Yann LeCun

A Tutorial on

Energy-Based Learning

Marc'Aurelio Ranzato, Fu-Jie Huang
The Courant Institute of Mathematical Sciences

New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

t New York University


http://yann.lecun.com/
http://www.cs.nyu.edu/~yann

M

_1wo Problems in Machine Learning

@ 1. The “Deep Learning Problem”

» “Deep” architectures are necessary to solve the invariance problem in
vision (and perception in general)
» How do we train deep architectures with lots of non-linear stages

& 2. The ‘““Partition Function Problem”’

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

& This tutorial discusses problem #2

» The partition function problem arises with probabilistic approaches
» Non-probabilistic approaches may allow us to get around it.

@ Energy-Based Learning provides a framework in which to describe

probabilistic and non-probabilistic approaches to learning

t New York University
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Energy-Based Model for Decision-Making

=SS . =

Human
Atifial ¥ Model: Measures the compatibility
Airpl?:ne between an observed variable X and
ar
Tl a variable to be predicted Y through
T B(Y. X) an energy function E(Y,X).
E Function E(Y, X * ;
nergy Function ( ) ) Y p— ‘a,I'gHHHYEJ)ET(};j X)
T T @ Inference: Search for the Y that
X Y .« e . iy :
Observed variables Variables to be minimizes the energy within a set )
(input) predicted i@ If the set has low cardinality, we can
(answer) .
use exhaustive search.
Human
Animal
Airplane
Car
Truck
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\”Complex Tasks: Inference is non-trivial

=SS . =
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XT YT XT YT inference

procedure: min-

! h LS "this" "This is easy"  (pronoun verb adj)

sum, Viterbi, .....

(d) (e) (®)
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What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:
» “Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3, Detection:

» “Is this value of Y compatible with X”?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

@ 4. Conditional Density Estimation:
» “What is the conditional distribution P(Y|X)?"
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun
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.Decision-Making versus Probabilistic Modeling

M

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?

» We turn them into probabilities (positive numbers that sum to 1).
» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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_Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S —= {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L (E S ) L (W, S )
» Measures the quality of an energy function

& Training W$ = WIPIDW ﬁ(m S)
S

& Form of the loss functional
» invariant under permutations and repetitions of the samples

P
1 : .
L(E,S) =2 ) L', EW,Y, X)) + R(W).
izl/ \ ™~ AN
Energy surface Regularizer
Per-sample Desired ¢ given Xi

loss answer as Y varies

t New York University
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Designing a L.oss Functional
[ —

Human T |—F Human T ]
Animal BT |3+ After Animal B
Airplane I =%  (raining  Airplane "]
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Truck T 1—F Truck T ]
> >
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A A
push down
< NJ\L After S
%ﬁ i training %:n
= | S
= =
- -~ - - — -
Y* Y* Y* Y*
Answer (V) Answer (V)

@ Correct answer has the lowest energy -> LOW LOSS

& Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
[ —

Human T |—F Human
Animal BT |3+ After Animal
Airplane HEEEBT =%  (raining  Airplane
Car ] =% = Car
Truck HERET |—F Truck
A A
push down
5 W After 2
:}i : training -
= 5 =
K K
E i > - >
Answer (Y) Answer (Y)

&@ Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one
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rchitecture + Inference Algo + Loss Function =

B

E(W.,Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y ial 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?

Yann LeCun * New York University



Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

@ Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer

Yann LeCun t New York University



D(Gw(X),Y) ] [ -Y Gy (X) ] [ 4’.- - - --i }
T A 1 A ® ® ® :
|
go g1 g2 |
Gw(X) ] [ Gw(X) ] [ Gw (X) ] I
|
A i 3 |
|
X Y X Y X Y
@ Regression @ Binary Classification @ Multi-class
Classification

EOV,Y,X) = Sllow(X) - YIP.  E(W,Y,X) = —YGw(X),
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E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture

» allows multiple answers to have low [IIG’1W1 (X) — Gay, (y)||1]
energy.

» Encodes a constraint between X and Y T T
rather than an explicit functional ( 1l
relationship Gy, (X) o, (V)

» This is useful for many applications

1 f

» Example: sentence completion: “The
cat ate the {mouse,bird,homework,...}" | |

» [Bengio et al. 2003]
» But, inference may be difficult.

X Y
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(Y%aE(ﬂ/ﬂ an%)) — E(I/Va Y%aX%)'
» Simply pushes down on the energy of the correct answer

\
\\o.
«33’ '
0* [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

a A \ \

Neural Net ( input X X output Y )
ZE-EE;I;en b) <
) ( %Q.

