A Tutorial on Energy-Based Learning

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc'Aurelio Ranzato, Fu-Jie Huang The Courant Institute of Mathematical Sciences New York University

http://yann.lecun.com http://www.cs.nyu.edu/~yann

Two Problems in Machine Learning

1. The "Deep Learning Problem"

- "Deep" architectures are necessary to solve the invariance problem in vision (and perception in general)
- How do we train deep architectures with lots of non-linear stages

2. The "Partition Function Problem"

- Give high probability (or low energy) to good answers
- Give low probability (or high energy) to bad answers
- There are too many bad answers!

This tutorial discusses problem #2

- The partition function problem arises with probabilistic approaches
- Non-probabilistic approaches may allow us to get around it.
- Energy-Based Learning provides a framework in which to describe probabilistic and non-probabilistic approaches to learning

Energy-Based Model for Decision-Making

Model: Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y,X).

 $Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$

- Inference: Search for the Y that minimizes the energy within a set y
- If the set has low cardinality, we can use exhaustive search.

Complex Tasks: Inference is non-trivial

What Questions Can a Model Answer?

1. Classification & Decision Making:

- "which value of Y is most compatible with X?"
- Applications: Robot navigation,.....
- Training: give the lowest energy to the correct answer

2. Ranking:

- "Is Y1 or Y2 more compatible with X?"
- Applications: Data-mining....
- Training: produce energies that rank the answers correctly

3. Detection:

- "Is this value of Y compatible with X"?
- Application: face detection....
- Training: energies that increase as the image looks less like a face.

4. Conditional Density Estimation:

- "What is the conditional distribution P(Y|X)?"
- Application: feeding a decision-making system
- Training: differences of energies must be just so.

Decision-Making versus Probabilistic Modeling

Energies are uncalibrated

- The energies of two separately-trained systems cannot be combined
- The energies are uncalibrated (measured in arbitrary untis)

How do we calibrate energies?

- We turn them into probabilities (positive numbers that sum to 1).
- Simplest way: Gibbs distribution
- Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

$$P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}},$$

Partition function Inverse temperature

Architecture and Loss Function

- Family of energy functions $\mathcal{E} = \{E(W, Y, X) : W \in \mathcal{W}\}.$ Training set $\mathcal{S} = \{(X^i, Y^i) : i = 1 \dots P\}.$
- Loss functional / Loss function $\mathcal{L}(E, \mathcal{S})$ $\mathcal{L}(W, \mathcal{S})$

Measures the quality of an energy function

Training
$$W^* = \min_{W \in \mathcal{W}} \mathcal{L}(W, \mathcal{S}).$$

Form of the loss functional

invariant under permutations and repetitions of the samples

$$\mathcal{L}(E, S) = \frac{1}{P} \sum_{i=1}^{P} L(Y^{i}, E(W, \mathcal{Y}, X^{i})) + R(W).$$

Per-sample Desired for a given Xi
loss answer as Y varies Regularizer

Designing a Loss Functional

Correct answer has the lowest energy -> LOW LOSS

Lowest energy is not for the correct answer -> HIGH LOSS

Designing a Loss Functional

Push down on the energy of the correct answer

Pull up on the energies of the incorrect answers, particularly if they are smaller than the correct one

Architecture + Inference Algo + Loss Function = Model

- **1. Design an architecture:** a particular form for E(W,Y,X).
- 2. Pick an inference algorithm for Y: MAP or conditional distribution, belief prop, min cut, variational methods, gradient descent, MCMC, HMC.....
- **3. Pick a loss function:** in such a way that minimizing it with respect to W over a training set will make the inference algorithm find the correct Y for a given X.

4. Pick an optimization method.

PROBLEM: What loss functions will make the machine approach the desired behavior?

