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nergy-Based Models

compatibility & A model measures the compatibility
* between a set of observed variables X, and a
Energy set of variables to be predicted Y.
function @ The compatibility is measured by an energy
E(W,Y,X) function (or contrast function) E(W,Y,X).
? f > L(?w energy = Y i.s c_ompatiblg with_X
» High energy =Y is incompatible with X
X Y

& W is a parameter vector

observed variables » W is to be learned from data

variables to be
(Input) predicted
(output)

Yann LeCun * New York University
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_Energy-Based Models: Inference

E(W,Y,X) & Inference (decision making): for a given X,
* pick the value of Y within a set {Y} that
minimizes the energy E(W,Y,X):
W Y = argmin, c vy E(W, y, X)
* ? @ Inference (probabilistic): Interpret the energy

a negative log-probability:
exp (=BE(W, Y, X))
E(W,Y,X) P(Y|X) =
L > ye vy €Xp(—BE(W,y, X))

@ Three questions:

» Architecture: What do we put in the box?
> P Inference algorithm: How do we find the best Y?
y  ” Learning: how do we estimate W from data?

< }
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Model is Designed and trained to Answer Questions

B

W Example: X is an image from a camera; Y is a discrete
* variable e.g. Y in {animal, human, plane, truck, car}.

¥ 1. Best Guess for Y: which category best describes X?

¥ 2. Ranking on Y: Is X more a car than an airplane?

model i@ 3. Distribution on Y: give an estimate of P(animal | X)
* i For each type of question:
X
(label) - a different inference algorithm is required
(input) Uabe

- a different learning strategy is required

Never try to answer a more complex question than necessary

Yann LeCun * New York University
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: mples of EBMs: traditional classification

E(Y,X)

& X is an image

& Y is a discrete variable in the set:

a—/- — — = {human, animal, airplane, car, truck,

none of the above}

T T T T T & Example of architecture:

» A discriminative function G(X) gives
G(W.X) a vector of scores (one component
for each possible value of Y)

* » A switch picks the lowest value

& Inference:

ANIMAL » exhaustive search over Y

Yann LeCun * New York University



\ Emle of EBMs: Face Recognition

A_

E(W’)’(’Y) @ X and Y are images
Il Gw(X)-Gw(Y)ll & Y is a discrete variable with many
possible values
‘ Gw(X) ‘ ‘ Gw(Y) \ » All the people in our gallery
_ @ Example of architecture:

» A function G(X) maps input images
into a low-dimensional space in
which the Euclidean distance
measures dissemblance.

& Inference:

» exhaustive search over Y?

» Probabilistic inference is next to
impossible

Yann LeCun * New York University
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_ Examples of EBMs: Image Segmentation / Object Detection

| —— —————— :

E(Y,X) & X is an image

* @ Y is a segmentation image

» Y is a discrete variable with an
intractable number of possible
values.

» Y must satisfy certain topolgical
7 constraints (structured output)

& Architecture

» Some sort of factor graph (graphical
model)

T ? & Inference:

» Relaxation

» Belief propagation

» Probabilistic inference is generally
impossible (we can't normalize)

Yann LeCun * New York University



mle of EBMs: Sequence Labeling

Lo Furton & X is a sequence

[AAT+1)
Mn » A handwritten word image or pen

trajectory, a sequence of acoustic vectors

Gﬂa (speech), a text sentence, a DNA

¢t ‘?S”"f ¥ sequence.....

I

o
m/%

Viterbi Transformer

& Y is a sequence of labels
'm?;sam » Text transcription, parts of speech tags,

gene annotations....
» Y must satisfy certain grammatical

\ H 1 Fecaanor constraints (structured output)
Ng:‘:mm v e [ oem [ ] T e
jl S AN ER W @ Architecture

L » Some sort of factor graph.

& Inference:
230 » Viterbi, Forward algorithm

» Probabilistic inference is quasi impossible
(we can't easily normalize)

Yann LeCun * New York University



“Training an EBM

E(W,Y,Xi)

A

Energy before learning E(\Z’Y’Xi) Energy after learning

=
=<
<

Actual output Desired output

& Given a set of training samples (Xi, Yi), find a W that makes
E(W,Y1,Xi) smaller than E(W,y,Xi) for all y different from Y].

@ Question: how do we design a loss function L, such that minimizing L
with respect to W will make the energy surface have the correct shape?

Yann LeCun * New York University



rchitecture + Inference Algo + Loss Function =

B

E(W.,Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y ial 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?

