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rchitecture + Inference Algo + Loss Function =

E(W.Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y il 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?

Yann LeCun t New York University



Training Probabilistic Models

P(YIX,W) = SUM_z P(Y.X,z|W) / SUM_yz P(y,X,z|W)

t Training set: S = {(X1,Y1!),...(XP,YP)}.

Training Criterion: Max Likelihood
P(Y,X,ZIW)
4 . o [LP(W,YH 2, X7)
1 . Y£1X£ I;V’ Z
T [ - 117 P x0
inputs Imﬁ"}ﬂ ::I:utputn

Loss Function: Negative Log Likelihood: £L(W,S) = —log [['_, P(Y!|X*, W)

L(W,S) = i —log (P(W,Y*, X%)) + log (/ P(W,y,X“'))

i=1 o |

L(W,S) = Zp: —log (/ P(W,Y", zaXi)) + log (f P(W.y, zaX*'))

l?:=I e I=—"--

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models — p. 472
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What's so bad about probabilistic models?

e == == — e

¥ Why bother with a normalization since we don't use it for decision making?

¥ Why insist that P(YIX) have a specific shape, when we only care about the position of its
minimum?

¥ When Y is high-dimensional (or simply conbinatorial), normalizing becomes intractable
(e.g. Language modeling, image restoration, large DoF robot control...).

¥ A tiny number of models are pre-normalized (Gaussian, exponential family)
¥ A very small number are easily normalizable

¥ A large number have intractable normalization

¥ A huuuge number can't be normalized at all (examples will be shown).

¥ Normalization forces us to take into account areas of the space that we don't actually care
about because our inference algorithm never takes us there.

&P If we only care about making the right decisions, maximizing the likelihood solves a

much more complex problem than we have to.

Yann LeCun t New York University



EBM Energy Surfaces

Examples: An EBM that computes Y = X2,

On the left: E(Y, X)) is quadratic in Y. It corresponds to a Gaussian model of
P(Y|X).

On the right: E(Y, X) is saturated. Although it gives the same answers as the EBM on
the left, it has no probabilistic equivalent because the partition function

fy exp(—E(Y, X)) does not converge.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models — p, 972
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Probabilistic Models from Energy-Based Models

™ Any joint probability model can be approached as
close as we want by an equivalent EBM. If

-log P(Y[XW) < P(Y, X, Z|W) is non-zero everywhere:
SUM_z E(W,Y.X,z) + log SUM_yz E(W,yX,z)
‘i EW,Y,X,Z) = C — Llog P(Y, X, Z|W)

where C' is an arbitrary constant and (3 a strictly

E(W,Y,X,Z) positive constant.
w “ not all EBMs can be turned into a probabilistic
. model. Only those for which
_1 l ' fyz exp(—FE(W,y, X, z)) converges:
i Z Y
nputs latent outputs

variables

_exp(—BE(W,Y, X, z
P(Y\X}=J.z p(—BE( : )
... exp(—BE(W,y, X, z))
Any single probabilistic model will have many equivalent EBMs when it comes to
comparison-based inference or decision. Because many energy surfaces have minima

at the same places.
We have a lot more flexibility with EBMs than with Prob. Models

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 102
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What’s good/bad about EBM?

What's bad about EBMs:
® There is no compositionality...

W ... but we don’t care because we are going to train our whole system end-to-end.
With end-to-end learning, we do not need compositionality.

What's good about EBMs:

W We have complete freedom for the form and parameterization of the energy
function (including things that can’t be normalized).

¥ because we do not need to normalize, we can use a much larger repertoire of
model architectures.

W No need for computing (intractable) partition functions

® No need to justify the choice of your favorite approximation of the partition
function.

