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Learnlng an Invarlant D1$Slmllar1ty Metric Wlth EBMs
S E— .

[Chopra, Hadsell, LeCun CVPR 2005] E(W, Xl X2)
P Training a parameterized, invariant dissimilarity metric | I GW(XI) Gw(X2)l I

may be a solution to the many-category problem.

@ Find a mapping Gw(X) such that the Euclidean distance
IGw(X1)- Gw(X2)Il reflects the “semantic” distance between
X1 and X2.

i Once trained, a trainable dissimilarity metric can be used to
classify new categories using a very small number of

training samples (used as prototypes).

@ This is an example where probabilistic models are too

constraining, because we would have to limit ourselves to

models that can be normalized over the space of input pairs.

& With EBMs, we can put what we want in the box (e.g. A
convolutional net).

& Siamese Architecture

i Application: face verification/recognition
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earning an Invariant Dissimilarity Metric with EBMs

]

Siames=a Cost Function

E(W,)il,XZ)
Il Gw(X1D)-Gw(X2)ll

_T

Gw(X1) Gw(X2)

&
X# X2
& Siamese models: distance between the outputs of two

identical copies of a model.

@ E(W.X1,X2) = IGW(X1)-Gw(X2)Il

i If X1 and X2 are from the same category, train the two

eldidean detance

copies of the model to produce similar outputs

il If X1 and X2 are from different categories, train the two

copies of the model to produce different outputs

i Loss function: square-exponential loss:

2
LW, Y, X1, X3) = (1=Y ) 5 (| Gao( X1) = Go(Xo) )2+ 2Re™ KX
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ts: AT&T/ORL

® The AT&T/ORL dataset

* Total subjects: 40. Images per subject: 10. Total images: 400.

* Images had a moderate degree of variation in pose, lighting, expression and head position.

* Images from 35 subjects were used for training. Images from 5 remaining subjects for testing.
®* Training set was taken from: 3500 genuine and 119000 impostor pairs.

* Test set was taken from: 500 genuine and 2000 impostor pairs.

* http://www.uk.research.att.com/facedatabase.html

Dataset
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Face Verification datasets: AR/Purdue dataset

®* The AR/Purdue dataset
* Total subjects: 136. Images per subject: 26. Total images: 3536.

* Each subject has 2 sets of 13 images taken 14 days apart.

* Images had very high degree of variation in pose, lighting, expression and position. Within each set
of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses
and lighting variation, and 3 with face obscuring scarfs and lighting variation.

* Images from 96 subjects were used for training. The remaining 40 subjects were used for testing.
® Training set drawn from: 64896 genuine and 6165120 impostor pairs.

* Test set drawn from: 27040 genuine and 1054560 impostor pairs.

® http://rv11.ecn.purdue.edu/aleix/aleix_face_DB.html
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Face Verification dataset: AR/Purdue |
i 2 A nal
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il tested on AT&T and AR/Purdue

@ AT&T dataset
Number of subjects: 5
Images/subject: 10
Images/Model:
Total test size: 5000

Number of Genuine: 500
Number of Impostors: 4500

il Purdue/AR dataset
Number of subjects: 40
Images/subject: 26
Images/Model: 13
Total test size: 5000

Number of Genuine: 500
Number of Impostors: 4500

Yann LeCun

& The AT&T dataset @ The AR/Purdue dataset
False Accept False Reject  False Accept False Reject

10.00% 0.00% 10.00% 11.00%
7.50% 1.00% 7.50% 14.60%
5.00% 1.00% 5.00% 19.00%

~

8 & 8B 3 2 a8 48 & & 8 82 B

....................

10% 510 1520 2530 3540 assué‘elims:o 7580 85 9 95100
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Classification Examples

. = =

=

i@l Example: Correctly classified genuine pairs

KPER

energy: 0.3159 energy: 0.0043 energy: 0.0046
&P Example: Correctly classified impostor pairs

£28ALR

energy: 20.1259 energy: 32.7897 energy: 5.7186
i Example: Mis-classified
pairs
energy: 10.3209 energy: 2.8243
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(. Elegans Embryo Phenotyping

M&mi“x e

[Ning, Delhome, LeCun, Piano, Bottou, Barbano
IEEE Trans. Image Processing 2005 (in press)]

i@ Analyzing results for Gene Knock-Out

Experiments

¥ Automatically determining if a
roundworm embryo is developing
normally after a gene has been knocked

out.