Yann LeCun * New York University



An Example of Good Loss Function:

Mmg;‘f;(‘

& Push down on the energy of the correct answer, and push up on the
energy of the incorrect answer that has the lowest energy (most offending

incorrect answer)

Y = z_-u‘grnir1y;,éYz-E(VVj Y, Xi)

LW, Y, X")=F1IEW,Y", X")] — F2[E(W,Y", X")]

@ F1 and F2 must be increasing functions of their argument.

Yann LeCun * New York University



Examples of Loss Functions

B Energy Loss: Leperey (W, Y?, X?) = E(W,Y?, X¥).
BAD Only works if the architecture is such that decreasing F (W, Y, X*) will
automatically increase E(W,Y, X?) fory # Y.
W Generalized Perceptron Loss [LeCun 1998][Collins 2002]:
Liiron (W, Y4, X*) = E(W. Y%, X*) — miny e{y) E(W,Y, X%
Does not work because the margin is zero. This reduces to the traditional linear
perceptron loss when E(W,Y, X) = - YW.X.
W Generalized Margin Loss: [LeCun et al. 2005]
GOOD  Lgmargin(W, Y: X)) =Q[E(W.Y: XY, E(W.Y, X*)]
Where ( is an increasing function of E(W, Y, X*) and a decreasing function
of E(W,Y, X?).
OK_ but W Negative Lpg Likelil}{md Lof-;s: [Bengin 1992][L£Cun 1998][Lafferty 2001]
’ La(W,Y*, X*) = E(W,Y*, X*) — Fg(W, X*)
hard with: Fg(W, X?) = — 1 log ( Jyeqyy pl-BEW,Y, Xi)])

BAD

Standard IOSS fOI' pI'ObabﬂiStiC mOdel (e.g. CRF) Functions for Discriminative Training of Energy-Based Models —p. 2212

Yann LeCun * New York University




Yar

Special Cases of the Generalized Margin Loss

Lsnuean W Y2, X°) =QIE(W, Y5, X" ), EOW, Y. X*)]

N

\

Egius - Eminus

llllll

Hinge Loss [Taskar, Guestrin, Koller 2003].[Altun, Johnson, Hof-
mann, 2003]:

Lhinge(W,Y*, X*) = max(0,m + E(W,Y*, X*) — E(W,Y, X*"))

Square-Square Loss:

L —

Logsq(W, Y, X?) = E(W,Y?, X*)?4(min(0, m—E(W, Y, X*)))?

Square-Exp Loss: [Osadchy, Miller, LeCun, NIPS 2004]

Loqexp(W,Y*, X*) = E(W,Y*, X*)? + K exp(—BE(W, Y, X*))

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 23/3




bad about probabilistic models?

e == == — e

¥ Why bother with a normalization since we don't use it for decision making?

¥ Why insist that P(YIX) have a specific shape, when we only care about the position of its
minimum?

¥ When Y is high-dimensional (or simply conbinatorial), normalizing becomes intractable
(e.g. Language modeling, image restoration, large DoF robot control...).

¥ A tiny number of models are pre-normalized (Gaussian, exponential family)
¥ A very small number are easily normalizable

¥ A large number have intractable normalization

¥ A huuuge number can't be normalized at all (examples will be shown).

¥ Normalization forces us to take into account areas of the space that we don't actually care
about because our inference algorithm never takes us there.

&P If we only care about making the right decisions, maximizing the likelihood solves a

much more complex problem than we have to.

Yann LeCun * New York University
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EBM Energy Surfaces

Examples: An EBM that computes Y = X?2.

On the left: E(Y, X) is quadratic in Y. It corresponds to a Gaussian model of
P(Y|X).

On the right: E(Y, X) is saturated. Although it gives the same answers as the EBM on
the left, it has no probabilistic equivalent because the partition function

I , exp(—E(Y, X)) does not converge.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models — p, 9/2




EBM Demos

¥ Demo 1: Y = X2, Architecture
— — A, Square Energy Loss. It

works because E(Y, X) is a
Il Net(x) - ¥ ||L1 Il Net(X) - Wet(v) ||L1 fixed quadratic function of Y.
A [ 4 A B Demo 2: Y = X2, Architecture
B, Square Energy. It collapses.
Neural Net
(20 hidden e | | Tves ¥ Demo 3: Y = X2, Architecture
:J:?:frﬁ!ut' param Wx param Wy B} Squarﬂ-quﬂre Margin LGSS

W Demo 4: Y = X2, Architec-

( — xf X —— ) ( imi X m:,, ) ture B, Negative Log Likelihood

Loss. Few iterations, but each it-
(a) (b) eration is expensive

Initially, the forbidden sphere around Y is 0.2, then 0.1.
Demo 5: eye pattern, Architecture B, Negative Log Likelihood Loss.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 24/3
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Loss: “Energy Loss”: L(W,Y,X) = E(W,Y,X)

energy energy
E(W,Y,X) E(W,Y,X)