Pretty much every model we know is some form of EBM.
QUESTION: what loss functions can we use for training?.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 114
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Examples of EBM

Almost every type of model we know is some form of EBM. It all depends on how
E(W.,Y, X, Z) is parameterized. NOTE: there is no linearity assumption.

energy Bnergy energy
E(W,Y,X] E(W,Y,X) E(W,Y,X)
switch Dissimilarity Dissimilarity
(category Measure Measure
selector) r C( G(W,X), ¥ ) C( Gx(wWx,X), Gy(Wy,Y) )
6l 6 63 p
Discriminant Discriminant Discriminant Discriminant
Function H Function Function Function
G(W,X) : G(W,X) G (Wx, X) Gy (Wy,Y)
param W : param W param Wx param Wy
A b &
' input X h output ¥ : ( input X X output Y ) ( input X X output Y )
(a) (b) (c)

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models —p. 12/2
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Training EBMs

¥ Training will consist in finding a W that minimizes a loss function L(W, S),
over the training set S.

© We must devise loss functions that ““carve” the energy landscape so that the
energy is small around training samples and high everywhere else..

W We seek loss functions that do not require evaluating intractable integrals, but
which, nevertheless, drive the machine to approach the desired behavior.

W Basic idea: “dig holes” at (X, Y") locations near training samples, while
“building hills” at un-desired locations, particularly the ones that are
erroneously picked by the inference algorithm.

“ Whereas probabilistic models trained with max likelihood shape the entire
energy surface, our EBM loss function will merely dig holes at the right places
and build hills only where needed to avoid erroneous inferences.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 171
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Loss Functions for EBMs

Yaan Adv N Uaan

¥ training set S = {(X",Y"), i = 1..p}
% Loss:

L(W,S)=R (1 ZP:L(W, .YiX*'))

)
F =1

W L(W,Y", X") is the per-sample loss function for sample (X*,Y?). L is
assumed to have a lower bound.

¥ R is a monotonically increasing function. In the following we assume
R=identity

® the loss is invariant under permutations of the samples, and under multiple
repetitions of the same training set.

B What form can L(W.Y, X) take?

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 184




Conditions on the Loss

W Condition for correct output on sample (X, Y"): there is a margin m > 0, such
that:
EW, YL, X")< EW,)Y,X')—m, YY € {Y},Y £Y*

W Assumption: L depends on X only through the set of energies
{(EW,Y,X"),Y e {Y}}.
¥ For example, if {Y'} = {0,1,...,k— 1}

LW, Y*", X*)=L(Y',E(W,0,X"),...,E(W,k—1,X"))

W We want to design L so that making an update of W to decrease L(W,Y", X*)
will automatically decrease the difference E(W,Y?, X*) — E(W,Y, X*) for
values of Y such that E(W,Y*, X?) < E(W,Y, X?) — m.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 192
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Conditions on the Loss

4 - g
W Let’s define Y as the most offending incorrect output:

Y = argmin, gy 2y E(W,y, X?:)

® Cond. for correct output: E(W,Y", X?) < E(W,Y,X%) —m

W Let’s assume that L(W, Y, X?) is convex in the 2 coordinates E(W,Y?, X?)
and E(W,Y, X?).

u Sufficient condition 1: All the minima of L(W, Y, X*) must be in the
half-plane E(W,Y?, X') < E(W,Y, X?) — m.

» Sufficient condition 2: The gradient of L(W,Y", X?) on the margin line
E(W,Y'", X") = E(W,Y, X") — m, must have a positive dot product with the
direction [-1,1].

W Sufficient condition 3: On the margin line E(W, Y, X?) = E(W,Y*, X?) +m,

. ) C|eEMWY L, X"y @EMW,Y.,X')| OL(W)Y'X?)
the following must hold: [ i = £ } ; BT >0

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 202
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'* Condition

s on the Loss

[ EEDD—————

Yann LeCun

Margin Line:
EW.,Y , X)+m=E(W,Y, X"
e (W, Y, X')=E(W,Y, X"

Direction of
negative

Tea g‘radient of loss

EW,Y X"

t New York University



Condition on the Loss

Loss L(W,Y?, X*) as a function of B(W,Y, X?) and E(W,Y", X?)
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Examples of Loss Functions

Yaan Adv N Uaan

B Energy Loss: Lenergy (W, Y, X¥) = E(W, Y7, XP).