Several Energy Surfaces can give the same answers

- Both surfaces compute Y=X^2
- $\blacksquare MINy E(Y,X) = X^2$

Minimum-energy inference gives us the same answer

Simple Architectures

🕈 New York University

$$E(W, X, Y) = ||G_{1_{W_1}}(X) - G_{2_{W_2}}(Y)||_1,$$

The Implicit Regression architecture

- allows multiple answers to have low energy.
- Encodes a constraint between X and Y rather than an explicit functional relationship
- This is useful for many applications
- Example: sentence completion: "The cat ate the {mouse,bird,homework,...}"
- [Bengio et al. 2003]
- But, inference may be difficult.

Examples of Loss Functions: Energy Loss

Energy Loss Lenergy (Yⁱ, E(W, Y, Xⁱ)) = E(W, Yⁱ, Xⁱ).
 Simply pushes down on the energy of the correct answer

$$L_{perceptron}(Y^{i}, E(W, \mathcal{Y}, X^{i})) = E(W, Y^{i}, X^{i}) - \min_{Y \in \mathcal{Y}} E(W, Y, X^{i}).$$

Perceptron Loss [LeCun et al. 1998], [Collins 2002]

- Pushes down on the energy of the correct answer
- Pulls up on the energy of the machine's answer
- Always positive. Zero when answer is correct
- No "margin": technically does not prevent the energy surface from being almost flat.
- Works pretty well in practice, particularly if the energy parameterization does not allow flat surfaces.

$$L_{perceptron}(Y^{i}, E(W, \mathcal{Y}, X^{i})) = E(W, Y^{i}, X^{i}) - \min_{Y \in \mathcal{Y}} E(W, Y, X^{i}).$$

• Energy:
$$E(W, Y, X) = -YG_W(X),$$

Inference: $Y^* = \operatorname{argmin}_{Y \in \{-1,1\}} - YG_W(X) = \operatorname{sign}(G_W(X)).$

Loss:
$$\mathcal{L}_{\text{perceptron}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(\text{sign}(G_W(X^i)) - Y^i \right) G_W(X^i).$$

Learning Rule:
$$W \leftarrow W + \eta \left(Y^i - \operatorname{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W},$$

• If Gw(X) is linear in W: $E(W, Y, X) = -YW^T \Phi(X)$

$$W \leftarrow W + \eta \left(Y^i - \operatorname{sign}(W^T \Phi(X^i)) \right) \Phi(X^i)$$

First, we need to define the Most Offending Incorrect Answer

Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \overline{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^{i} = \operatorname{argmin}_{Y \in \mathcal{Y}^{and} Y \neq Y^{i}} E(W, Y, X^{i}).$$
(8)

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \overline{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^{i} = \operatorname{argmin}_{Y \in \mathcal{Y}, \|Y - Y^{i}\| > \epsilon} E(W, Y, X^{i}).$$
(9)

$$L_{\text{margin}}(W, Y^i, X^i) = Q_m\left(E(W, Y^i, X^i), E(W, \bar{Y}^i, X^i)\right).$$

Examples of Generalized Margin Losses

$$L_{\text{hinge}}(W, Y^{i}, X^{i}) = \max\left(0, m + E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})\right),$$

Hinge Loss

- [Altun et al. 2003], [Taskar et al. 2003]
- With the linearly-parameterized binary classifier architecture, we get linear SVM

$$L_{\log}(W, Y^{i}, X^{i}) = \log\left(1 + e^{E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})}\right)$$

Log Loss

- "soft hinge" loss
- With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression

Examples of Margin Losses: Square-Square Loss

$$L_{\rm sq-sq}(W, Y^{i}, X^{i}) = E(W, Y^{i}, X^{i})^{2} + \left(\max(0, m - E(W, \bar{Y}^{i}, X^{i}))\right)^{2}.$$

Square-Square Loss

- [LeCun-Huang 2005]
- Appropriate for positive energy functions

LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

$$L_{\text{lvq2}}(W, Y^i, X^i) = \min\left(1, \max\left(0, \frac{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}{\delta E(W, \bar{Y}^i, X^i)}\right)\right),$$