[| Net(X) - Y ||L1 [| Net(X) - Net(Y) ||L1
Neural Net \\.
1-20-1 Neural Net Neural Net e
(20 hidden 1-6-6 1-6-6 @’

units) %
param W param Wx param Wy Q
4 Y x \}'
i { { O

-\
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=

d losses

Neg-Log-Likelihood loss

energy
E(W,Y,X)

[| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6
'.'Irp.'g'q:l:ltnr—11|23-1-‘."l‘£ﬂ'4lﬂf’l param Wx param Wy
‘? “ " mpigrupiter 10684-7T068:1er
( input X X output Y )

L(W,X,Y)=E(W,Y,X)” —max (0,m — E(W,Y, X)?)

1
_ | LW, X,Y) = EGW,Y. X) § Llog | 3 exp (—AE(W, y, X))
Y = a‘rgmlnye{Y},y#YE(m Y, X) b ?JEZ{;}

Yann LeCun




¥ Unlike traditional classifiers, EBMs can represent multiple alternative outputs

¥ The normalization in probabilistic models is often an unnecessary aggravation,
particularly if the ultimate goal of the system is to make decisions.

¥ EBMs with appropriate loss function avoid the necessity to compute the partition
function and its derivatives (which may be intractable)

¥ EBMs give us complete freedom in the choice of the architecture that models the
joint “incompatibility” (energy) between the variables.

¥ We can use architectures that are not normally allowed in the probabilistic
framework (like neural nets).

@@ The inference algorithm that finds the most offending (lowest energy)
incorrect answer does not need to be exact: our model may give low energy to
far-away regions of the landscape. But if our inference algorithm never finds those
regions, they do not affect us. But they do affect normalized probabilistic models

Yann LeCun * New York University



ace Detection and Pose Estimation with a Convolutional EBM

@ Training: 52,850, 32x32 grey-level

. E (Y,Z,X)
images of faces, 52,850 non-faces. v
& Each training image was used 5 times
with random variation in scale, in- switch oVe <
plane rotation, brightness and /f \\
contrast. T
il 2™ phase: half of the initial negative ‘ IG,, (X)=F(Z)
set was replaced by false positives of G, (X V F(Z)
the initial version of the detector . -
convolutional ana?ytwal
network mapping onto
W (p aram) N face Iilamfold
4 N\ N\ A
X 7 Y
[Osadchy, Miller, LeCun, NIPS 2004] (image) (pOSG)
. J \\ y L(label)J

Yann LeCun * New York University



KFace Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill = e G(X)

£
Face Manifold = o)

—p
parameterized by pose L\

Apply =) Mapping: G
1




Loss Function
h." —

=

loss for face sample
with known pose

loss for non-face

I s?kmple

—— A T N
Minimize: L(Ww) o LW, ZX)+— LW, X')
[]i &

| ‘ﬂfgn

training faces training non-faces

LW1L,Z X =E,(1,Z,X)° L(W,0,X)=Kexp(E(,Z,X))

F(Z) Gy, (X)
A F(z)

Gy (X)




Convyolutional Network Architecture

m —

Cl: feature

8@ 2 Bx.2 8
LR AR C3: f. maps

Input , 20@10x10
32x32 51: f. maps S4: f. maps

. 20@5x5 C5: 120
8@14x14 F @5x5 RN
— - —

- Subsamplin el :
Convolutions Lt el ~ subsampling  oapection
Convolutions Convolutions

Hierarchy of local filters (convolution kernels),

sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University



“Simple cells”

‘Alternated Convolutlons “Complex cells”
,, and Poollng/Subsampll ng
@ Local features are extracted _
pooling

everywhere. Multiple subsampling

convolutions

@@ pooling/subsampling layer builds

robustness to variations in feature

i

locations.

Hmﬂ (B0
.,

@ Long history in neuroscience and

computer vision:

i Hubel/Wiesel 1962,

'l Fukushima 1971-82,

il LeCun 1988-06

il Poggio, Riesenhuber, Serre 02-06
'l Ullman 2002-06

i Triggs, Lowe,....

s MMl colRher

= .
"o ."
5.-m A

=rﬂh'
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: ilding a Detector/Recognizer: Replicated Conyv. Nets
| S — AR lad—

= output: 3x3

96x96

input:120x120

¥ Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun * New York University



Replicated Convolutional Nets

—

@ Computational cost for replicated convolutional net:
i 96x96 -> 4.6 million multiply-accumulate operations
i 120x120 -> 8.3 million multiply-accumulate operations
il 240x240 -> 47.5 million multiply-accumulate operations
il 480x480 -> 232 million multiply-accumulate operations

@ Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

i 96x96 -> 4.6 million multiply-accumulate operations

il 120x120 -> 42.0 million multiply-accumulate operations
il 240x240 -> 788.0 million multiply-accumulate operations
i 480x480 -> 5,083 million multiply-accumulate operations

< — 96x96 window
< 12 pixel shift

84x84 overlap
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Facke Detection: Results

1

S

Yann LeCun

DataSet->] TILTED PROFILE MIT+CMU
False positives per image-> 442 | 26.9 | 0.47 3.36 0.5 1.28
Our Detector 90% | 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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_How do we Handle Lots of Classes?
[ — —

& Example: face recognition
» We do not have pictures of every person

& We must be able to learn something without seeing all the classes
& Solution: learn a similarity metric

& Map images to a low dimensional space in which

» Two images of the same person are mapped to nearby points
» Two images of different persons are mapped to distant points

Yann LeCun

t New York University



Comparlng ObjECtS’ Learning an Invariant Dissimilarity Metrlc

miif_‘l S

— e e

[Chopra, Hadsell, LeCun CVPR 2005]

& Training a parameterized, invariant dissimilarity metric

may be a solution to the many-category problem.

& Find a mapping Gw(X) such that the Euclidean distance

IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of
training samples (used as prototypes).

& This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to
models that can be normalized over the space of input pairs.

@ With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

il Application: face verification/recognition

E(W.X1.X2)

uFW(Xl) Gwo’cJ

E(W.X1.X2)

|1Fw(X1)-Gw(>’<ﬂ
‘ Gw(X1) ‘ ‘ Gw(X2) \
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ts: AT&T/ORL

® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

AT&T/ORL
Dataset



Internal state for genuine and impostor pairs
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Classification Examples

. —— =

& Example: Correctly classified genuine pairs

KP8R

energy: 0.3159 energy: 0.0043 energy: 0.0046
i@ Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186

e= 29

energy: 10.3209 energy: 2.8243

& Example: Mis-classified

pairs




A'similar idea

for Learning

fa Manifold

twith Invariance

& .oss function:

» Pay quadratically
for making outputs
of neighbors far
apart

» Pay quadratically
for making outputs
of non-neighbors
smaller than a
margin m

Yann LeCun

1

szmj_lar= % D2 w Ldjssjmj]ar= E { max (O, m-D W) }2
Margin
Hy

DWA DWA
|G, (x,)—G, (x,)l| |G, (x,)—G, (x,)l|
A A A A
G, (x) G, (x,) G, (x,) G, (x,)

oy
/

K

I B
-+ 8 X

t New York University



AManifold with Invariance to Shifts

= === —

@ Training set: 3000 “4” and
3000 “9” from MNIST.
Each digit is shifted
horizontally by -6, -3, 3,
and 6 pixels

i Neighborhood graph: 5
nearest neighbors in
Euclidean distance, and
shifted versions of self and

nearest neighbors
i@ Output Dimension: 2

i Test set (shown) 1000 “4”
and 1000 “9”

99299 97 9999

Yann LeCun * New York University
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Automatlc Discovery of the Viewpoint Manifold

WlthInvarlant to Illumination

e e —Ss=Saaaaaeee

o .
tis- £ 1 i...f.’?:
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oy, Te gy
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313 | J %

Yann LeCun
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eneric Object Detection and Recognition with Invariance

|

ito Pose, Illumination and Clutter

& Computer Vision and Biological Vision are getting back
together again after a long divorce (Hinton, LeCun, Poggio,

Perona, Ullman, Lowe, Triggs, S. Geman, Itti, Olshausen,

Simoncelli, ....). ﬁ&: f-
¥ What happened? (1) Machine Learning, (2) Moore's Law. .
¥ Generic Object Recognition is the problem of detecting and o

s ! : : ° . P . e o )

classifying objects into generic categories such as “cars”, “trucks”, .

29 ¢¢

“airplanes”, “animals”, or “human figures”

& Appearances are highly variable within a category because of

shape variation, position in the visual field, scale, viewpoint,

illumination, albedo, texture, background clutter, and occlusions.

& Learning invariant representations is key.

i Understanding the neural mechanism behind invariant

recognition is one of the main goals of Visual Neuroscience.