4 (§)

’ S

Nag
C input X X output Y ) \)
(a) N
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

& Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer
» Pulls up on the energy of the machine's answer
» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.

Yann LeCun * New York University
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| Perceptron Loss for Binary Classification
e IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Vi = argminy ¢y, gy 2y E(W, Y, X1). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)

Yann LeCun
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Energy: EI

Qum (EW,Y' X", E(W,Y" X")).

™~

& Generalized Margin Loss

» Qm increases with the
energy of the correct
answer

» Qm decreases with the
energy of the most
offending incorrect
answer

» whenever it is less than
the energy of the
correct answer plus a

margin m.

i i
Lmargm( 4 Y )
1 T T T T \,‘I
— .
ook EC + M= EI ,\»
3 A
0.8F HP1 \,/
\/
- o’
0.7 R \,\
\/
0.6 Re
P4
0.5 \,\
ol \/ E — E
/, C
0.4} 3 .
o
0.3 ,\ i
| \
0.2 7 HP
o, 2
0147
O 1 | 1 1 | 1 l 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Energy: E_
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Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003] é

» With the linearly-parameterized binary
classifier architecture, we get linear SVM

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss
» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

Yann LeCun * New York University
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| Examples of Margin Losses: Square-Square Loss
h—-———.—._._.__A -

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

& Square-Square Loss P st
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

Learning Y = X2
[| Net(X) - Net(Y) ||L1
S
Neural Net Neural Net
1-6-6 1-6-6
A [
\ \
( input X X output Y )
(b)
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_Other Margin-Like Losses

& L.VQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997]
Linee W, Y', X") =0 (E(W,Y", X") — E(W,Y", X")),
o(x) = (1+e*)!

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

qu—exp(m Y’&jX%) — E(VV, Y?:, X%)Q _|_ ’)/B_E(W’Yi?Xé)’
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’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity

Yann LeCun * New York University
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Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW
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Negative Log-Likelihood Loss: Binary Classification

& Binary Classifier Architecture:
P

1 . . i i i i
La(W,S) = 5> [—Y%GW(X%) + log (eY Gw(X") | o—Y'Gw(X >)} .

=1

[.’-HH(W 3 = Zlog (1 —+ 6_2Y GW(X )) ,

?,—1

@ Linear Binary Classifier Architecture

Lny(W,S) Z log (1 e YW (X! )>

z_l

@ Learning Rule: logistic regression

Yann LeCun
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at Makes a “Good” [

0.9 EC +m= EI ,~» ’
; . R A
i Loss Function 1 o |HP -
s — 0.7 R ,/,
|-_|J__ 0.6} ,\/" .
@ Good loss functions make the S os| e E_=E,
c _ ,/\
machine produce the correct Y+ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat m¢°-1 -
energy Su rfaces O0 011 0i2 Oi3 0i4 0i5 016 0i7 0i8 0i9 1

Energy: E.
Sufficient Condition on the Loss
Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by

Yann LeCun t New York University




| What Make a ‘“Good’’ Loss Function

M&b

@@ Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun

t New York University



( Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use a
loss with a single point in the contrastive term

& Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is to be developed

Yann LeCun t New York University



@ The energy includes ‘“hidden’ variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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& Variables that would make the task easier if they were known:

» Face recognition: the gender of the person, the orientation of the
face.

» Object recognition: the pose parameters of the object (location,
orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence into
syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun t New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = J:ez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

& Reduces to traditional minimization when Beta->infinity

Yann LeCun * New York University



ace Detection and Pose Estimation with a Convolutional EBM

@ Training: 52,850, 32x32 E*(W, X) = ming||Gw (X) — F(Z)||
grey-level images of faces,
52,850 selected non-faces. 7" = argminz| |GW (X) — F(Z)H

& Each training image was used

. . . L. E(W,Z, X
5 times with random variation ( ‘)
in scale, in-plane rotation, l
brightness and contrast.
d - |16, (x)-F(2)
il 2" phase: half of the initial
negative set was replaced by G, (X V F(Z)
false positives of the initial analvtical
version of the detector convolutional .
' network ;nap ping .(;HIO
W(p aram) N ace Iilanl old
4 ™) 4 )
Small E*(W,X): face X 7
Large E*(W,X): no face (image) (pose)
. J . y

[Osadchy, Miller, LeCun, NIPS 2004]

Yann LeCun * New York University




KFace Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill = e G(X)

£
Face Manifold = o)

—p
parameterized by pose L\

Apply =) Mapping: G
1




Probabilistic Approach: Density model of joint P(face,pose)

mﬁ;‘ - - — S

Probability that image exp(—E(W, Z, X))