Minimum Classification Error Loss [Juang, Chou, Lee 1997]

$$L_{\rm mce}(W, Y^{i}, X^{i}) = \sigma \left(E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i}) \right),$$
$$\sigma(x) = (1 + e^{-x})^{-1}$$

Square-Exponential Loss [Osadchy, Miller, LeCun 2004] $L_{sq-exp}(W, Y^{i}, X^{i}) = E(W, Y^{i}, X^{i})^{2} + \gamma e^{-E(W, \bar{Y}^{i}, X^{i})},$ Conditional probability of the samples (assuming independence)

$$P(Y^{1}, \dots, Y^{P} | X^{1}, \dots, X^{P}, W) = \prod_{i=1}^{P} P(Y^{i} | X^{i}, W).$$
$$-\log \prod_{i=1}^{P} P(Y^{i} | X^{i}, W) = \sum_{i=1}^{P} -\log P(Y^{i} | X^{i}, W).$$
Gibbs distribution:
$$P(Y | X^{i}, W) = \frac{e^{-\beta E(W, Y, X^{i})}}{\int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}}.$$
$$-\log \prod_{i=1}^{P} P(Y^{i} | X^{i}, W) = \sum_{i=1}^{P} \beta E(W, Y^{i}, X^{i}) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}.$$

• We get the NLL loss by dividing by P and Beta: $\mathcal{L}_{nll}(W, S) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{u \in \mathcal{V}} e^{-\beta E(W, y, X^i)} \right).$

Reduces to the perceptron loss when Beta->infinity

Negative Log-Likelihood Loss

Pushes down on the energy of the correct answer

Pulls up on the energies of all answers in proportion to their probability

$$\mathcal{L}_{nll}(W, S) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} \right).$$

$$\frac{\partial L_{nll}(W, Y^{i}, X^{i})}{\partial W} = \frac{\partial E(W, Y^{i}, X^{i})}{\partial W} - \int_{Y \in \mathcal{Y}} \frac{\partial E(W, Y, X^{i})}{\partial W} P(Y|X^{i}, W),$$

$$(E) \qquad (E) \qquad ($$

New York University

Negative Log-Likelihood Loss: Binary Classification

Binary Classifier Architecture:

$$\mathcal{L}_{\mathrm{nll}}(W,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left[-Y^{i} G_{W}(X^{i}) + \log \left(e^{Y^{i} G_{W}(X^{i})} + e^{-Y^{i} G_{W}(X^{i})} \right) \right].$$
$$\mathcal{L}_{\mathrm{nll}}(W,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \log \left(1 + e^{-2Y^{i} G_{W}(X^{i})} \right),$$

Linear Binary Classifier Architecture:

$$\mathcal{L}_{\mathrm{nll}}(W,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \log\left(1 + e^{-2Y^{i}W^{T}\Phi(X^{i})}\right).$$

Learning Rule: logistic regression

What Makes a "Good"

Loss Function

Good loss functions make the machine produce the correct

answer

Avoid collapses and flat energy surfaces

Sufficient Condition on the Loss

Let (X^i, Y^i) be the i^{th} training example and m be a positive margin. Minimizing the loss function L will cause the machine to satisfy $E(W, Y^i, X^i) < E(W, Y, X^i) - m$ for all $Y \neq Y^i$, if there exists at least one point (e_1, e_2) with $e_1 + m < e_2$ such that for all points (e'_1, e'_2) with $e'_1 + m \ge e'_2$, we have

$$Q_{[E_y]}(e_1, e_2) < Q_{[E_y]}(e'_1, e'_2),$$

where $Q_{[E_y]}$ is given by

 $L(W, Y^{i}, X^{i}) = Q_{[E_{y}]}(E(W, Y^{i}, X^{i}), E(W, \bar{Y}^{i}, X^{i})).$