@ Conjecture: we won't solve the perception problem without solving the

problem of learning in deep architectures [Hinton]

» Neural nets with lots of layers
» Deep belief networks
» Factor graphs with a "“Markov” structure

@ We will not solve the perception problem with kernel machines

» Kernel machines are glorified template matchers

» You can't handle complicated invariances with templates (you would
need too many templates)

& Many interesting functions are “deep”’
» Any function can be approximated with 2 layers (linear combination of
non-linear functions)

» But many interesting functions a more efficiently represented with
multiple layers

» Stupid examples: binary addition

Yann LeCun * New York University



Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

& 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
y ging g g p
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 . ¥ ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
i on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
I; 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University
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Convolutlonal Network

L 3
ayet Layer 6
24@18x18 Layer 4
Stereo Layer 1 Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 * (500 weights)

/v

4x4
5x5 .
, subsampling convolution 3x3 .
convolution _convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

& 90,857 free parameters, 3,901,162 connections.

i The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
@ The entire network is trained end-to-end (all the layers are trained simultaneously).

@ A gradient-based algorithm is used to minimize a supervised loss function.
Yann LeCun * New York University
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Alternated Convolutions and Subsampling ' ESSERS .

human

e =

o
b
s
0
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0
pil)
E

n .amw
gl
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a
=
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—l—.‘:__‘_.I\
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“Simple cells” 7T ket
“Complex cells”

o
b
™~
=
L
P

e
&

Nl |
=l

NErEE o

Averaging X

Multiple
convolutions

subsampling

| i e 3
‘AR ER
"l b ™

E A

@ Local features are extracted
Foom= 0.6, Thres=-1.0, f on , os=40, ny

=
r
=
H
s o

everywhere.

A N

@ averaging/subsampling layer

builds robustness to variations in

Bl

feature locations.

@ Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'(2,....

Yann LeCun
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ANormalized-Uniform Set: Error Rates

el

@@ Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6% error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
Wk R A SN K
WNNASs VEeBYX
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun * New York University




Nbrmalized-Uniform Set: Learning Times
e U— — —

S —=

SVM Conv Net SVM/Conv
test error 11.6% 10.4% | 6.2% | 5.8% | 6.2% 5.9%
train time
(min*GHz) 480 64 384 640 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
#SV 28% 28%
o=2,000 dim=80
parameters C'=40 o=5
C'=0.01
SVM: using a parallel implementation by Chop off the

Graf, Durdanovic, and Cosatto (NEC Labs) last layer of the
convolutional net

and train an SVM on it

Yann LeCun

t New York University



& Jittered-Cluttered Dataset:
& 291,600 tereo pairs for training, 58,320 for testing

¥ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

‘¥ Input dimension: 98x98x2 (approx 18,000)

Yann LeCun * New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
& Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error

t New York University



Jittered-Cluttered Dataset

SVM Conv Net SVM /Conv
test error 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters | o=10% o=9
OUCH! The convex loss, VC bounds Chop off the last layer,
and representers theorems and train an SVM on it

' .
don't seem to help it works!
Yann LeCun




What's wrong with K-NN and SVMs?

m&‘xii, e,

i@ Both are “shallow” architectures

& K-NN and SVM with Gaussian kernels are based on matching global templates

@ There is now way to learn invariant recognition tasks with such naive architectures

(unless we use an impractically large number of templates).

il The number of necessary templates grows
exponentially with the number of dimensions

of variations.

¥ Global templates are in trouble when the
variations include: category, instance shape,
configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance, background

texture, background clutter, .....

Output

Linear

Combinations

Features (similarities)

Global Template Matchers

(each training sample is a template




[Examples (Monocular Mode)

Zoom= 0.6, Thres=-1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, f on , 05=40, hv Zoom= 0.6, Thres= -1.0, T on , 05=40, nv

animal animal

human human

upla“e

plane

truck truck

car

car
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Yann LeCun




Learned Features
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Yann LeCun * New York University
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Examples (Monocular Mode)

Yann LeCun * New York University
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Examples (Monocular Mode)
| S

Yann LeCun * New York University
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Examples (Monocular Mode)

Yann LeCun * New York University



: Supervised Learning in ‘‘Deep” Architectures

& Backprop can train ‘“deep’ architectures reasonably well

» It works better if the architecture has some structure (e.g. A
convolutional net)

@ Deep architectures with some structure (e.g. Convolutional nets) beat

shallow ones (e.g. Kernel machines) on image classification tasks:

» Handwriting recognition
» Face detection
» Generic object recognition

& Deep architectures are inherently more efficient for representing complex

functions.

@ Have we solved the problem of training deep architectures?

» Can we do backprop with lots of layers?
» Can we train deep belief networks?

@ NO!