: : P(Xa Z) =
X 1s a face with pose Z fX,ZEimages,poses exp(—E(W, Z, X))
Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Energy-Based Contrastive Loss Function
I

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convyolutional Network Architecture

m —

Cl: feature

8@ 2 Bx.2 8
b C3: f. maps

Input 20
, @10%10
32x32 51: f. maps 54: f. maps

, 20@5x5 C5: 120
B@ldxld F @5x5 AT
= - —

- Subsam I;.n i Lo ;
Convolutions i . subsampling  conpection
Convolutions Convaolutions

Hierarchy of local filters (convolution kernels),

sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University



“Simple cells”

‘Alternated Convolutlons “Complex cells”
,, and Poollng/Subsampll ng
@ Local features are extracted _
pooling

everywhere. Multiple subsampling

convolutions

@@ pooling/subsampling layer builds

robustness to variations in feature

i

locations.

Hm! Wil
.,

@ Long history in neuroscience and

computer vision:

i Hubel/Wiesel 1962,

'l Fukushima 1971-82,

il LeCun 1988-06

il Poggio, Riesenhuber, Serre 02-06
'l Ullman 2002-06

i Triggs, Lowe,....

s MMl colRher

= .
"o ."
5.-m A

=rﬂh'
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:Building a Detector/Recognizer: Replicated Conyv. Nets
| SRS S—

P e ]

output: 3x3

VVﬁuk“V
32x32

input:40x40

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by sqrt(2)

¥ Non-maximum suppression with exclusion window

Yann LeCun * New York University



Replicated Convolutional Nets

—

@ Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap




Wm

Facke Detection: Results

1

S

Yann LeCun

DataSet->] TILTED PROFILE MIT+CMU
False positives per image-> 442 | 26.9 | 0.47 3.36 0.5 1.28
Our Detector 90% | 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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Performance on standard dataset

R ——

& Detection

100 T T T T T T T T T

95+t

o
o

-]
W

80

Percentage of faces detected
~
(%]

m—— Frontal
' == 1 Rotated in plane
== == Profile

0 0.5 1 1.5 2 25 3 35 4 4.5
False positives per image

100

*® 0 O O
[~ (5} (=] (931
T T

Percentage of poses correctly estimated
~ ~
(=~ (93

- - S—

Pose estimation

= n-plane rotation
m— == Yaw

5 10 15 20 25 30
Pose-error tolerance (degrees)

Pose estimation is performed on faces located automatically by the system

when the faces are localized by hand we get: 89% of yaw and 100% of in-plane

rotations within 15 degrees.

Yann LeCun
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f Synergy Between Detection and Pose Estimation
Pose Estimation Improves Detection improves
Detection pose estimation

[~
w
[~
(9}
T

= *®

=1 =
T T
~ ~ *®
= (Y (=
T T T

N
(¥, ]
N
[,
T

Percentage of faces detected
~
W

Percentage of yaws correctly estimated
3
~

60 4 = Pose + detection = Pose + detection
Y4 == == Detection only 4 = = Pose only
55 55
4
50 ) ) ' | 1 1 1 N N N 50 1 I 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30
False positive rate Yaw-error tolerance (degrees)
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\ for ace Recognition

& X and Y are images
E(W.,X,Y)

& Y is a discrete variable with many

Il Gw(X)-Gw(Y)ll possible values
» All the people in our gallery

& Example of architecture:
Gw(X) Gw(Y)

» A function G(X) maps input images
into a low-dimensional space in
which the Euclidean distance
measures dissemblance.

@ Inference:

» Find the Y in the gallery that
minimizes the energy (find the Y
that is most similar to X)

» Minimization through exhaustive
search.

Yann LeCun * New York University



Learmng an Invariant Dissimilarity Metric with EBM
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[Chopra, Hadsell, LeCun CVPR 2005]

& Training a parameterized, invariant dissimilarity metric

may be a solution to the many-category problem.

& Find a mapping Gw(X) such that the Euclidean distance

IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of
training samples (used as prototypes).

& This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to
models that can be normalized over the space of input pairs.