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation $\#$)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	0
hinge	$\max\left(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	m
log	$\log\left(1+e^{E(W,Y^i,X^i)-E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min\left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	0
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^{i}, X^{i})^{2} + \beta e^{-E(W, \bar{Y}^{i}, X^{i})}$	> 0
NLL/MMI	$ E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} $	> 0
MEE	$ E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $ 1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0

Advantages/Disadvantages of various losses

- Loss functions differ in how they pick the point(s) whose energy is pulled up, and how much they pull them up
- Losses with a log partition function in the contrastive term pull up all the bad answers simultaneously.
 - This may be good if the gradient of the contrastive term can be computed efficiently
 - This may be bad if it cannot, in which case we might as well use a loss with a single point in the contrastive term
- Variational methods pull up many points, but not as many as with the full log partition function.
- Efficiency of a loss/architecture: how many energies are pulled up for a given amount of computation?
 - The theory for this is to be developed

The energy includes "hidden" variables Z whose value is never given to us

What can the latent variables represent?

- Variables that would make the task easier if they were known:
 - Face recognition: the gender of the person, the orientation of the face.
 - Object recognition: the pose parameters of the object (location, orientation, scale), the lighting conditions.
 - Parts of Speech Tagging: the segmentation of the sentence into syntactic units, the parse tree.
 - Speech Recognition: the segmentation of the sentence into phonemes or phones.
 - Handwriting Recognition: the segmentation of the line into characters.
- In general, we will search for the value of the latent variable that allows us to get an answer (Y) of smallest energy.

Marginalizing over latent variables instead of minimizing.

$$P(Z, Y|X) = \frac{e^{-\beta E(Z, Y, X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y, z, X)}}.$$

$$P(Y|X) = \frac{\int_{z \in \mathcal{Z}} e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, \ z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}.$$

Equivalent to traditional energy-based inference with a redefined energy function: $Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} - \frac{1}{\beta} \log \int_{z \in \mathcal{Z}} e^{-\beta E(z, Y, X)}.$

Reduces to traditional minimization when Beta->infinity

Face Detection and Pose Estimation with a Convolutional EBM

- **Training:** 52,850, 32x32 grey-level images of faces, 52,850 selected non-faces.
- Each training image was used 5 times with random variation in scale, in-plane rotation, brightness and contrast.
- 2nd phase: half of the initial negative set was replaced by false positives of the initial version of the detector.

 $E^{*}(W, X) = \min_{Z} ||G_{W}(X) - F(Z)||$

$$Z^* = \operatorname{argmin}_Z ||G_W(X) - F(Z)||$$

Face Manifold

Probabilistic Approach: Density model of joint P(face,pose)

Probability that image
X is a face with pose Z
$$P(X, Z) = \frac{\exp(-E(W, Z, X))}{\int_{X, Z \in \text{images, poses}} \exp(-E(W, Z, X))}$$

Given a training set of faces annotated with pose, find the W that maximizes the likelihood of the data under the model:

$$P(\text{faces} + \text{pose}) = \prod_{X, Z \in \text{faces} + \text{pose}} \frac{\exp(-E(W, Z, X))}{\int_{X, Z \in \text{images}, \text{poses}} \exp(-E(W, Z, X))}$$

Equivalently, minimize the negative log likelihood:

$$\mathcal{L}(W, \text{faces} + \text{pose}) = \sum_{X, Z \in \text{faces} + \text{pose}} E(W, Z, X) + \log \left[\int_{X, Z \in \text{images}, \text{poses}} \exp(-E(W, Z, X)) \right]$$

$$COMPLICATED$$

Energy-Based Contrastive Loss Function

$$\mathcal{L}(W) = \frac{1}{|\mathbf{f} + \mathbf{p}|} \sum_{X, Z \in \text{faces+pose}} \left[L^+ \left(E(W, Z, X) \right) \right] + L^- \left(\min_{X, Z \in \text{bckgnd,poses}} E(W, Z, X) \right)$$

$$L^{+}(E(W, Z, X)) = E(W, Z, X)^{2} = ||G_{W}(X) - F(Z)||^{2}$$

Attract the network output Gw(X) to the location of the desired pose F(Z) on the manifold

$$L^{-}\left(\min_{X,Z\in \text{bckgnd,poses}} E(W,Z,X)\right) = K\exp\left(-\min_{X,Z\in \text{bckgnd,poses}} ||G_W(X) - F(Z)||\right)$$