Only works if the architecture is such that decreasing E(W, Y, X*) will
automatically increase E(W,Y, X?) fory # Y.

Generalized Perceptron Loss [LeCun 1998][Collins 2002]:

Lotron (WYY, X*) = E(W,Y? X*) — miny e{y) E(W,Y, X%

Does not work because the margin 1s zero. This reduces to the traditional linear
perceptron loss when E(W,Y, X) = ~YW.X.

Generalized Margin Loss: [LeCun et al. 2005]

Dsnpail (W Y X0 ) = QIE(W, Y, X%), E(W,Y, X?)]

Where (Q is an increasing function of F (W,Y", X*) and a decreasing function
of E(W,Y, X").

Negative Log Likelihood Loss: [Bengio 1992][LeCun 1998][Lafferty 2001]
LH]I(VV, Yi} Xi) = E(IV Yi’, X'*;) — Fﬁ([’V, ;’fi)

with: F(W, X*) = —Llog (fy . () exp[-BE(W, Y, X))

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 222




Special Cases of the Generalized Margin Loss

Lgmargin(wp Yi:u Xi) — Q[E(I’V, Yia Xi): E(H’Iy ?1 X?)]

i Hinge Loss [Taskar, Guestrin, Koller 2003].[ Altun, Johnson, Hof-
N mann, 2003]:
\ Lpinge(W,Y*, X*) = max(0,m + E(W,Y*, X*) — E(W,Y, X"))

Square-Square Loss:

Lo (W, Y, X*) = E(W,Y?, X*)?4(min(0, m—E(W, Y, X*)))?

Square-Exp Loss: [Osadchy, Miller, LeCun, NIPS 2004]

Logexp(W,Y*, X*) = E(W,Y*, X*)? + K exp(—BE(W,Y, X*))

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 231
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EBM Demos

¥ Demo 1: Y = X2, Architecture
A, Square Energy Loss. It

ENErgy
E(W,Y.X)

works because E(Y, X) isa
Il Net(x) - ¥ |jL1 1 Net(x) - Wet(v) ||L1 fixed quadratic function of Y.
4 ) ) A M Demo 2: Y = X2, Architecture
B, Square Energy. It collapses.
Neural Net
(26 hiddan s | | e ¥ Demo 3: Y = X?, Architecture
param W parom Wx param Wy B, Square-Square Margin Loss

B Demo 4: Y = X2, Architec-

( mme — ) ( hpui X wj, ) ture B, Negative Log Likelihood

Loss. Few iterations, but each it-
(a) (b) eration is expensive

Initially, the forbidden sphere around Y is 0.2, then 0.1.
Demo 5: eye pattern, Architecture B, Negative Log Likelihood Loss.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p, 2442
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=

SS

Loss: “Energy Loss”: L(W,Y,X) = E(W,Y,X)

energy energy
E(W,Y,X) E(W,Y,X)

|| Net(X) - Y ||L1 [| Net(X) - Net(Y) ||L1
Neural Net \\o
1-20-1 Neural Net Neural Net e
(20 hidden 1.6-6 165 @‘
units) %
param W param Wx param Wy Q
4 |3 3 \?

[~

Yann LeCun t New York University
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EBM Demos: good losses

M&m

Square-square loss Neg-Log-Likelihood loss

energy
E(W,Y,X)

|| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6
'.'I'rp.g'l.pmr-ﬂl:ﬁ-'l-.'ltﬂ'-l-ln; param Wx param Wy
‘k ‘k -mug1pmunﬂmumum%g
( input X X output Y )

L(W,X,Y)=E(W,Y,X)? —max (0,m — E(W,Y, X)?)

