x) G (%) G (x) G (%)
of neighbors far

apart

iy
/

» Pay quadratically : . 1
for making outputs \
of non-neighbors M- .
smaller than a "* -‘:\4
margin m

Yann LeCun

t New York University



AManifold with Invariance to Shifts

= === —

@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and

nearest neighbors
i@ Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

99299 97 9999

Yann LeCun * New York University
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Automatlc Discovery of the Viewpoint Manifold

WlthInvarlant to Illumination
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Yann LeCun

t New York University



: Nobaiistic Graphical Models:

. Energy-Based Factor Graphs
M;m : e NNNN——

& Graphical models have brought us efficient inference algorithms, such

as belief propagation and its numerous variations.
@ Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models from the
probabilistic view

@ Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

& An EBFG is an energy function that can be written as a sum of “factor”

functions that take different subsets of variables as inputs.

Yann LeCun

t New York University



_Example of EBFG: Shallow Factors / Deep Graph >

@ Linearly Parameterized Factors

& with the NLL Loss : EW,Y, X)

» Lafferty's Conditional
Random Field / A \
& with Hinge Loss:

» Taskar's Max Margin
Markov Nets

& with Perceptron Loss

» Collins's sequence
labeling model /m\
Y, Y- Y5 Y,
&@ With Log Loss:

» Altun/Hofmann
sequence labeling
model X

Yann LeCun * New York University



.Deep Factors / Deep Graph: ASR with TDNN/DTW

M

& Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or
other “deep” classifiers) with dynamic time warping, Hidden Markov Models, or
other graph-based hypothesis representations

& With Minimum Empirical Error loss

» Ljolje and Rabiner (1990)

& Training the feature

extractor as part of the

whole process. @ with NLL:
» Bengio (1992), Haffner (1993), Bourlard
& with the LVQ2 Loss : (1994)
» Driancourt and .
Bottou's speech @ With MCE
recognizer (1991) » Juang et al. (1997)
& with NLL: & Late normalization scheme (un-normalized
» Bengio's speech HMM)
recognizer (1992)

» Bottou pointed out the label bias problem
» Haffner's speech (1991)

recognizer (1993) » Denker and Burges proposed a solution

(1995)

Yann LeCun * New York University
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Really Deep Factors/ i

» Trained with NLL loss

N Viterbi i~ I
J— Transformer 4 ? i
; ) i
Grsel W‘ :
@ Handwriting Recognition with 3 A :
|
Graph Transformer Networks f !
. . . Path Selector 1"/ ““““““ e :
& Un-normalized hierarchical ¥ |
|
HMMs 2 :
G n
» Trained with Perceptron loss int Uol/‘f. i
[LeCun, Bottou, Bengio, i |
:
|
|
|
|
|
|
|
|
|
|
|

Haffner 1998] i

[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]
@ Answer = sequence of symbols GTseq o L
(3427 (path )
& Latent variable = segmentation X y 7z

Yann LeCun * New York University



(& “ep Learning Problem”:

Generic Object Detection and Recognition

with Invariance

[Huang, LeCun, CVPR 2006, CVPR 2004]



£33

eneric Object Detection and Recognition with Invariance

|

ito Pose, Illumination and Clutter

& Computer Vision and Biological Vision are getting back
together again after a long divorce (Hinton, LeCun, Poggio,

Perona, Ullman, Lowe, Triggs, S. Geman, Itti, Olshausen,

Simoncelli, ....). ﬁ&: f-
¥ What happened? (1) Machine Learning, (2) Moore's Law. .
¥ Generic Object Recognition is the problem of detecting and o

s ! : : ° . P . e o )

classifying objects into generic categories such as “cars”, “trucks”, .

29 ¢¢

“airplanes”, “animals”, or “human figures”

& Appearances are highly variable within a category because of

shape variation, position in the visual field, scale, viewpoint,

illumination, albedo, texture, background clutter, and occlusions.

& Learning invariant representations is key.

i Understanding the neural mechanism behind invariant

recognition is one of the main goals of Visual Neuroscience.