Yann LeCun * New York University
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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Handwrltten Digit Recognition with a Convolutlonal Network
| ST it

Layer 3 Layer 5 Layer 6: RBF
. Layer 1 Layer 2 Layer 4
tnput 12@10x10 84@1x1 Fully
1@32x32 6@28x28 6@14x14 12@5x5
X connected
. 10
v 5x5
5x5 convolution
subsampling ~ convolution subsampling

convolution

¥ 60,000 free parameters, 400,000 connections.

il The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
il The entire network is trained end-to-end (all the layers are trained simultaneously).

i Test Error Rate: 0.8%

Yann LeCun * New York University



Results on MNIST Ha

Yann LeCun

Best
Hand-crafted

Best
Kernel-based

Best fully-c
Neural Net

Best know-
Ledge-free

Best overall

CLASSIFIER
linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU
3-layer NN, 500+150 HU
3-layer NN, 500+150 HU
3-layer NN, 500+300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Stacked RBM + backprop
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Convolutional net LeNet-5,
Boosted LeNet-4
Convolutional net, CE
Convolutional net, CE

Affine

Affine

Affine

Affine
Elastic
Elastic

Affine
Affine
Affine
Elastic

none

deskewing
deskewing

none

deskewing

deskew, clean, blur
deskew, clean, blur
shape context feature
none

none

subsamp 16x16 pixels
none

deskewing
deskewing

none

none

deskewing

none

none

deskewing

none

none

none

none

none

none

none

none

subsamp 16x16 pixels
none

none

none

none

none

none

ndwritten Digits (P=60,000)

Reference
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998

K. Wilder, U. Chicago
LeCun et al. 1998

K. Wilder, U. Chicago

K. Wilder, U. Chicago
Belongie PAMI 02
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998

Many

Cortes/Vapnik

Scholkopf

Scholkopf
DeCoste/Scholkopf, MLJ'02
DeCoste/Scholkopf, MLJ'02
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998
Hinton, in press, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Hinton, in press, 2005
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998
LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003

t New York University




CLASSIFIER DEFORMATION ERROR %  Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others
Convolutional nets

Convolutional net LeNet-5, 0.80  LeCun 2005 Unpublished

Convolutional net LeNet-6, 0.70  LeCun 2006 Unpublished
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Convolutional Nets are the best known method for handwriting recognition

Yann LeCun * New York University
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Problems with Supervised Learning in Deep Architectures

@ vanishing gradient, symmetry breaking

» The first layers have a hard time learning useful things
» How to break the symmetry so that different units do different things

& Jdea [Hinton]:
» 1 - Initialize the first (few) layers with unsupervised training
» 2 - Refine the whole network with backprop

& Problem: How do we train a layer in unsupervised mode?

» Auto-encoder: only works when the first layer is smaller than the input
» What if the first layer is larger than the input?
» Reconstruction is trivial!

@ Solution: sparse over-complete representations

» Keep the number of bits in the first layer low
» Hinton uses a Restricted Boltzmann Machine in which the first layer
uses stochastic binary units

Yann LeCun * New York University



Best Results on MNIST (from raw images: no preprocessing)

Mﬁ“&‘u_._“ === —— — —— I ————————S |

CLASSIFIER DEFORMATION ERROR  Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, in press, 2005
Convolutional nets

Convolutional net LeNet-5, 0.80  LeCun 2005 Unpublished

Convolutional net LeNet-6, 0.70  LeCun 2006 Unpublished
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Yann LeCun * New York University



Unsuperyvised Learning of Sparse Over-Complete Features

& Classification is easier with over-complete feature sets

& Existing Unsupervised Feature Learning (non sparse/overcomplete):
» PCA, ICA, Auto-Encoder, Kernel-PCA

& Sparse/Overcomplete Methods

» Non-Negative Matrix Factorization
» Sparse-Overcomplete basis functions (Olshausen and Field 1997)

» Product of Experts (Teh, Welling, Osindero, Hinton 2003)

t New York University

Yann LeCun
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Symmetric Product of Experts
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P(ZIX,W W) & exp(—BE(X.Z,W _,W)))

E(X,Z,W W) =E(X.,Z,W)+E(X.Z,W))

2
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c 2 c
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Inference & Learmng

AR (52777777

* Inference

~

Z = argmin, E(X,Z,W) = argmin_|E_(X,Z,W)+E_(X,Z,W)

* let Z(0) be the encoder prediction
* find code which minimizes total energy

* gradient descent optimization

* Learning

W «— W — 0E(X,Z,W)IoW

* using the optimal code, minimize E w.r.t. the weights W

* gradient descent optimization
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I X — Dec(Z, Wp)II*

DECODER Wp = —

777777

CODE Z
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Image X h

» ENCODER W,

I|Z — Enc(X, Wa)lP?