1
_ | LOW,X,Y) = EOW.Y.X) | ~log | 3 exp(-BE(W, 4, X))
Y = argmlnyE{Y},y;&YE(m Y, X) b ygf}

Yann LeCun ¢ New York Univ
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_Other Architectures that may collapse

( ) @ Linear module followed by radial
energy

basis functions and a switch:

» Will collapse with the energy loss and
the perceptron loss.

s O : » Will not collapse with the square-
/ \ square, neg-log-likelihood, margin

: loss, etc....
( r } [HRWL ] P RW2 ]|

( pa,:,am }——b Net (W, X)

o

GO

Yann LeCun * New York University




¥ Unlike traditional classifiers, EBMs can represent multiple alternative outputs

¥ The normalization in probabilistic models is often an unnecessary aggravation,
particularly if the ultimate goal of the system is to make decisions.

¥ EBMs with appropriate loss function avoid the necessity to compute the partition
function and its derivatives (which may be intractable)

¥ EBMs give us complete freedom in the choice of the architecture that models the
joint “incompatibility” (energy) between the variables.

¥ We can use architectures that are not normally allowed in the probabilistic
framework (like neural nets).

@@ The inference algorithm that finds the most offending (lowest energy)
incorrect answer does not need to be exact: our model may give low energy to
far-away regions of the landscape. But if our inference algorithm never finds those
regions, they do not affect us. But they do affect normalized probabilistic models

Yann LeCun t New York University
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' on-Linear Models
R ———

@ We can always add ‘““features”, ‘“kernels’’, or *basis function’ in front of
a linear model to make it non-linear.

» This is how non-linear SVMs are built.
@ Question: so, why would we need anything else?

& Answer: the complexity of the real world is very difficult to capture in a

kernel.

& How do we solve:

» The invariance problem in image recognition.

» The structured output problem in sequence labeling (parts of speech
tagging, speech recognition, biological sequence analysis....).

t New York University

Yann LeCun



kernels, basis functions)

& Map the inputs into a (higher dimensional)

“feature” space

» With more dimensions, the task is more likely to
be linearly separable.

& Problem: how should we pick the features so

that the task becomes linearly separable in the

feature space?

» Classical approach 1: we use our prior
knowledge about the problem to hand-craft an
appropriate feature set.

» Classical Approach 2: we use a “standard” set
of basis functions (RBFs....)

Yann LeCun t New York University



Fixe

& Simplest approach: The Kernel Method (thanks to

Wahba's Representer Theorem) .
. | . G(X,0) =) a;K(X7, X)
» Make each basis function a “bump” function (a

template matcher).

a .
» Place one bump around each training sample. J

» Compute a linear combination of the bumps. K (X7, X)

> In the “bump space”, we get one separate dimension
for each training sample, so if the bumps are narrow
enough, we can learn any mapping on the training set.

» To generalize on unseen samples, we adjust the bump
widths and we regularize the weights. X j

» We get a Support Vector Machine.

@ Problem: an SVM is a glorified template matcher X

which is only as good as its kernel.

Yann LeCun * New York University
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rainable Front-End, Structured Architectures

& The Solutions:
» Invariance: Do not use a fixed front-end, make it trainable, so it can learn to
extract invariant representations
» Structure: Do not use simple linearly-parameterized classifiers, use

architectures whose inference process involves multiple non-linear
decisions, as well as search and “reasoning”.
@ We need total flexibility in the design of the architecture of the machine:

» So that we can tailor the architecture to the task
» So that we can build our prior knowledge about the task into the architecture

& Multi-Module Architectures.

t New York University

Yann LeCun
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- Multi-Module Architectures

“ﬁﬁi‘“ml—“

& For Supervised Learning

» We allow the function F(W,X) to be
non-linearly parameterized in W.

» This allows us to play with a large
repertoire of functions with rich class
boundaries.