@ Conjecture: we won't solve the perception problem without solving the

problem of learning in deep architectures [Hinton]

» Neural nets with lots of layers
» Deep belief networks
» Factor graphs with a "“Markov” structure

@ We will not solve the perception problem with kernel machines

» Kernel machines are glorified template matchers

» You can't handle complicated invariances with templates (you would
need too many templates)

& Many interesting functions are “deep”’
» Any function can be approximated with 2 layers (linear combination of
non-linear functions)

» But many interesting functions a more efficiently represented with
multiple layers

» Stupid examples: binary addition

Yann LeCun * New York University



Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
y ging g g p
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 . ¥ ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
i on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
I; 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University



Yann LeCun * New York University
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Convolutlonal Network

L 3
ayet Layer 6
24@18x18 Layer 4
Stereo Layer 1 Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 * (500 weights)

/v

4x4
5x5 .
, subsampling convolution 3x3 .
convolution _convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

& 90,857 free parameters, 3,901,162 connections.

i The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.
Yann LeCun * New York University




animal
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Alternated Convolutions and Subsampling ' ESSERS .

human

e =

o
b
s
0
=

0
pil)
E

n .amw
gl
—
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=
i)

—l—.‘:__‘_.I\
.

“Simple cells” 7T ket
“Complex cells”

o
b
™~
=
L
P

e
&

Nl |
=l

NErEE o

Averaging X

Multiple
convolutions

subsampling

| i e 3
‘AR ER
"l b ™

E A

@ Local features are extracted
Foom= 0.6, Thres=-1.0, f on , os=40, ny

=
r
=
H
s o

everywhere.

A N

@ averaging/subsampling layer

builds robustness to variations in

Bl

feature locations.

@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun
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ANormalized-Uniform Set: Error Rates

el

@@ Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6% error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
Wk R A SN K
WNNASs VEeBYX
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun * New York University




Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
& 291,600 tereo pairs for training, 58,320 for testing

¥ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

‘¥ Input dimension: 98x98x2 (approx 18,000)

Yann LeCun * New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
& Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University



Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun




What's wrong with K-NN and SVMs?

m&‘xii, e,

i@ Both are “shallow” architectures

& K-NN and SVM with Gaussian kernels are based on matching global templates

@ There is now way to learn invariant recognition tasks with such naive architectures

(unless we use an impractically large number of templates).

il The number of necessary templates grows
exponentially with the number of dimensions

of variations.

¥ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background

texture, background clutter, .....

Output

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




[Examples (Monocular Mode)

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal

human human

upla“e

plane

truck truck

car

car

I S

ol

(A HEEE
LAEHEEGE E

vl |

Yann LeCun




Learned Features

- —

Yann LeCun * New York University
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Examples (Monocular Mode)

Yann LeCun * New York University
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Examples (Monocular Mode)
| S

Yann LeCun * New York University
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Examples (Monocular Mode)

Yann LeCun * New York University



: Supervised Learning in ‘‘Deep” Architectures

& Backprop can train ‘“deep’ architectures reasonably well

» It works better if the architecture has some structure (e.g. A
convolutional net)

@ Deep architectures with some structure (e.g. Convolutional nets) beat

shallow ones (e.g. Kernel machines) on image classification tasks:

» Handwriting recognition
» Face detection
» Generic object recognition

& Deep architectures are inherently more efficient for representing complex

functions.

@ Have we solved the problem of training deep architectures?

» Can we do backprop with lots of layers?
» Can we train deep belief networks?

@ NO!

Yann LeCun * New York University
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i Problems with Supervised Learning in Deep Architectures
AR

@ vanishing gradient, symmetry breaking

» The first layers have a hard time learning useful things
» How to break the symmetry so that different units do different things

& Jdea [Hinton]:
» 1 - Initialize the first (few) layers with unsupervised training
» 2 - Refine the whole network with backprop

& Problem: How do we train a layer in unsupervised mode?
» Auto-encoder: only works when the first layer is smaller than the input

» What if the first layer is larger than the input?
» Reconstruction is trivial!

@ Solution: sparse over-complete representations

» Keep the number of bits in the first layer low
» Hinton uses a Restricted Boltzmann Machine in which the first layer
uses stochastic binary units

Yann LeCun * New York University



nsupervised Learning of

Sparse-Overcomplete

Features

[Ranzato, Poultney, Chopra, LeCun, NIPS 2006]

Yann LeCun




Unsuperyvised Learning of Sparse Over-Complete Features

& Classification is easier with over-complete feature sets

& Existing Unsupervised Feature Learning (non sparse/overcomplete):
» PCA, ICA, Auto-Encoder, Kernel-PCA

& Sparse/Overcomplete Methods

» Non-Negative Matrix Factorization
» Sparse-Overcomplete basis functions (Olshausen and Field 1997)