:

EC’(X: Z: WC)



I X — Dec(Z, Wp)II*

DECODER Wp = —

e TP ITECEES
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CODE Z

_________________________________________________ 1 Z2(0) =Wc X

T. Softhlax <—|—

Image X h

» ENCODER W

EC’(X: Z: WC)
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Inference : step 1

NSl === NN )

Ed ? Ep(X, Z, Wp) CODE Z

Forward propagation

L—JIDECODER Wjp il —] T. SoftMax |--liff]——

»— ENCODER Wo

|Z — Enc(X, We)ll?

WcX* V

Image X h EC ¢ EC’(X-,. Z, WC)
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_Inference - step 1

NSl SN )

Ep(X, Z, Wp) CODE Z
_________________________________________________ . | optimal Z

Ix = pecz Woll* IBack propagation of

A t oradients w.r.t. Z
| Z

DECODER Wy  |~liff}l—] T. SoftMax |-ifff——

» ENCODER W,

I|Z — Enc(X, Wa)lP?

b

Image X h ¢ EC’(X: Z: WC)
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_Learning
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Ed Ep(X, Z, Wp) CODE Z

Forward propagation

L DECODER Wp |-willf—T. SoftMax [-~ifff— Optimal y4

I|Z — Enc(X, Wa)lP?

i -1 ENCODER W¢ ;
e 2

Image X h EC EC(X: Z, WC)
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I X — Dec(Z, Wp)II*

Back propagation of

gradients w.r.t W

FFFFFIIERTEEET

NS i 1772777/

CODE Z

DECODER Wy  |[-ifff—] T. SoftMax |-iff}———

Image X h

I|Z — Enc(X, Wa)lP?

b

EC’(X: Z: WC)
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Sparsifying Logistic

NS aaaaae———— SSSSNSNE )

Bz,(1)

z,(r)=ne /€ (r), ie[1..m]

g()=ne"""+(1—mE (1—1) n 0.001
8 10
* temporal vs. spatial sparsity TR
=> no normalization 7 001
8 10
|||h.|..||ll.h T T |[h o bl b vl bl
s € is treated as a learned parameter
77 0.01
=> TSM is a sigmoid function with a ‘ ‘ L ‘ 8 30
special bias . 1 1L ] ||| il JLJ_I
i 1—I—Be_BZ"(t) 7 0.1
B 30
s & is saturated during training to allow L L ‘ ‘ WL \ ‘

units to have different sparseness input uniformly distributed in [-1,1]



Berkeley data set

El!E:E?E __= * 100,000 12x12 patches
ﬁ EEEEE iﬂ%g + 20)%) units in the code

S EESNEE ° 500
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e |

B *learning rate 0.001
E-
===H==ﬁi * L1, L2 regularizer 0.001

* fast convergence: < 30min.
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200 decoder filters (reshaped columns of matrix Wq)




RFENIMEV S | SR EE T2 : :
.............--..... Encoder direct filters
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Forest data set

AESESLSE. Tl .
1ﬂ R~ el 100,000 12x12 patches
i DG aTW . HN - 200 units in the code
HEr-NER ETT
RN BENEE ° 50-02
EEN 5N 8,
x xS | RN
ﬂl B s B * learning rate 0.001
el
e | [

i
<)
ol
- - ¥
ﬂ B =l -

BEFEMEEE * L1, L2 regularizer 0.001

* fast convergence: < 30min.




200 decoder filters (reshaped columns of matrix Wq)
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test sample code word

\ 4 codes are:

4 gparse
8 almost binary
8 quite decorrelated

# in testing codes are produced by propagating the
idput patch through encoder and TSM

8 " controls sparsity

\ controls the “bit content” in each code unit

unit activity

code words from 200 randomly selected test patches
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What about an a autoencoder"

decoder ED(X, Z, WD) CODE Z
energy

I X — Dec(Z, Wo)lI?

; |
| |
| |
i |
| rectified and I
! A sparsified code |
| DECODER W,  |-aliff—] T. SoftMax |-etiff—

|
decoder !
reconstruction |

encoder
prediction

» ENCODER Wo

1Z — Enc(X,We)ll

encoder
IMAGE X energy EC(X:~ Z, WC)
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Whatabout an autoencoder"
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decoder ED(X, Z, WD) CODE Z
energy

I X — Dec(Z, Wo)lI?