» We assume that F(W,X) is

differentiable almost everywhere with
respect to W.

Yann LeCun t New York University



Multi-Module Systems: Cascade

Energy

E

C(Xn, Y)

KnLl dE/dXn

Wn
dE/dW rress=

Fn(Xn-1, Wn) |

Xn-1 ¥} | dE/aXn-1
I}

1]
xil I‘dE dXi

Wi
dE/d VWit

Fi(Xi-1, Wi)

xn_1f | dE/dXi-1

dE/dw 1=

X1) iu[— dX1

F1(X0, W1) |

Yann LeCun

xof

input X

desired
output Y

@ Complex learning machines can be built by
assembling Modules into networks.

W a simple example: layered, feed-forward
architecture (cascade).

W computing the output from the input:
forward propagation
H et X = X,
X; = Fi(X;_1,W;) Vie][l,n]

E(Y,X,W)=C(X,,Y)

Y. LeCun: Machine Learning and Patiern Recognition — p, 3/2

t New York University



Object-Oriented Implementation

Energy
-
I PR I “ Each module is an object (instance of a
- class).
""U“E s Y W Each class has an “fprop” (forward
Wn : oot ; r o 1
% dw“‘j Fn(Xn-1, Wn) propagation) method that takes the input
Xn1] | dEaxn-1 and output states as arguments and
1} computes the output state from the input
xi= :rdE dxi state.
- 4'::::[ Fi(Xi-1, Wi) B Lush: |
X1 Jacax-1 (==> module fprop input
1] output)
X1 : ;Ll[— dX1 B C++:
w1 "I F1(X0, W1) module. fprop (input, output) ;
dE/dw |-t J
xot desired
input X output Y

Y. LeCun: Machine Learning and Patiern Recognition — p, 4/2
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Gradient of the Loss, gradient of the Energy

W We assumed early on that the loss depends on W only through the terms
EW.,Y,X%):

LW, Y, X") = L(Y*, E(W,0,X*), E(W,1,X"),..., E(W,k — 1, X))

W therefore:

OL(W, YL, X') <= O0L(W, Y, X")0E(W,Y, Xi)]
oW B — OE(W,Y, X¥) oW

E(W.Y, X"
= We only need to compute the terms a5 ETa )

B Question: How do we compute those terms efficiently?

¥. LeCun: Machine Leaming and Patiern Recognition —p, 7/2

Yann LeCun t New York University



Computing the Gradients in Multi-Layer Systems

Energy
E
) I W To train a multi-module system, we must
l g . .
K"U T v compute the g]‘ddlt?t’l[ of E/ with respect to
o | all the parameters in the system (all the
, Fn(Xn-1, Wn) T
dE/dW n-:| | Ws).
e 1E/dXn-1 . .
o 1? : " W Let’s consider module ¢ whose fprop
m: i"E dx: method computes X; = F;(X;_1, W;).
Wi -[ Fi(Xi-1, Wi) W Let’s assume that we already know g—% in
dE/d W i i
Xi1§ | aEaxi— other words. for each component of vector
: : X; we know how much E would wiggle if
L ¥ il we wiggled that component of X;.
wi "1 F1(X0, W1) I
dE/dw |- ,
xuf desired
input X output Y

Y. LeCun: Machine Learning and Patiern Recognition — p, /2

Yann LeCun t New York University



Computing the Gradients in Multi-Layer Systems

™ We can apply chain rule to compute -
e (how much E would wiggle if we wiggled
E each component of W;):
cexn, Y) 5 ;
- OF a OF OF;(X;—1,W;)
xnI luF dXn Y ow;  0X; oW,
] POt |
Xn—1' IdE dXn-1 []. X Nul] — [1 X Nm][ﬁra- X Nw]
1]
x,: ;E,de, m 25 (“:;’H 1.Wo) is the Jacobian matrix of F;
dE__dg:-I Fi(Xi-1 '__w,] | with respect to W,
Xi-1 | dE/dXi-1
I | [5&(}2}—1;“’1)} _ 0 [Fi(Xi—1, W),
u dE/dX1 (‘)W‘-“i %1 E}[]ﬂ’:]f
. d:':: F1(X0, W1) |
xol Skdlrei W Element (k,l) of the Jacobian indicates
input X output ¥ how much the k-th output wiggles when we

wiggle the /-th weight.