@ With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

il Application: face verification/recognition

E(W.X1.X2)

uFW(Xl) Gwo’cJ

E(W.X1.X2)

|1Fw(X1)-Gw(>’<ﬂ
‘ Gw(X1) ‘ ‘ Gw(X2) \




Loss Function
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Siames=a Cost Funcliaon

E(W.X1,X2)

A
\l;}w(XD-Gw(Xz')n_I

Gw(X1) Gw(X2)

X1 X

a 1Q 20 a3a
sudidean dietfanocs

& Siamese models: distance between the outputs of two identical copies of a model.
@@ Energy function: E(W,X1,X2) = IGw(X1)-Gw(X2)Il

@ If X1 and X2 are from the same category (genuine pair), train the two copies of the model

to produce similar outputs (low energy)

@ If X1 and X2 are from different categories (impostor pair), train the two copies of the
model to produce different outputs (high energy)

i@ Loss function: increasing function of genuine pair energy, decreasing function of

impostor pair energy.
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Loss Function

=SS —

i@ Our Loss function for a single training pair (X1,X2):
L(W, XI’X2)=( 1— Y)LG <EW(X1,X2>)+YL1(EW(X1,X2>)

) —2.77 E, (X, X)
:(1_y)E(EW(XLX2)2)+(Y)2Re g
E, (X X,)=lG,(X,)=G (X ),

And R is the largest possible value of

EW<X1,X2)

Y=0 for a genuine pair, and Y=1 for

an impostor pair.




® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset
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Face Verification datasets: AT&T, FERET, and A

R/Purdue__

®* The FERET dataset. part of the dataset was used only for training.
* Total subjects: 96. Images per subject: 6. Total images: 1122.

* Images had high degree of variation in pose, lighting, expression and head position.
* The images were used for training only.

* http://www.itl.nist.gov/iad/humanid/feret/

FERET Dataset




Face Verification datasets: AT&T, FERET, and AR/Purdue |

= === — = === .

®* The AR/Purdue dataset
* Total subjects: 136. Images per subject: 26. Total images: 3536.

* Each subject has 2 sets of 13 images taken 14 days apart.

* Images had very high degree of variation in pose, lighting, expression and position. Within each set
of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses
and lighting variation, and 3 with face obscuring scarfs and lighting variation.

* Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
® Training set drawn from: 64896 genuine and 6165120 impostor pairs.
* Test set drawn from: 27040 genuine and 1054560 impostor pairs.

® http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html







m

Preprocessing

The 3 datasets each required a small amount of preprocessing.
FERET: Cropping, subsampling, and centering (see below)
AR/PURDUE: Cropping and subsampling

AT&T: Subsampling only
subsample ‘
center l

Crop




Centering with a Gaussian-blurred face template

wi_{jé

¥ Coarse centering was done on the FERET database images
1. Construct a template by blurring a well-centered face.
2. Convolve the template with an uncentered image.

3. Choose the peak’ of the convolution as the center of the image.

Convolve mask with :
peak is center

image

of image
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:Architecture for the Mapping Function Gw(X)

Convolutional net

Layer 6
Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Fully connected
i 45@20x15
maee 15@50x40  15@25x20 h @55 250

2@56x46
Low-dimensional

invariant representation

-

—
I
7x7 4x3 5x5
convolution subsampling convolution subsampling convolution

(15 kernels) (198 kernels) (11250 kernels)



Internal state for genuine and impostor pairs
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aussian Face Model in the output space

&

el e e

2006860
066 A 8EAQ

A gaussian model
constructed from 5

images of the
above subject.

1
Threshold —4



Dataset for Verification Verlflcatlon Results

il tested on AT&T and AR/Purdue gl The AT&T dataset & The AR/Purdue dataset
i AT&T dataset -alse Accept  False Reject -alse Accept False Reject
Number of subjects: 5 10.00% 0.00% 10.00% 11.00%
Images/subject: 10 7.50% 1.00% 7.50% 14.60%

5.00% 1.00% 5.00% 19.00%

Images/Model: 5

Total test size: 5000

Number of Genuine: 500

Number of Impostors: 4500 z
il Purdue/AR dataset ”

Number of subjects: 40 Eu

Images/subject: 26 3

Images/Model: 13 "

Total test size: 5000 5

Number of Genuine: 500 :

10% 510 1520 2530 3540 ﬁmpsfeoesvo 7580 85 9 95100

Number of Impostors: 4500
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Classification Examples
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& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
i@ Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs
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A'similar idea

for Learning

fa Manifold

twith Invariance

& .oss function:

» Pay quadratically
for making outputs
of neighbors far
apart

» Pay quadratically
for making outputs
of non-neighbors
smaller than a
margin m

Yann LeCun

1

szmj_lar= % D2 w Ldjssjmj]ar= E { max (O, m-D W) }2
Margin
Hy

DWA DWA
|G, (x,)—G, (x,)l| |G, (x,)—G, (x,)l|
A A A A
G, (x) G, (x,) G, (x,) G, (x,)

T F
o B

oy
/

t New York University



AManifold with Invariance to Shifts
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@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and

nearest neighbors
i@ Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

599990991999 7

t New York University

Yann LeCun



=== ——————

'Automatlc Discovery of the Viewpoint Manifold

\_WlthInvarlant to Illumination
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Yann LeCun

t New York University



& Graphical models have brought us efficient inference algorithms, such

as belief propagation and its numerous variations.
& Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models from the
probabilistic view

@ Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

& An EBFG is an energy function that can be written as a sum of “factor”

functions that take different subsets of variables as inputs.