» Product of Experts (Teh, Welling, Osindero, Hinton 2003)

t New York University

Yann LeCun
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Symmetric Product of Experts

decoder Ep (X, Z, WD)

energy

IX — Dec(Z, Wo)lI?

rectified and

sparsified code

decoder

AL
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CODE £

|

|

|

|

|

|

|

|

|

I A !
|

| L

|

: DECODER Wp etlilff]—] T. SoftMax |--iiff}——
|

|

|

reconstruction

IMAGE X

encoder
prediction

ENCODER W,

12 — Enc(X, We)l?

v

encoder EC(X, Z, WC)

energy
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P(ZIX,W W) & exp(—BE(X.Z,W _,W)))

E(X,Z,W W) =E(X.,Z,W)+E(X.Z,W))

2
E.(X,Z,W) = l”z—w XH
c 2 c

E(X.Z,W)

%Z (z,=W' X)’

LY (x=W' 2y
2 l

IX — Dec{2, Wp)II*

)

DECODER Wp +

T. SoftMax ‘—|—

Image X

——— | ENCODER W

CODE Z

12 — Bne(X, We) P
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Inference & Learmng

AR (52777777

* Inference

~

Z = argmin, E(X,Z,W) = argmin_|E_(X,Z,W)+E_(X,Z,W)

* let Z(0) be the encoder prediction
* find code which minimizes total energy

* gradient descent optimization

* Learning

W «— W — 0E(X,Z,W)IoW

* using the optimal code, minimize E w.r.t. the weights W

* gradient descent optimization
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I X — Dec(Z, Wp)II*

DECODER Wp = —

777777

CODE Z

T. Softhlax <—|—

Image X h

» ENCODER W,

I|Z — Enc(X, Wa)lP?

:

EC’(X: Z: WC)



I X — Dec(Z, Wp)II*

DECODER Wp = —

e TP ITECEES

(5572777777

CODE Z

_________________________________________________ 1 Z2(0) =Wc X

T. Softhlax <—|—

Image X h

» ENCODER W

EC’(X: Z: WC)
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Inference : step 1

NSl === NN )

Ed ? Ep(X, Z, Wp) CODE Z

Forward propagation

L—JIDECODER Wjp il —] T. SoftMax |--liff]——

»— ENCODER Wo

|Z — Enc(X, We)ll?

WcX* V

Image X h EC ¢ EC’(X-,. Z, WC)
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_Inference - step 1

NSl SN )

Ep(X, Z, Wp) CODE Z
_________________________________________________ . | optimal Z

Ix = pecz Woll* IBack propagation of

A t oradients w.r.t. Z
| Z

DECODER Wy  |~liff}l—] T. SoftMax |-ifff——

» ENCODER W,

I|Z — Enc(X, Wa)lP?

b

Image X h ¢ EC’(X: Z: WC)
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_Learning

BN — = ———oasocallii

Ed Ep(X, Z, Wp) CODE Z

Forward propagation

L DECODER Wp |-willf—T. SoftMax [-~ifff— Optimal y4

I|Z — Enc(X, Wa)lP?

i -1 ENCODER W¢ ;
e 2

Image X h EC EC(X: Z, WC)
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I X — Dec(Z, Wp)II*

Back propagation of

gradients w.r.t W

FFFFFIIERTEEET

NS i 1772777/

CODE Z

DECODER Wy  |[-ifff—] T. SoftMax |-iff}———

Image X h

I|Z — Enc(X, Wa)lP?

b

EC’(X: Z: WC)
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Sparsifying Logistic

NS aaaaae———— SSSSNSNE )

Bz,(1)

z,(r)=ne /€ (r), ie[1..m]

g()=ne"""+(1—mE (1—1) n 0.001
8 10
* temporal vs. spatial sparsity TR
=> no normalization 7 001
8 10
|||h.|..||ll.h T T |[h o bl b vl bl
s € is treated as a learned parameter
77 0.01
=> TSM is a sigmoid function with a ‘ ‘ L ‘ 8 30
special bias . 1 1L ] ||| il JLJ_I
i 1—I—Be_BZ"(t) 7 0.1
B 30
s & is saturated during training to allow L L ‘ ‘ WL \ ‘

units to have different sparseness input uniformly distributed in [-1,1]



Berkeley data set

El!E:E?E __= * 100,000 12x12 patches
ﬁ EEEEE iﬂ%g + 20)%) units in the code

S EESNEE ° 500
HAEE =8 8, 1

ol aFiS | kN
%
P
e |

B *learning rate 0.001
E-
===H==ﬁi * L1, L2 regularizer 0.001

* fast convergence: < 30min.