Y. LeCun: Machine Learning and Patiern Recognition — p, 972

Yann LeCun t New York University



Computing the Gradients in Multi-Layer Systems

Using the same trick, we can compute aﬁ' . Let’s assume again that we already

know 3‘9; , in other words, for each component of vector X; we know how much F
would wiggle if we wiggled that component of X;.

% We can apply chain rule to compute 5 x,_ (how much E
would wiggle if we wiggled each component of X;_;):

Energy
;! - oF OF OF;(X;—1,W;)
: 0Xi—1 00X, 0X;_
"'": Fa{in-1, Wn)
xn-1§ | dEaxa-1 X Ws) . " . .
¥ m 2 ’(B = ‘1 ) is the Jacobian matrix of F; with respect to
Xij 4 dEK i
g ;:-'.:r: Figei-1, W) p.F G—1-
Xi-1§ | dE/dx
1. W F; has two Jacobian matrices, because it has to
xll § tE/dX
I“'I‘: F1(X0, W1) ﬂl'gu ments.

max awiv W Element (k,[) of this Jacobian indicates how much the
k-th output wiggles when we wiggle the [-th input.

¥ The equation above is a recurrence equation!

Y. LeCun: Machine Leaming and Paitern Recognition — p. 10/2

t New York University
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Jacobians and Dimensions

W derivatives with respect to a column vector are line vectors (dimensions:
[1 X f\r',_l] = [1 X .Ni] * [Ng X Ni—]])‘

OE  OFE OF(X;_1,W;)

B (dimensions: [1 X Ny;] = [1 x N;] * [IV; X Ny;l):

OFE  OFE 0Fj(X;_.,W;)
GW’? - GXT, SW’

® we may prefer to write those equation with column vectors:

OFE '  OF(X;—,W;)' OF'
0X: .1 OX;_q 0X;

OE '  OFy(X;—1,W;)' 6E’
ow; oW X,

Y. LeCun: Machine Leaming and Paitern Recognition — p. 11/2
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Back-propagation

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for gf
Energy
IXn X n
C{Xn, Y)
[} . aFE — aF a-f'*n(xn.- luw"n.}
xn] ] dE‘dXn Y BXT;., 1 BXﬂ 6){“ -
dE ‘J:T:r Fpn-1, i) . aP-" _ BE a'Fln {Xﬂ -] !WH }
1.1_1} I dE'dXn-1 dwﬂ o an BW'ﬂ
1 m _OE _ _9E OFn 1(Xn-2,Wn1)
X l‘:lf st a}{n —2 o axﬂ--- 1 axn -2
Wi =g
- FIX-1, Wi - OE - aE OF,_1 (Xﬂ_ 2. W, _1 )
II-II I:I-.',-‘h dXi=-1 awﬂ_l = 5}:71—1 au_;"._l
S W ....etc, until we reach the first module.
B G
o2 ot B we now have all the ;’;‘1[ fori € 1 n
xof desired
input X output ¥

Y. LeCun: Machine Leaming and Paitern Recognition — p. 12/2

¢ New York Univ
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Object-Oriented Implementation

™ Each module is an object (instance of a class).
W Each class has a “bprop” (backward propagation)