Yann LeCun * New York University



Efficient Inference: Energy-Based Factor Graphs

& The energy is a sum of ‘““factor’’ functions

& Example:

» Z1,Z2, Y1 are binary 2ees2d

» Z2 is ternary @

» A naive exhaustive inference
would require 2x2x2x3
energy evaluations (= 96 [E‘*”” [E“X’ZMZ?)] [E°<22’Y1> H Edm’m]
factor evaluations) NN TN

» BUT: Ea only has 2 possible szl/ \22/ \yl/ \y2
input configurations, Eb and
Ec have 4, and Ed 6. 2

» Hence, we can precompute
the 16 factor values, and put
them on the arcs in a graph S

» A path in the graph is a
config of variable

» The cost of the path is the

E.(0,0)

energy of the config Z: Z, Y, Y

Eq(0,0)

Yann LeCun t New York University



@ The previous picture shows a chain graph of factors with 2

inputs.

& The extension of this procedure to trees, with factors that can
have more than 2 inputs the “min-sum” algorithm (a non-

probabilistic form of belief propagation)

@ Basically, it is the sum-product algorithm with a different semi-
ring algebra (min instead of sum, sum instead of product), and

no normalization step.
» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun * New York University



- Feed-Forward, Causal, and Bi-directional Models *

& EBFG are all ‘“‘undirected”’, but the architecture determines the

complexity of the inference in certain directions

Distance

omplicated
unction

X Y X Y X Y
& Feed-Forward & “Causal” & Bi-directional
» Predicting Y » Predicting Y » X->Y and Y->X are both
from X is easy from X is hard hard if the two factors
» Predicting X » Predicting X don't agree.
from Y is hard fromY is easy » They are both easy if the

factors agree

Yann LeCun t New York University
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Two types of ‘“‘deep” architectures

& Factors are deep / graph is deep

Yann LeCun * New York University



_Shallow Factors / Deep Graph

@ Linearly Parameterized Factors

& with the NLL Loss : EW,Y, X)

» Lafferty's Conditional
Random Field / A \
& with Hinge Loss:

» Taskar's Max Margin
Markov Nets

& with Perceptron Loss

» Collins's sequence
labeling model /m\
Y, Y- Y5 Y,
& With Log Loss:

» Altun/Hofmann
sequence labeling
model X

Yann LeCun t New York University
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Deep Factors / Deep Graph: ASR with TDNN/DTW

& Trainable Automatic Speech Recognition system with convolutional
nets (TDNN) and dynamic time warping (DTW)

AEW, Z Y, X)
@ Training the feature s w
”~
extractor as part of the lr,7,1 <
”/ 7 7/
whole process. . Wz~ DIW
A
& with the LVQ2 Loss : feature | vectors t L
» Driancourt and [ «=c- _]_
Bottou's speech 1\ ' . :
recognizer (1991) |
@ with NLL: [ TDNN ] !
» Bengio's speech A word templates
recognizer (1992) |
» Haffner's speech Path thw?rgimn
recognizer (1993) ¢ CAILO
X (acoustic vectors) A Y

Yann LeCun t New York University



; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and

various acoustic models

» Training the acoustic model (feature extractor) and a (normalized)
HMM in an integrated fashion.

@ With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

& with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)

Yann LeCun * New York University
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Really Deep Factors/ i

» Trained with NLL loss

N Viterbi i~ I
J— Transformer 4 ? i
; ) i
Grsel W‘ :
@ Handwriting Recognition with 3 A :
|
Graph Transformer Networks f !
. . . Path Selector 1"/ ““““““ e :
& Un-normalized hierarchical ¥ |
|
HMMs 2 :
G n
» Trained with Perceptron loss int Uol/‘f. i
[LeCun, Bottou, Bengio, i |
:
|
|
|
|
|
|
|
|
|
|
|

Haffner 1998] i

[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]
@ Answer = sequence of symbols GTseq o L
(3427 (path )
& Latent variable = segmentation X y 7z

Yann LeCun t New York University