Repel the network output Gw(X) away from the face/pose manifold

Convolutional Network Architecture

[LeCun et al. 1988, 1989, 1998, 2005]

Hierarchy of local filters (convolution kernels),sigmoid pointwise non-linearities, and spatial subsamplingAll the filter coefficients are learned with gradient descent (back-prop)

Alternated Convolutions and Pooling/Subsampling

- Local features are extracted everywhere.
- pooling/subsampling layer builds robustness to variations in feature locations.
- Long history in neuroscience and computer vision:
 - Hubel/Wiesel 1962,
 - 🤜 Fukushima 1971-82,
 - LeCun 1988-06
 - Poggio, Riesenhuber, Serre 02-06
 - Ullman 2002-06
 - Triggs, Lowe,....

Building a Detector/Recognizer: Replicated Conv. Nets

input:40x40

- Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.
- Convolutional nets can replicated over large images very cheaply.

The network is applied to multiple scales spaced by sqrt(2)

Non-maximum suppression with exclusion window

Building a Detector/Recognizer: Replicated Convolutional Nets

Computational cost for replicated convolutional net:

- 96x96 -> 4.6 million multiply-accumulate operations
- 120x120 -> 8.3 million multiply-accumulate operations
- 240x240 -> 47.5 million multiply-accumulate operations
- 480x480 -> 232 million multiply-accumulate operations
- Computational cost for a non-convolutional detector of the same size, applied every 12 pixels:
 - 96x96 -> 4.6 million multiply-accumulate operations
 - 120x120 -> 42.0 million multiply-accumulate operations
 - 240x240 -> 788.0 million multiply-accumulate operations
 - 480x480 -> 5,083 million multiply-accumulate operations

Face Detection: Results

Data Set->	TILTED		PROFILE		MIT+CMU	
False positives per image->	4.42	26.9	0.47	3.36	0.5	1.28
Our Detector	90%	97%	67%	83%	83%	88%
Jones & Viola (tilted)	90%	95%	X		X	
Jones & Viola (profile)	X		70%	83%	X	

Face Detection and Pose Estimation: Results

FLUIDE GLACIAL

Face Detection with a Convolutional Net

Performance on standard dataset

Detection

Pose estimation is performed on faces located automatically by the system when the faces are localized by hand we get: 89% of yaw and 100% of in-plane rotations within 15 degrees.

Synergy Between Detection and Pose Estimation

Pose Estimation Improves

Detection pose estimation Percentage of yaws correctly estimated 5 0 0 2 2 08 28 06 56 Percentage of faces detected Pose + detection Pose + detection Pose only Detection only 50∟ 0 50 L False positive rate Yaw-error tolerance (degrees)

Detection improves

Yann LeCun

New York University

EBM for Face Recognition

X and Y are images

Y is a discrete variable with many

possible values

All the people in our gallery

Example of architecture:

A function G(X) maps input images into a low-dimensional space in which the Euclidean distance measures dissemblance.

Inference:

- Find the Y in the gallery that minimizes the energy (find the Y that is most similar to X)
- Minimization through exhaustive search.

Learning an Invariant Dissimilarity Metric with EBM

[Chopra, Hadsell, LeCun CVPR 2005]
Training a parameterized, invariant dissimilarity metric may be a solution to the many-category problem.