Energy d
8 method that takes the input and output states as
arguments and computes the derivative of the
C{Xn, ¥ . .
ik - energy with respect to the input from the
“"l ——— Y derivative with respect to the output:
Wn = n(Xn-1, Wn -
cEiowrem] T ; T - ® Lush: (==> module bprop input
- reo output)
I .
X} j o B C++: module.bprop (input, output) ;
Wi
e F':jTHL — W the objects input and output contain two
I ] slots: one vector for the forward state, and one
1) yoEox: vector for the backward derivatives.
W1 =ng '
e M r ) ® the method bprop computes the backward deriva-
oputX op b tive slot of input, by multiplying the backward

derivative slot of output by the Jacobian of the
module at the forward state of input.
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Modules in a Multi-layer Neural Net

A fully-connected, feed-forward, multi-layer neural nets can be implemented by
stacking three types of modules.

IS iE
7 L 1r ® Linear modules: X;, and X, are vectors,
=Yl and W is a weight matrix.

ﬂ Xc:-ut. — I’V‘Xin

® Sigmoid modules:

- = - (Xout)i = 0((Xin)i + B;) where Bisa

hﬂf‘ﬂ Kan : W X J vector of trainable “biases”, and o is a
sigmoid function such as tanh or the

I
, logistic function.
Serold Xop:F(X., 48 I
" )__ ¥ a Euclidean Distance module £ = ||V —

tian. Xin||?. With this energy function, we will
Ko 2 W X ] use the neural network as a regressor rather
! than a classifier.
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L.oss Function

g=— . ® IE o
“"““"“‘ X, Y[ |
iy

/

Siemid Xoy:FlK,08)
- j Here, we will us the simple Energy Loss function

— L ner :
Fﬂﬂﬂ ’(,..:U"in J o

y Lenergy (W, Y, X%) = E(W, Y*, X*)
fNemld X, fo.,iﬂ
& t =

Livear x“'_ -\ ;.f..n ‘I

_ﬂ% — .
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OO Implementation: the statel Class

X the internal state of the network will be kept in a
“state” class that contains two scalars, vectors, or
matrices: (1) the state proper, (2) the derivative of
the energy with respect to that state.

X 95
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Linear Module

The input vector is multiplied by the weight matrix.

W fprop: Xout = WX,

xnu" )E/Jx“k prop t:'mt in

® bprop to input:
OE _ _O0FE 0Xgyw _ _OE W
lf::»'l-}"’:irl o 3X;n|t aXin o atht

W by transposing, we get column vectors:
aE ! = I’Tfﬂ dE

m a*YuIH.
W bprop to weights:
aE — E}E axuulf_ — X aE

OWi; — 0Xouti OWij INJ X outs

= We can write this as an outer-product:

oE' _  8E !~
oW o ﬂ){um Xi”
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Linear Module

Lush implementation:

(defclass linear-module object w)

(defmethod linear-module linear-module (ninputs noutputs)
(setg w (matrix noutputs ninputs)))

(defmethod linear-module fprop (input output)
==> putput resize (idx-dim :w:x 0))
(idx-m2dotml :w:x :input:x :output:x) ())

(defmethod linear—-module bprop {(input output)
(idx-m2dotml (transpose :w:xX) :output:dx :input:dx)
{idx-mlextml :cutput:dx :input:x :w:dx) ())
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Sigmoid Module (tanh: hyperbolic tangent)

B fprop: (Xout): = tanh((Xin): + B;)

Yok Woxuk
A A “ bprop to input:
| (= Gl + 0
Yo Fliar 0) J s Pl ™ bprop to bias:
__T tTf E?_i — (%)itanh’(()(m)g + B;)
X aﬁ/w'-n 2 1—exp(—x)
O ta.nh(:r) — T+exp—=z k= | +exp(—x)

(defclass tanh-module object bias)

(defmethod tanh—-module tanh-module 1
(setg bias (apply matrix 1)))

(defmethod tanh-module fprop (input output)
==> putput resize (idx-dim :bias:x 0))
(idx-add :input:x :bias:x :output:x)
(1dx-tanh :output:x :output:x))

(defmethod tanh-module bprop (input output)
(idx-dtanh (idx—-add :input:x :bias:x) :input:dx)
(idx-mul :input:dx :output:dx :input:dx)
(idx—copy :input:dx :bias:dx) ())
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Euclidean Module

¢ )

W fprop: Xout = %||Xi" -Y|?