; |
| |
| |
i |
| rectified and I
! A sparsified code |
| DECODER W,  |~alff—] T. SoftMax |-eiiff—

|
decoder :
reconstruction |

encoder
prediction

» ENCODER Wo

encoder
IMAGE X energy EC(X:~ Z, WC)
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*+ 60,000 28x28 images

* 196 units in the code

¥ learning rate 0.001

* L1, L2 regularizer 0.005

*+ 1 0.01

+» B
Encoder direct filters




i TITTIINNGS

)

AN

reconstructed

original without minimization
()
R = 1 + 1 +1
4
+1 +1 + 0.8
+1 F +1 + 0.8
o i
reconstructed
original without minimization difference )
forward propagation through
T
? - ? = #i encoder and decoder
i
reconstructed reconstructed
minimizing without minimization difference

after training there is no need to

7 - |7

minimize in code space



| Initializing a Convolutional Net with SPoE
| —

@ Architecture: LeNet-6 - - - n ! . . : i
» 1->50->50->200->10 M T
& Baseline: random initialization . " ’ - E ‘ E - . .
» 0.7% error on test set — L s TE D g
& First Layer Initialized with SpoE . . ' ' - : E n i I

» 0.6% error on test set .
@ Training with elastically m‘ ===E====E=
Samp cs: e ' o] J ] ) P
» 0.38% error on test set —
mEMLEEGEFFE
EEANEjd= 11

Yann LeCun
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Initializing a Convolutional Net with SPoE

h-““___‘,

A ) e i e RV
RS I T B L 5
B A BB 0 T T e B
&

MUIMEC =53 N
A le PV ol LA
A 1SN A="41 5
ZPF =l adh L' |a
REEOERFNFLEN

& Architecture: LeNet-6

»1->50->50->200->10
» 9x9 kernels instead of 5x5

& Baseline: random initialization

@ First Layer Initialized with SpoE

Yann LeCun




\ Best Results on MNIST (from raw images: no preprocessi)
[ ———— e I

CLASSIFIER DEFORMATION ERROR  Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, in press, 2005
Convolutional nets

Convolutional net LeNet-5, 0.80  LeCun 2005 Unpublished

Convolutional net LeNet-6, 0.70  LeCun 2006 Unpublished

Conv. net LeNet-6- + unsup learning 0.60  LeCun 2006 Unpublished
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simardetal., ICDAR 2003

Conv. net LeNet-6- + unsup learning  Elastic 0.38  LeCun 2006 Unpublished

Yann LeCun * New York University
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Conclusion
M“ﬁz," —

@ Deep architectures are better than shallow ones

& We haven't solved the deep learning problem yet

@ Larger networks are better

& Initializing the first layer(s) with unsupervised learning helps

& WANTED: a learning algorithm for deep architectures that

seamlessly blends supervised and unsupervised learning

Yann LeCun * New York University
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AGR: Learning Applied to Ground Robotics

=

SIS SRE— R ———— —

¥ Getting a robot to drive autonomously in
unknown terrain solely from vision (camera
input).

& Our team (NYU/Net-Scale Technologies

Inc.) is one of 8 participants funded by
DARPA

@ All teams received identical robots and can
only modify the software (not the hardware)

¥ The robot is given the GPS coordinates of a
goal, and must drive to the goal as fast as
possible. The terrain is unknown in advance.
The robot is run 3 times through the same
course.

Yann LeCun * New York University
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¥ Using stereo vision to estimate the distance of each pixel

¥ Estimating the location of the ground-plane using robust fitting
¥ Identifying what sticks out of the ground

¥ Building a map of the nearby environment

¥ PROBLEM: stereo vision is limited to a range of about 10 meters

Yann LeCun * New York University
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LAGR Stereo- Based Obstacle Detection

ke‘xx‘

¥ Obstacle maps can be built from stereo.

¥ They are accurate to about 8-10 meters.

Yann LeCun * New York University
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LAGR: Near-Sightedness of Stereo

¥ Stereo-based maps get “smeared out” and sparse above 10 meters

Yann LeCun * New York University
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LAGR: Trusting our Eyes

e =

@@ The path is obvious, even though the absolute
distances to the obstacles may be known only
approximately.

i This cannot be used to build a map, but we can
certainly use it to decide in which direction to go
next.

& SOLUTION: a polar map. Directions are accurate,
independently of distance.

Yann LeCun * New York University



¥ Long-Range Obstacle
Detection with On-Line
Learning.

los== 0,917

| ol o ol e Y T ) I Y I o« T b T ! Y ol 7 )
+ F + + F + F + F + F + F + o+ + O+ o+ o+ o+
| B I Yo T O N 3 et e I T Iy Y« I T o T ' Y W )

errar—rate= 4,58

¥ Distance-invariant image

pyramid (object size
independent of distance)

@ Trainable obstacle
detector: trained on short-
range image bands using
labels provided by stereo

Yann LeCun * New York University