- Find a mapping Gw(X) such that the Euclidean distance ||Gw(X1)- Gw(X2)|| reflects the "semantic" distance between X1 and X2.
- Once trained, a trainable dissimilarity metric can be used to classify new categories using a very small number of training samples (used as prototypes).
- This is an example where probabilistic models are too constraining, because we would have to limit ourselves to models that can be normalized over the space of input pairs.
- With EBMs, we can put what we want in the box (e.g. A convolutional net).

Siamese Architecture

Application: face verification/recognition

Loss Function

Siamese models: distance between the outputs of two identical copies of a model.

- **Energy function**: E(W,X1,X2) = ||Gw(X1)-Gw(X2)||
- If X1 and X2 are from the same category (genuine pair), train the two copies of the model to produce similar outputs (low energy)
- If X1 and X2 are from different categories (impostor pair), train the two copies of the model to produce different outputs (high energy)
- Loss function: increasing function of genuine pair energy, decreasing function of impostor pair energy.

Loss Function

Our Loss function for a single training pair (X1,X2):

$$\begin{split} L(W, X_{1,}X_{2}) &= (1-Y)L_{G}(E_{W}(X_{1,}X_{2})) + YL_{I}(E_{W}(X_{1,}X_{2})) \\ &= (1-Y)\frac{2}{R}(E_{W}(X_{1,}X_{2})^{2}) + (Y)2Re^{-2.77\frac{E_{W}(X_{1,}X_{2})}{R}} \end{split}$$

$$E_{W}(X_{1},X_{2}) = \|G_{W}(X_{1}) - G_{W}(X_{2})\|_{LI}$$

And R is the largest possible value of

 $E_{W}(X_{1}, X_{2})$

Y=0 for a genuine pair, and Y=1 for an impostor pair.

Face Verification datasets: AT&T, FERET, and AR/Purdue

• The AT&T/ORL dataset

- Total subjects: 40. Images per subject: 10. Total images: 400.
- Images had a moderate degree of variation in pose, lighting, expression and head position.
- Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
- Training set was taken from: 3500 genuine and 119000 impostor pairs.
- Test set was taken from: 500 genuine and 2000 impostor pairs.
- http://www.uk.research.att.com/facedatabase.html

AT&T/ORL Dataset

Face Verification datasets: AT&T, FERET, and AR/Purdue

- The FERET dataset. part of the dataset was used only for training.
- Total subjects: 96. Images per subject: 6. Total images: 1122.
- Images had high degree of variation in pose, lighting, expression and head position.
- The images were used for training only.
- http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset

Face Verification datasets: AT&T, FERET, and AR/Purdue

• The AR/Purdue dataset

- Total subjects: 136. Images per subject: 26. Total images: 3536.
- Each subject has 2 sets of 13 images taken 14 days apart.
- Images had very high degree of variation in pose, lighting, expression and position. Within each set of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses and lighting variation, and 3 with face obscuring scarfs and lighting variation.
- Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
- Training set drawn from: 64896 genuine and 6165120 impostor pairs.
- Test set drawn from: 27040 genuine and 1054560 impostor pairs.
- http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html

Preprocessing

The 3 datasets each required a small amount of preprocessing. **FERET:** Cropping, subsampling, and centering (see below) **AR/PURDUE:** Cropping and subsampling **AT&T:** Subsampling only

Centering with a Gaussian-blurred face template

Coarse centering was done on the FERET database images

- 1. Construct a template by blurring a well-centered face.
- 2. Convolve the template with an uncentered image.
- 3. Choose the 'peak' of the convolution as the center of the image.