Time-lapse movie



rchitecture

Miiiéﬁ:

i@ Region Classification with a convolutional network

& Local Consistency with a Markov Field of non-linear factors

& Embryo classification with elastic model matching

Region Labeling
——*Convolutional

Network

Local Consistency
Satisfaction

Markov Field on

non-liner factors

Classification

Elastic Model
Matching
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il Supervised training fromhand-labeled images
i 5 categories:

¥ nucleus, nuclear membrane, cytoplasm, cell wall, external medium

+000:01:27.519
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Image Segmentation with Local Consistency Constraints
[ S— ,

[Teh, Welling, Osindero, Hinton, 2001], [Kumar, Hebert 2003], [Zemel 2004]

@ Learn local consistency constraints with an Energy-Based Model so as to
clean up images produced by the segmentor.

Association Energy

Total Energy

Yann LeCun t New York University
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C Elegans Embryo Phenotyplng

i@ Analyzing results for Gene Knock-Out Experiments

Original Images I I l . .

Segmentation #1

Segmentation #2

Non-Linear CRF
Cleanup

(1) (2) 3) (4) (5
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& Many applications manipulate variable-length sequences, rather than

fixed-size vectors or images.

» Speech Recognition, Handwriting Recognition, Natural Language
Processing (parsing, tagging....), Biological Sequence Analysis......

@ What architectures can manipulate sequences?

@ Alternative interpretations of sequences are best represented by directed

graphs with values attached to the edges

» Each alternative segmentation and interpretation of a spoken sentence or a
written word can be represented by a path in a lattice.

& How do we build multi-layer modular systems that take graphs as inputs
and produce graphs on output?

Yann LeCun * New York University



' -tnd Training of a graph manipulating machine

D . .rs
Example: a handwriting rammatically correct interpretationg
recognition system. character sequences)

& Each intermediate i

o ILanguage mode]l'*krammar checker
representation is a valued 5
graph bossible interpretations (character sequences)l
& Each module is trainable |character recognizer
]

& The entire system is trained |candidate characters (image fragments)l

simultaneously so as to
.. . Iigmenter
optimize a global loss function. \

Iwritten word (pixel image)l

Yann LeCun t New York University
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' Using Graphs instead of Vectors.
[ ——

B

traditional graph

radient-based transformer | @ Whereas traditional learning
earner network

P T o i machines manipulate fixed-size
vectors Varlables TP

vectors, Graph Transformer

o Networks manipulate graphs.

I_'J
L Graph
| TFEEIIrESfGFI'I'IEF |
| % ?{ O

Graph
Transformer
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» X: input image Arewet imeppretation

» Z: path in the interpretation Em:
graph/segmentation

> Y: sequence of labels on a path \eo fen [ T

Weights

4 4 1 Tansbmer
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@ Loss function: computing the Neural Net :\" H."% Tre

energy of the desired answer:

E(W,Y, X) <
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Transformer

\Networks

& Example: Perceptron loss

@ Loss = Energy of desired
answer — Energy of best
answer.

» (no margin)

Yann LeCun

Loss Function
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Global Training Helps

& Pen-based handwriting recognition

(for tablet computer)
» [Bengio&LeCun 1995]

SDNN/HMM

no glebaliraining
with ghobal fraining

HOS

no glebaliraining
with ghobal fraining

HOS
no ghobaliraining
with ghobal fraining
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Composition,

& The composition of two
graphs can be computed,
the same way the dot
product between two

vectors can be computed.

& General theory: semi-ring
algebra on weighted finite-
state transducers and

acceptors.

Yann LeCun

Interpretation graph
"tll U.E

Interpretations:
cut (2.0)
cap (0.8)
cat (1.4)

grammar graph

Recognltion
Graph
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1.1 disciminant cost

P "~ !

. Check Reader

negative log-likellhood 4.3 3.2 negative log-llkelihood

Forward ' ' ‘Forward
r | _
-' ha * 3702 all possible
@ Graph transformer network comect Interpretation ofqy g % XD i1 Interpretations
J ’ {‘ B Grammar
trained to read check amounts. [ Compose ] Composs =
& Trained globally with Recognition Graph a4
. o . oo i
Negative-Log-Likelihood loss. | correct oy
answer Flecugnlzer _
& 50% percent corrent, 49 % Segmentation Graph mcé:o;' L
. B
reject, 1% error (detectable oy
later in the process. Fleld Graph b s
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& Fielded in 1996 Field Locator
!
. Check Grapl
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