™ bprop to X input: ax.u = Xig —~¥

W bpropto Y mput =Y — Xin

2£
. oY

(defclass euclidean-module object)

(defmethod euclidean-module run (inputl input2 output)
(idx-copy :inputl:x :input2:x)
(:output:x 0) ())

(defmethod euclidean-module fprop (inputl input2 output)
(idx-sqrdist :inputl:x :input2:x :output:x)
(:output:x (* 0.5 (:output:x)})}) (1)

(defmethod euclidean-module bprop (inputl input2 output)
{idx—-sub :inputl:x :input2:x :inputl:dx)
(idx—dotm0 :inputl:dx :output:dx :inputl:dx)
(idx-minus :inputl:dx :input2:dx))
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Assembling the Network: A single layer

;7 One layer of a neural net

(defclass nn-layer obiject
linear ; linear module
sum ; weighted sums
sigmoid ; tanh-module
)

(defmethod nn-layer nn-layver (ninputs noutputs)
(setqg linear (new linear—-module ninputs noutputs))
(setg sum (new state noutputs))

(setqg sigmoid (new tanh-module noutputs)) ())

(defmethod nn-layer fprop (input output)
==> linear fprop input sum)

(==> sigmoid fprop sum output) ())

(defmethod nn-layer bprop (input output)
(==> sigmoid bprop sum output)

(==> linear bprop input sum) ())
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Assembling a 2-layer Net

,_ e
‘imim,‘ X Y| 7 @ Class implementation for a 2 layer, feed
o2 - forward neural net.
§ 31 sicoio mef&-.m) (defclass nn-2layer object
Sumy f layerl ; first layer module
'“ promre ‘ hidden ; hidden state
LAWELYE ’ layer2 ; second layer
od|] '— o .
ﬁa., sie } : !
i Xt F(X, ¢0) (defmethod nn-2layer nn-2layer (ninputs nhi
fu ! ! (setg layerl (new nn-layer ninputs nhidde
h tivear Kook 2 WX, 7 (setqg hidden (new state nhidden))
T"—-— T— 4 J (setg layerZ (new nn-layer nhidden noutpu
joput ,{K Wil ¥
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Assembling the Network: fprop and bprop

Implementation of a 2 layer, feed forward neural net.
(defmethod nn-2layer fprop (input output)
(==> layerl fprop input hidden)
(==> layer2 fprop hidden output) ())

(defmethod nn-2layer bprop (input output)

(==> layer2 bprop hidden output)
(==> layerl bprop input hidden) ())
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Assembling the Network: training

. Catiyy T_E W A training cycle:
y st [y _ [t 7 2 l:éfk a sample (X, Y"?) from the training
s n W call fprop with (X, Y") and record the
- "I §ismin )(M:f(,;.‘m) error
- W call bprop with (X, Y?)
LINEAR X 20 J W update all the weights using the gradients
3 o obtained above.
[n':min Xt 1 F(%.08) @ with the implementation above, we would
" : -l have to go through each and every module
ety oy 7 tﬂ.update all the:meigl:}ts. In the fgture, we
; will see how to “pool” all the weights and
e 4 TK e o s J other free parameters in a single vector so
japut X pt they can all be updated at once.
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ny Architecture works
[ ——

)
& Any connection is permissible
» Networks with loops must be “unfolded in
time”.
M|
T : \ & Any module is permissible

» As long as it is continuous and
differentiable almost everywhere with
respect to the parameters, and with

4 A
I/ respect to non-terminal inputs.

Yann LeCun t New York University