-
e
i
s
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200 decoder filters (reshaped columns of matrix Wq)




RFENIMEV S | SR EE T2 : :
.............--..... Encoder direct filters
T e T T ] | —p—
AREEALENTARSNA- TSN ¢
EENECEYEENTEN <NEAERR S

Mo PYESl Ml S ==l E Decoder reverse filters
- == (cols. of Wq)
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Forest data set

AESESLSE. Tl .
1ﬂ R~ el 100,000 12x12 patches
i DG aTW . HN - 200 units in the code
HEr-NER ETT
RN BENEE ° 50-02
EEN 5N 8,
x xS | RN
ﬂl B s B * learning rate 0.001
el
e | [

i
<)
ol
- - ¥
ﬂ B =l -

BEFEMEEE * L1, L2 regularizer 0.001

* fast convergence: < 30min.




200 decoder filters (reshaped columns of matrix Wq)
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- N atural 1mage patches quest

P ——— SN

test sample code word

\ 4 codes are:

4 gparse
8 almost binary
8 quite decorrelated

# in testing codes are produced by propagating the
idput patch through encoder and TSM

8 " controls sparsity

\ controls the “bit content” in each code unit

unit activity

code words from 200 randomly selected test patches
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What about an a autoencoder"

decoder ED(X, Z, WD) CODE Z
energy

I X — Dec(Z, Wo)lI?

; |
| |
| |
i |
| rectified and I
! A sparsified code |
| DECODER W,  |-aliff—] T. SoftMax |-etiff—

|
decoder !
reconstruction |

encoder
prediction

» ENCODER Wo

1Z — Enc(X,We)ll

encoder
IMAGE X energy EC(X:~ Z, WC)
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Whatabout an autoencoder"

—— ==—=——=—== 57

decoder ED(X, Z, WD) CODE Z
energy

I X — Dec(Z, Wo)lI?

; |
| |
| |
i |
| rectified and I
! A sparsified code |
| DECODER W,  |~alff—] T. SoftMax |-eiiff—

|
decoder :
reconstruction |

encoder
prediction

» ENCODER Wo

encoder
IMAGE X energy EC(X:~ Z, WC)
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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*+ 60,000 28x28 images

* 196 units in the code

¥ learning rate 0.001

* L1, L2 regularizer 0.005

*+ 1 0.01

+» B
Encoder direct filters
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after training there is no need to
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minimize in code space




| Initializing a Convolutional Net with SPoE
| —

@ Architecture: LeNet-6 - - - n ! . . : i
» 1->50->50->200->10 M T
& Baseline: random initialization . " ’ - E ‘ E - . .
» 0.7% error on test set — L s TE D g
& First Layer Initialized with SpoE . . ' ' - : E n i I

» 0.6% error on test set .
@ Training with elastically m‘ ===E====E=
Samp cs: e ' o] J ] ) P
» 0.38% error on test set —
mEMLEEGEFFE
EEANEjd= 11

Yann LeCun
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Initializing a Convolutional Net with SPoE
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& Architecture: LeNet-6

»1->50->50->200->10
» 9x9 kernels instead of 5x5

& Baseline: random initialization

@ First Layer Initialized with SpoE

Yann LeCun
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\ Best Results on MNIST (from raw images: no preprocessi)
[ ———— e I

CLASSIFIER DEFORMATION ERROR  Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 500+300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, in press, 2005
Convolutional nets

Convolutional net LeNet-5, 0.80  LeCun 2005 Unpublished

Convolutional net LeNet-6, 0.70  LeCun 2006 Unpublished

Conv. net LeNet-6- + unsup learning 0.60  LeCun 2006 Unpublished
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning  Elastic 0.38  LeCun 2006 Unpublished

Yann LeCun * New York University
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; Topographic maps

Yann LeCun
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@ Initializing the first layer(s) with unsupervised learning helps

@ Why is there no partition function here?
» The partition function is bounded because of the information
bottleneck in the code

» There is only a few input configuration that can have low energy
because there are only a few possible codes.

Yann LeCun * New York University
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Conclusion
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@ Deep architectures are better than shallow ones

& We haven't solved the deep learning problem yet

@ Larger networks are better

& Initializing the first layer(s) with unsupervised learning helps

& WANTED: a learning algorithm for deep architectures that

seamlessly blends supervised and unsupervised learning

Yann LeCun * New York University