Architecture for the Mapping Function Gw(X)

Convolutional net

Internal state for genuine and impostor pairs

Gaussian Face Model in the output space

Dataset for Verification

Verification Results

Classification Examples

Example: Correctly classified genuine pairs

energy: 0.0046

energy: 0.3159 energy: 0.0043 **Example: Correctly classified impostor pairs**

energy: 20.1259

energy: 5.7186

energy: 2.8243

Internal State

A similar idea for Learning a Manifold with Invariance Properties

Loss function:

- Pay quadratically for making outputs of neighbors far apart
- Pay quadratically for making outputs of non-neighbors smaller than a margin m

A Manifold with Invariance to Shifts

Training set: 3000 "4" and 3000 "9" from MNIST. Each digit is shifted horizontally by -6, -3, 3, and 6 pixels Neighborhood graph: 5 nearest neighbors in Euclidean distance, and shifted versions of self and nearest neighbors Output Dimension: 2 Test set (shown) 1000 "4"

and 1000 "9"

Automatic Discovery of the Viewpoint Manifold with Invariant to Illumination

🛚 New York University

Efficient Inference: Energy-Based Factor Graphs

- Graphical models have brought us efficient inference algorithms, such as belief propagation and its numerous variations.
- Traditionally, graphical models are viewed as probabilistic models
- At first glance, is seems difficult to dissociate graphical models from the probabilistic view
- Energy-Based Factor Graphs are an extension of graphical models to non-probabilistic settings.
- An EBFG is an energy function that can be written as a sum of "factor" functions that take different subsets of variables as inputs.

Efficient Inference: Energy-Based Factor Graphs

The energy is a sum of "factor" functions

Example:

- Z1, Z2, Y1 are binary
- Z2 is ternary
- A naïve exhaustive inference would require 2x2x2x3 energy evaluations (= 96 factor evaluations)
- BUT: Ea only has 2 possible input configurations, Eb and Ec have 4, and Ed 6.
- Hence, we can precompute the 16 factor values, and put them on the arcs in a graph.
- A path in the graph is a config of variable
- The cost of the path is the energy of the config

🕈 New York University

Energy-Based Belief Prop

- The previous picture shows a chain graph of factors with 2 inputs.
- The extension of this procedure to trees, with factors that can have more than 2 inputs the "min-sum" algorithm (a nonprobabilistic form of belief propagation)
- Basically, it is the sum-product algorithm with a different semiring algebra (min instead of sum, sum instead of product), and no normalization step.
 - [Kschischang, Frey, Loeliger, 2001][McKay's book]

Feed-Forward, Causal, and Bi-directional Models

EBFG are all "undirected", but the architecture determines the complexity of the inference in certain directions

New York University

Two types of "deep" architectures

Factors are deep / graph is deep

Shallow Factors / Deep Graph

Linearly Parameterized Factors

with the NLL Loss :

Lafferty's Conditional Random Field

with Hinge Loss:

Taskar's Max Margin Markov Nets

with Perceptron Loss

Collins's sequence labeling model

With Log Loss:

Altun/Hofmann sequence labeling model

Deep Factors / Deep Graph: ASR with TDNN/DTW

- Trainable Automatic Speech Recognition system with convolutional nets (TDNN) and dynamic time warping (DTW)
- Training the feature extractor as part of the whole process.

with the LVQ2 Loss :

Driancourt and Bottou's speech recognizer (1991)

with NLL:

- Bengio's speech recognizer (1992)
- Haffner's speech recognizer (1993)

Deep Factors / Deep Graph: ASR with TDNN/HMM

Discriminative Automatic Speech Recognition system with HMM and

various acoustic models

Training the acoustic model (feature extractor) and a (normalized) HMM in an integrated fashion.

With Minimum Empirical Error loss

Ljolje and Rabiner (1990)

with NLL:

- Bengio (1992)
- Haffner (1993)
- Bourlard (1994)

With MCE

Juang et al. (1997)

Late normalization scheme (un-normalized HMM)

- Bottou pointed out the label bias problem (1991)
- Denker and Burges proposed a solution (1995)

- Handwriting Recognition with Graph Transformer Networks
- Un-normalized hierarchical HMMs
 - Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]
 - Trained with NLL loss [Bengio, LeCun 1994], [LeCun, Bottou, Bengio, Haffner 1998]
- Answer = sequence of symbols
- Latent variable = segmentation

